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Abstract. In this paper, we investigate the periods of preimages of spatially pe-
riodic configurations in linear bipermutive cellular automata (LBCA). We first
show that when the CA is only bipermutive and y is a spatially periodic con-
figuration of period p, the periods of all preimages of y are multiples of p. We
then present a connection between preimages of spatially periodic configurations
of LBCA and concatenated linear recurring sequences, finding a characteristic
polynomial for the latter which depends on the local rule and on the configura-
tions. We finally devise a procedure to compute the period of a single preimage
of a spatially periodic configuration y of a given LBCA, and characterise the pe-
riods of all preimages of y when the corresponding characteristic polynomial is
the product of two distinct irreducible polynomials.

Keywords: Linear bipermutive cellular automata, spatially periodic configurations,
preimages, surjectivity, linear recurring sequences, linear feedback shift registers.

1 Introduction

It is known that if F : AZ→ AZ is a surjective cellular automaton (CA) and y ∈ AZ is a
spatially periodic configuration, then all preimages x ∈ F−1(y) are spatially periodic as
well [2]. However, to our knowledge there are no works in the literature addressing the
problem of actually finding the periods of such preimages.

The aim of this paper is to study the relation between the periods of spatially peri-
odic configurations and the periods of their preimages in the case of linear bipermutive
cellular automata (LBCA). Given a spatially periodic configuration y ∈ AZ of period
p, we first prove that in generic bipermutive cellular automata (BCA) the period of a
preimage x ∈ F−1(y) is a multiple of p, where the multiplier h ranges in {1, · · · ,q2r}, with
q being the size of the alphabet and r the radius of the BCA. We then show that, in the
case of LBCA, a preimage x ∈ F−1(y) can be described as a concatenated linear recur-
ring sequence (LRS) whose characteristic polynomial is the product of the characteristic
polynomials respectively induced by the local rule f of the CA and by configuration y.
Finally, we present a procedure which given a block x[0,2r−1] of a preimage x ∈ F−1(y)
determines the period of x, and we characterise the periods of all q2r preimages of y
when their characteristic polynomial is the product of two irreducible polynomials.



This research was inspired from the problem of determining the maximum number
of players allowed in a BCA-based secret sharing scheme presented in [10].

The rest of this paper is organised as follows. Section 2 recalls some basic defini-
tions and facts about cellular automata, linear recurring sequences and linear feedback
shift registers. Section 3 shows that the periods of spatially periodic preimages are mul-
tiples of the periods of their respective images, and characterises preimages of LBCA as
concatenated linear recurring sequences. Section 4 focuses on the characteristic polyno-
mial of concatenated LRS, while Section 5 presents an algorithm to compute the period
of a single LBCA preimage and characterises the periods of all preimages of a spatially
periodic configuration y in the particular case of irreducible characteristic polynomials.
Finally, Section 6 summarises the results presented throughout the paper and points out
some possible future developments on the subject.

2 Basic Definitions

2.1 Cellular Automata

Let A be a finite alphabet having q symbols, and let AZ be the full shift space consisting
of all biinfinite configurations over A. Given x ∈ AZ and i, j ∈ Z with i ≤ j, by x[i, j]
we denote the finite block (xi, · · · , x j). In what follows, we focus our attention on one-
dimensional cellular automata, formally defined below:

Definition 1. A one-dimensional cellular automaton is a function F : AZ→ AZ defined
for all x ∈ AZ and i ∈ Z as:

F(x)i = f (x[i−r,i+r]) ,

where f : A2r+1→ A is the local rule of the CA and r ∈ N is its radius.

From a dynamical point of view, a CA can be considered as a biinfinite array of cells
where, at each time step t ∈N, all cells i ∈ Z simultaneously change their state si ∈ A by
applying the local rule f on the neighbourhood {i− r, · · · , i + r}.

The main class of CA studied in this paper consists of bipermutive CA, defined as
follows:

Definition 2. A CA F : AZ → AZ induced by a local rule f : A2r+1 → A is called left
permutive (respectively, right permutive) if, for all z ∈ A2r, the restriction fR,z : A→ A
(respectively, fL,z : A→ A) obtained by fixing the first (respectively, the last) 2r coordi-
nates of f to the values specified in z is a permutation on A. A CA which is both left and
right permutive is said to be a bipermutive cellular automaton (BCA).

Another class of CA which can be defined by endowing the alphabet with a group
structure is that of linear (or additive) cellular automata. We give the definition for the
particular case in which A is a finite field. Thus, we have A = Fq with q = ρα, where
ρ ∈ N is a prime number (called the characteristic of Fq) and α ∈ N.

Definition 3. A CA F : FZq → F
Z
q with local rule f : F2r+1

q → Fq is linear if there exists
(c0, · · · ,c2r) ∈ F2r+1

q such that f can be defined for all (x0, · · · , x2r) ∈ F2r+1
q as:

f (x0, · · · , x2r) = c0 · x0 + · · ·+ c2r · x2r ,

where + and · respectively denote sum and product over Fq.



One easily checks that if both c0 and c2r in Definition 3 are nonzero then a linear CA is
bipermutive as well. Most of the results proved in this paper concern cellular automata
which are both linear and bipermutive.

A configuration x ∈ AZ is called spatially periodic if there exists p ∈ N such that
xn+p = xn for all n ∈ Z, and the least p for which this equation holds is called the period
of x. In this case, x is generated by the biinfinite concatenation of a string u ∈ Ap with
itself, denoted by ωuω. A proof of the following result about preimages of spatially
periodic configurations in surjective CA can be found in [2].

Lemma 1. Let F : AZ → AZ be a surjective CA. Then, given a spatially periodic con-
figuration y ∈ AZ, each preimage x ∈ F−1(y) is also spatially periodic.

This lemma is a consequence of a theorem proved by Hedlund [7], which states that
every configuration x ∈ AZ has a finite number of preimages under a surjective CA.
In the same work, Hedlund showed that bipermutive CA are also surjective. Indeed,
given a BCA F : AZ → AZ induced by a local rule f : A2r+1 → A and a configuration
y ∈ AZ, a preimage x ∈ F−1(y) is determined by first setting in x a block of 2r cells
x[i,i+2r−1] ∈ A2r, with i ∈ Z. Then, denoting by f −1

R,z : A→ A and f −1
L,z : A→ A the inverses

of the permutations obtained by respectively fixing the first and the last 2r coordinates
of f to z ∈ A2r, for all n ≥ i + 2r and n < i the value of xn is determined through the
following recurrence equation:

xn =

 f −1
R,z(n)(yn−r), where z(n) = x[n−2r,n−1], if n ≥ i + 2r (a)

f −1
L,z(n)(yn+r), where z(n) = x[n+1,n+2r], if n < i (b)

(1)

As a consequence, by Lemma 1 the preimages of spatially periodic configurations under
a BCA are spatially periodic as well. Moreover, since a preimage of y is uniquely deter-
mined by a 2r-cell block using Equation (1), it follows that y has exactly q2r possible
preimages in F−1(y).

We now formally state the problem analysed in the remainder of this paper:

Problem. Let y ∈ AZ be a spatially periodic configuration of period p ∈ N. Given a
BCA F : AZ→ AZ, find the relation between p and the spatial periods of the preimages
x ∈ F−1(y).

2.2 Linear Recurring Sequences and Linear Feedback Shift Registers

We now recall some basic definitions and results about the theory of linear recurring
sequences and linear feedback shift registers, which will be useful to characterise the
periods of preimages in LBCA. All the proofs of the theorems mentioned in this section
may be found in the book by Lidl and Niederreiter [9].

Definition 4. Given k ∈ N and a, a0, a1, · · · , ak−1 ∈ Fq, a linear recurring sequence
(LRS) of order k is a sequence s = s0, s1, · · · of elements in Fq which satisfies the follow-
ing relation:

sn+k = a + a0sn + a1sn+1 + · · ·+ ak−1sn+k−1 ∀n ∈ N . (2)



The terms s0, s1, · · · , sk−1 which uniquely determine the rest of the LRS are called the
initial values of the sequence. If a = 0 the sequence is called homogeneous, otherwise it
is called inhomogeneous. In what follows, we will only deal with homogeneous LRS.

A linear recurring sequence can be generated by a device called linear feedback
shift register (LFSR), depicted in Figure 1. Basically, a LFSR of order k is composed of
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Output
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+
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· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

Fig. 1: Diagram of a linear feedback shift register of length k.

k delayed flip-flops D0, D1, · · · , Dk−1, each containing an element of Fq. At each time
step n ∈ N, the elements sn, sn+1, · · · , sn+k−1 in the flip-flops are shifted one place to
the left, and Dk−1 is updated by the linear combination a0 · sn + · · ·+ak−1 · sn+k−1, which
corresponds to the linear recurrence defined in Equation (2).

It is straightforward to observe that the output produced by the LFSR (that is, the
LRS s = s0, s1, · · · ) must be ultimately periodic, that is, there exist p,n0 ∈N such that for
all n ≥ n0, sn+p = sn. In fact, for all n ∈ N the state of the LFSR is completely described
by the vector (sn, sn+1, · · · , sn+k−1). Since all the components of such vector take values
in Fq, which is a finite set of q elements, after at most qk shifts the initial value of the
vector will be repeated. In particular, in [9] it is proved that if a0 , 0, then the sequence
produced by the LFSR (or, equivalently, the corresponding LRS) is periodic, i.e., it is
ultimately periodic with preperiod n0 = 0.

An important parameter of a k-th order homogeneous LRS s = s0, s1, · · · is its char-
acteristic polynomial a(x) ∈ Fq[x], defined as:

a(x) = xk −ak−1xk−1−ak−2xk−2− · · ·−a0 . (3)

The multiplicative order of the characteristic polynomial, denoted by ord(a(x)), is the
least integer e such that a(x) divides xe−1, and it can be used to characterise the period
of s. In fact, in [9] it is shown that if a(x) is irreducible over Fq and a(0) , 0, then
the period p of s equals ord(a(x)), while in the general case where a(x) is reducible
ord(a(x)) divides p.

A common way of representing a LRS s = s0, s1, · · · is by means of its generating
function G(x), which is the formal power series defined as:

G(x) = s0 + s1x + s2x2 + · · · =

∞∑
n=0

snxn (4)



In this case, the terms s0, s1, · · · are called the coefficients of G(x). The set of all gener-
ating functions over Fq can be endowed with a ring structure in which sum and product
are respectively pointwise addition and convolution of coefficients. The fundamental
identity of formal power series states that the generating function G(x) of a k-th order
homogeneous LRS s can be expressed as a rational function:

G(x) =
g(x)
a∗(x)

=
−
∑k−1

j=0
∑ j

i=0 ai+k− jsix j

xka(1/x)
. (5)

where g(x) is the initialisation polynomial, which depends on the k initial terms of
sequence s (in which we set ak = −1), while a∗(x) = xka(1/x) is the reciprocal charac-
teristic polynomial of s.

It is easy to see that a given LRS s = s0, s1, · · · over Fq satisfies several linear recur-
rence equations. Hence, several characteristic polynomials can be associated to s, one
for each recurrence equation which s satisfies. The minimal polynomial m(x) associated
to s is the characteristic polynomial which divides all other characteristic polynomials
of s, and it can be computed as follows:

m(x) =
a(x)

gcd(a(x),h(x))
, (6)

where a(x) is a characteristic polynomial of s and h(x) = −g∗(x) is the reciprocal of the
initialisation polynomial g(x) appearing in Equation (5), with the sign changed. In [9]
it is proved that the period of s equals the order of its minimal polynomial m(x).

In order to study the periods of preimages of LBCA, we also need some results
about the sum of linear recurring sequences. Let s = s0, s1, · · · and t = t0, t1, · · · be ho-
mogeneous LRS over Fq. The sum sequence σ = s + t is defined as σn = sn + tn, for all
n ∈ N.

Theorem 1. Let σ1 and σ2 be two homogeneous LRS having minimal polynomials
m1(x),m2(x) ∈ Fq[x] and periods p1, p2 ∈ N, respectively. If m1(x) and m2(x) are rela-
tively prime, then the minimal polynomial m(x) ∈ Fq[x] of the sum σ = s + t is equal to
m1(x) ·m2(x), while the period of σ is the least common multiple of p1 and p2.

The following theorem gives a characterisation of the periods of LRS associated to
an irreducible characteristic polynomial.

Theorem 2. Let S (a(x)) be the set of all homogeneous linear recurring sequences over
Fq with irreducible characteristic polynomial a(x) ∈ Fq[x], and let e be the multiplica-
tive order of a(x). Then, S (a(x)) contains one sequence of period 1 and qk−1 sequences
of period e.

3 Preliminary Results

3.1 Preimages Periods in Generic BCA

We begin our analysis of Problem 2.1 by considering the general case where only biper-
mutivity holds. To this end, we first show a relation between finite blocks in the preim-
ages of BCA.



Lemma 2. Let F : AZ → AZ be a BCA with local rule f : A2r+1 → A. Then, given a
configuration y ∈ AZ and i, j ∈ Z, for all x ∈ F−1(y) there exists a permutation between
the blocks x[i,i+2r−1] and x[ j, j+2r−1].

Proof. Without loss of generality, let us assume i < j. Since y is fixed and F is biper-
mutive, for all x[i,i+2r−1] ∈ A2r define ϕy : A2r→ A2r as ϕy(x[i,i+2r−1]) = x[ j, j+2r−1], where
for each n ∈ { j, · · · , j+2r−1} the value of xn is computed by applying case (a) of Equa-
tion (1). We have to show that ϕy is a permutation on A2r (Figure 2).

y· · · · · ·

· · ·x[i,i+2r−1]· · · x[ j, j+2r−1] · · ·

ϕy is bijective

2r cells 2r cells

Fig. 2: By fixing y, function ϕy is a A2r-permutation.

For all possible values of block x[ j, j+2r−1], the value of x[i,i+2r−1] is uniquely determined
by applying case (b) of Equation (1). As a consequence, under ϕy each image has a
unique preimage, and thus ϕy is bijective. ut

Using Lemma 2, the following useful information about the periods of spatially
periodic preimages in BCA can be deduced:

Proposition 1. Let F : AZ→ AZ be a BCA with local rule f : A2r+1→ A and let y ∈ AZ

be a spatially periodic configuration of period p ∈ N. Given a preimage x ∈ F−1(y),
the period m ∈ N of x is a multiple of p. In particular, it holds that m = p · h, where
h ∈ {1, · · · ,q2r}.

Proof. Since y is spatially periodic of period p, we have that y = ωuω for a certain
u ∈ Ap. Given a preimage x ∈ F−1(y), denote by w1 ∈ A2r the block x[i−r,i+r−1], where
i ∈ Z is such that yi = yi+p = u1. In other words, w1 is a 2r-cell block of x placed across
the boundary between two copies of u in y (see Figure 3). By Lemma 2 we know that
block u fixes a permutation ϕu : A2r→ A2r which maps block w1 to w2 = x[i+p−r,i+p+r−1].
More in general, observe that for all j ≥ 2 the permutation which associates block
w j = x[i+p j−r,i+p j+r−1] to w j+1 = x[i+p( j+1)−r,i+p( j+1)+r−1] is always ϕu, the reason being
that the block below w j and w j+1 is a repetition of u. Since |A| = q, the permutation
ϕu can be composed by at most one cycle of length q2r. This means that, after at most
h ≤ q2r applications of ϕu, block wh = x[i+ph−r,i+ph+r−1] will be equal to w1, and from
then on the preimage will periodically repeat itself. Thus, it results that xn = xn+ph for
all n ∈ Z, from which we deduce that the period of x is p ·h. ut



u· · · · · · u u · · ·

w1· · · v1 w2 · · · wh−1 vh−1 w1 v1 w2 · · ·

h ≤ q2r copies of u

ϕu · · · ϕu ϕu

Fig. 3: After at most h ≤ q2r applications of ϕu, the 2r-cell block w1 will be repeated.
At this point, the subsequent p-cell block in the preimage will be a copy of v1w2.

3.2 Characterising LBCA Preimages By LRS Concatenation

Proposition 1 limits the possible values of the periods attained by preimages of spatially
periodic configurations in BCA. In what follows we show that, by narrowing the analy-
sis to the class of LBCA, further information about the periods of preimages can be
obtained.

Let F : FZq → F
Z
q be a LBCA of radius r with local rule f : F2r+1

q → Fq defined by a
vector (c0, · · · ,c2r) ∈ F2r+1

q , where c0 , 0 and c2r , 0. Given x ∈ F2r+1
q and y = f (x), the

following equalities hold:

y = c0x0 + c1x1 + · · ·+ c2r−1x2r−1 + c2r x2r

x2r = c−1
2r (−c0x0− c1x1− · · ·− c2r−1x2r−1 + y) .

Setting d = c−1
2r and ai = −d · ci for all i ∈ {0, · · · ,2r−1}, we obtain

x2r = a0x0 + a1x1 + · · ·+ a2r−1x2r−1 + dy . (7)

Equation (7) defines the inverse f −1
R,z of the permutation fR,z : Fq→ Fq obtained by fixing

the first 2r coordinates of f to the values of z = (x0, · · · , x2r−1). Hence, given a configu-
ration y ∈ FZq and the 2r-cell block x[0,2r−1] ∈ F

2r
q in a preimage x ∈ F−1(y), case (a) of

Equation (1) yields

xn = a0xn−2r + a1xn−2r+1 + · · ·+ a2r−1xn−1 + dyn−r ∀n ≥ 2r , (8)

and by setting k = 2r and vn = yn+r for all n ∈ N, Equation (8) can be rewritten as

xn+k = a0xn + a1xn+1 + · · ·+ ak−1xn+k−1 + dvn ∀n ≥ 2r . (9)

Equation (9) reminds the definition of a linear recurring sequence of order k = 2r, with
the exception of term dvn. However, if y is a spatially periodic configuration of period p
then it is possible to describe the sequence v = v0,v1, · · · as a linear recurring sequence
of order l ≤ p defined by

vn+l = b0vn + b1vn+1 + · · ·+ bl−1vn+l−1 , (10)



where bi ∈ Fq for all i ∈ {0, · · · , l− 1}, and the initial terms of the sequence are v0 = yr,
v1 = yr+1, · · · , vl−1 = yr+l−1. In the worst case, the LRS v will have order l = p, and it
will be generated by the trivial LFSR which cyclically shifts a word of length p.

As a consequence, preimage x ∈ F−1(y) is a linear recurring sequence of a special
kind, where xn+k is determined not only by the previous k = 2r terms, but it is also
“disturbed” by the LRS v. In particular, we define x as the concatenation of sequences
s and v, which we denote by sf v, where s = s0, s1, · · · is the k-th order LRS satisfying
the recurrence equation

sn+k = a0sn + a1sn+1 + · · ·+ ak−1sn+k−1 , (11)

and whose initial values are s0 = x0, s1 = x1, · · · , sk−1 = xk−1.
Equivalently, a preimage x ∈ F−1(y) is generated by a LFSR of order k = 2r where

the feedback is summed with the output of an l-th order LFSR multiplied by d = c−1
2r ,

which produces sequence v. Similarly to concatenated LRS, we call this system a con-
catenation of LFSR. Figure 4 depicts the block diagram of this concatenation.
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Fig. 4: Diagram of two concatenated LFSR.

In conclusion, we have shown that the periods of the preimages x ∈ F−1(y) are
equivalent to the periods of the concatenated LRS generated by the LFSR in Figure 4,
where the disturbing LFSR is initialised with the values yr, · · · , yr+l−1. In particular,
since multiplying the terms of a LRS by a constant does not change its period, in what
follows we will assume d = 1.



4 Analysis of Concatenated LRS

4.1 Sum Decomposition of Concatenated LRS

In order to study the period of the concatenated linear recurring sequence sf v giving
rise to preimage x ∈ F−1(y), we first prove that it can be decomposed into the sum of
two LRS: namely, sequence s and the 0-concatenation u = sf0 v satisfying the same
recurrence Equation (9) of x, but whose k initial terms u0, · · · , uk−1 are set to 0.

Theorem 3. Let s = s0, s1, · · · and v = v0,v1, · · · be the LRS respectively satisfying Equa-
tions (11) and (10), whose initial terms are respectively s0 = x0, · · · , sk−1 = xk−1 and
v0 = yr, · · · ,vl−1 = yr+l−1, and let x = sf v be the concatenation of s and v defined
by Equation (9), where d = 1. Additionally, let u = sf0 v be the 0-concatenation of
sequences s and v, where u0 = u1 = · · · = uk−1 = 0. Then, xn = sn + un for all n ∈ N.

Proof. Since u0 = u1 = · · · = uk−1 = 0, for all n ∈ {0, · · · ,k−1} it holds

sn + un = sn + 0 = xn .

Therefore, it remains to prove xn = sn + un for all n ≥ k. We proceed by induction on n.
For n = k, we have

sk + uk = a0s0 + · · ·+ ak−1sk−1 + a0u0 + · · ·+ ak−1uk−1 + v0 =

= a0x0 + · · ·+ ak−1xk−1 + v0 = xk .

For the induction step we assume sn +un = xn for n ≤ k. The sum sn+1 +un+1 is equal to:

sn+1 + un+1 = a0sn−k+1 + · · ·+ ak−1sn + a0un−k+1 + · · ·+ ak−1un + vn−k+1 =

= a0(sn−k+1 + un−k+1) + · · ·+ ak−1(sn + un) + vn−k+1 . (12)

By induction hypothesis, sn−k+i + un−k+i = xn−k+i for all i ∈ {1, · · · ,k}. Hence, Equa-
tion (12) can be rewritten as

sn+1 + un+1 = a0xn−k+1 + · · ·+ ak−1xn + vn−k+1 = xn+1 .

ut

4.2 Characteristic Polynomial of Concatenated LRS

Theorem 3 tells us that a preimage x ∈ F−1(y) can be generated by the sum of two LRS:
the LRS generated by the concatenated LFSR of Figure 4, where the disturbed LFSR is
initialised to zero, and the LRS produced by the non-disturbed LFSR, that is, the lower
LFSR in Figure 4 without the external feedback, initialised to the values x0, · · · , xk−1.

We now show that this sum decomposition allows one to determine a characteristic
polynomial of the concatenated sequence x = sf v. To this end, we first need a result
proved by Chassé in [3] which concerns the generating function of the 0-concatenation
u = sf0 v. The proof stands on the observation that for all n ∈ N, the n-th term of u is
given by the linear combination

∑n−1
i=0 A(i)

n · vi, where the terms A(i)
n depend only on the



coefficients a j which define Equation (11). In particular, we will need the values of A(0)
n

for n ≥ 0, which can be computed by the following recurrence equation:

A(0)
n =


∑k−1

j=0 a jA
(0)
n−k+ j , if n > 1

1 , if n = 1
0 , if n = 0

(13)

where k = 2r and A(0)
n−k+ j = 0 if n − k + j < 0. Using our notation and terminology,

Chassé’s result can thus be stated as follows:

Proposition 2. Let u = sf0 v be the 0-concatenation of the LRS s and v defined in The-
orem 3, and let V(x) be the generating function of v. Denoting by A(x) the generating
function of the sequence A = {A(0)

n+1}n∈N, the generating function of u is

U(x) = x ·A(x) ·V(x) . (14)

Moreover, if a(x) ∈ Fq[x] is the characteristic polynomial of the sequence s associated
to the recurrence equation (11), then a(x) is also a characteristic polynomial of A.

We now prove that the characteristic polynomial of the concatenation sf v is the
product of the characteristic polynomials of s and v.

Theorem 4. Let sf v be the concatenation of LRS s and v defined by Equation (9)
with d = 1, and let a(x),b(x) ∈ Fq[x] be the characteristic polynomials of s and v, re-
spectively associated to the linear recurring equations (11) and (10). Then, a(x) · b(x)
is a characteristic polynomial of sf v.

Proof. By Theorem 3 the concatenation of LRS s and v can be written as sf v = s+u,
where u = sf0 v is the 0-concatenation associated to sf v. By applying the funda-
mental identity of formal power series (Equation (5)) and Proposition 2, the following
equalities hold:

S (x) =
gs(x)
a∗(x)

(15)

U(x) =
x ·gA(x) ·gv(x)

a∗(x) ·b∗(x)
, (16)

where gs(x), gA(x) and gv(x) are polynomials whose coefficients are computed accord-
ing to the numerator in the RHS of Equation (5). Hence, the generating function of
sf v is:

G(x) =
gs(x)
a∗(x)

+
x ·gA(x) ·gv(x)

a∗(x) ·b∗(x)
=

gs(x) ·b∗(x) + x ·gA(x) ·gv(x)
a∗(x) ·b∗(x)

. (17)

By applying again the fundamental identity of formal power series to Equation (17),
we deduce that the reciprocal of c(x) = a∗(x) · b∗(x) is a characteristic polynomial of
sf v. Denoting by k and l the degrees of a(x) and b(x) respectively, it follows that
c(x) = xk+l ·a(1/x) ·b(1/x), and thus the reciprocal of c(x) is

c∗(x) = xk+l ·
1

xk+l ·a(x) ·b(x) = a(x) ·b(x) . (18)

Therefore, a(x) ·b(x) is a characteristic polynomial of sf v. ut



Theorem (4) thus gives a characteristic polynomial for all preimages x ∈ F−1(y)
of a spatially periodic configuration y ∈ FZq . As a matter of fact, the polynomials a(x)
and b(x) do not depend on the particular value of the block x[0,2r−1], but only on the
local rule f and on configuration y, respectively. From the LFSR point of view, this
means that a preimage x ∈ F−1(y) can be generated by a single LFSR implementing the
(k + l)-th order recurrence equation

σn+k+l = c0σn + c1σn+1 + · · ·+ ck+l−1σn+k+l−1 , (19)

where for all µ ∈ {0, · · · ,k + l− 1} the term cµ is the µ-th convolution coefficient in the
multiplication a(x) ·b(x) given by

cµ =
∑

i+ j=µ

aib j, for i ∈ {0, · · · ,k} and j ∈ {0, · · · , l} . (20)

Additionally, the first k = 2r initial terms σ0, · · · ,σk−1 in Equation (19) are initialised
to the values in x[0,2r−1], while the remaining l ones are obtained using the recurrence
equation (9). Hence, by applying the fundamental identity of formal power series, the
numerator of Equation (17) can also be expressed as:

g(x) = −

k−1∑
j=0

j∑
i=0

ci+k− jσix j . (21)

5 Further Results

5.1 Computing the Period of a Single Preimage

To summarise the results discussed so far, we now present a practical procedure to
compute the spatial period of a single preimage. Given a LBCA F : FZq → F

Z
q with local

rule f : F2r+1
q → Fq of radius r ∈ N, a spatially periodic configuration y ∈ FZq and a

2r−cell block x[0,2r−1] ∈ F
2r
q of a preimage x ∈ F−1(y), the procedure can be described

as follows:

1. Find the minimal polynomial b(x) = xl − bl−1xl−1 · · · − b0 of the linear recurring
sequence v, where vn = yn+r for all n ∈ N.

2. Set the characteristic polynomial a(x) associated to the inverse permutation f −1
R,z

to a(x) = xk − ak−1xk−1 − · · · − a0, where k = 2r and the coefficients ai are those
appearing in the recurrence equation (11).

3. Compute the polynomial g(x) given by Equation (21), and set h(x) = −g∗(x).
4. Determine the minimal polynomial of the preimage by computing

m(x) =
a(x) ·b(x)

gcd(a(x) ·b(x),h(x))
. (22)

5. Compute the order of m(x), and output it as the period of preimage x.



For step 1, the minimal polynomial of v can be found using the Berlekamp-Massey al-
gorithm [11], by giving as input to it the string composed by the first 2p elements of
v, where p is the period of y (and hence the period of v as well). The time complexity
of this algorithm is O(p2). Step 4 requires the computation of a greatest common divi-
sor, which can be performed using the standard Euclidean division algorithm in O(n2)
steps, where n = max{deg(a(x)b(x)),deg(h(x))}. Finally, the order of m(x) in step 5 can
be determined by first factorizing the polynomial, for example by using Berlekamp’s
algorithm [1] which has a time complexity of O(D3), where D is the degree of m(x), if
the characteristic ρ of Fq is sufficiently small. Once the factorization of m(x) is known,
ord(m(x)) can be computed using the following theorem proved in [9]:

Theorem 5. Let m(x) ∈ Fq[x] be a polynomial having positive degree and such that
m(0), 0. Let m(x) = a ·

∏n
i=0 fi(x)bi be the canonical factorization of m(x), where a ∈ Fq,

b1, · · · ,bn ∈ N and f1(x), · · · , fn(x) ∈ Fq[x] are distinct monic irreducible polynomials.
Then ord(m(x)) = eρt, where ρ is the characteristic of Fq, e is the least common multiple
of ord( f1(x)), · · · ,ord( fn(x)) and t is the smallest integer such that ρt ≥max(b1, · · · ,bn).

Notice that Theorem 5 depends on the knowledge of the orders of the irreducible poly-
nomials involved in the factorization of m(x). A method to determine the order of an ir-
reducible polynomial is also described in [9], which relies on the factorization of qD−1.
There exist several factorization tables for numbers in this form, especially for small
values of q (see for example [4]).

We now present a practical application of the procedure described above. The com-
putations in the following example have been carried out with the computer algebra
system MAGMA.

Example 1. Let F : FZ2 → F
Z
2 be the LBCA with local rule f : F3

2→ F2 of radius r = 1,
defined as f (x1, x2, x3) = x1 + x2 + x3 for all (x1, x2, x3) ∈ F3

2, which is the elementary
rule 150. Let y ∈ FZ2 be a spatially periodic configuration of period p = 4 generated
by the block y[0,3] = (0,0,1,1), and let x[0,1] = (1,0) be the initial 2-cell block of a
preimage x ∈ F−1(y). Since r = 1, sequence v is generated by block v[0,3] = (0,1,1,0).
Feeding the string (0,1,1,0,0,1,1,0) to the Berlekamp-Massey algorithm yields the
polynomial b(x) = x3 + x2 + x+1, while the characteristic polynomial associated to rule
150 is a(x) = x2 + x + 1. Hence, it follows that c(x) = a(x) · b(x) = x5 + x3 + x2 + 1 is
a characteristic polynomial of the preimage. Since the first 5 elements of preimage x
are 1,0,1,0,0, the initialisation polynomial of Equation (21) is g(x) = x4 + x3 + 1, from
which we deduce that h(x) = x4 + x+1. Considering that h(x) is irreducible, the greatest
common divisor of c(x) and f (x) is 1, and thus by Equation (22) c(x) is also the minimal
polynomial of the preimage. The factorization of c(x) is (x + 1)3(x2 + x + 1), and the
orders of x + 1 and x2 + x + 1 are respectively 1 and 3, from which it follows that the
least common multiple e is 3. Finally, the smallest integer t such that 2t ≥ 3 is t = 2.
Therefore, by applying Theorem 5 the period of preimage x is e2t = 12. Figure 5 shows
the actual value of the block x[0,11] which generates preimage x.

5.2 Characterisation of Periods When a(x) and b(x) Are Irreducible

As a further application of Theorem 4, we now show a complete characterisation of
the periods of x ∈ F−1(y) in the special case where the characteristic polynomials a(x)
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Fig. 5: Block x[0,11] which generates preimage x ∈ F−1(y) under rule 150, computed
using case (a) of Equation (1). Notice that (x12, x13) = (x0, x1) and (y12,y13) = (y0,y1).
Hence, for n ≥ 12 and n < 0 the preimage will periodically repeat itself.

and b(x) are irreducible. To this end, we first report an additional theorem proved in [9]
which concerns the sum of families of LRS.

Theorem 6. Let f1(x), f2(x) ∈ Fq be non-constant monic polynomials, and let S ( f1(x))
and S ( f2(x)) be the families of LRS whose characteristic polynomials are respectively
f1(x) and f2(x). Denoting by S ( f1(x)) + S ( f2(x)) the family of all LRS σ + τ where
σ ∈ S ( f1(x)) and τ ∈ S ( f2(x)), it follows that S ( f1(x)) + S ( f2(x)) = S (c(x)), where c(x)
is the least common multiple of f1(x) and f2(x).

Our characterisation result, which is analogous to Theorem 2, is the following:

Theorem 7. Let F : FZq → FZq be an LBCA having local rule f : F2r+1
q → Fq, and let

a(x) = xk − ak−1xk−1 − · · · − a0 ∈ Fq[x] be the characteristic polynomial associated to
the inverse permutation f −1

R,z , where k = 2r, a0, · · · ,ak−1 are the coefficients appearing in
Equation (11) and ord(a(x)) = e. Further, let y ∈ FZq be a spatially periodic configuration
of period p > 1, and let b(x) be the minimal polynomial of sequence v, where vn = yn+r
for all n ∈N. If a(x) and b(x) are both irreducible and a(x) , b(x), then F−1(y) contains
one configuration of period p and qk−1 configurations of period m, where m is the least
common multiple of e and p.

Proof. By Theorem (4), a(x) ·b(x) is a characteristic polynomial of the qk preimages in
F−1(y). Denote by S (a(x)) and S (b(x)) the sets of LRS having characteristic polynomi-
als a(x) and b(x), respectively. Since a(x) and b(x) are both irreducible and a(x) , b(x),
by Theorem 6 it follows that S (a(x) ·b(x)) = S (a(x))+S (b(x)). Hence, F−1(y) is a subset
of S (a(x)) + S (b(x)), and as a consequence every preimage x ∈ F−1(y) can be written
as x = σ+ τ, where σ ∈ S (a(x)) and τ ∈ S (b(x)). In particular, by applying Theorem 2
it results that S (a(x)) is composed by one sequence of period 1 and qk − 1 sequences
of period e, while since p > 1 the sequence τ is necessarily one of the ql −1 sequences
of period p of S (b(x)), where l is the degree of b(x). Therefore, by making all possible
sums for σ ranging in S (a(x)), Theorem 1 yields that F−1(y) is composed by one con-
figuration having period p, which is the preimage x =σ+τ where σ has period 1, while
the period of all the remaining qk − 1 configurations is the least common multiple of e
and p. ut

6 Conclusions

In this work, we studied the relation between the periods of spatially periodic configura-
tions of LBCA and the periods of their preimages, characterising the latter as concatena-



tions of linear recurring sequences. We remark that Theorem 4 can be straightforwardly
generalised to the case x(t) ∈ F−t(y), i.e. preimages of y with respect to the t-th iterate of
the CA, where t ∈ N. Indeed, it can be shown that a(x)t ·b(x) is a characteristic polyno-
mial of x(t), which is thus generated by a “cascade” of concatenated LFSR where each
LFSR is initialised to a block x(i)

[0,2r−1] of an intermediate preimage x(i) ∈ F−i(y), for
i ∈ {1, · · · , t}. Of course in this case we have to take into account the fact that the running
time of the procedure described in Section 5.1 grows exponentially in the degree D of
the minimal polynomial m(x), since it depends on the factorization of qD−1.

We conclude by discussing some possible future directions of research on the sub-
ject. A first idea is to generalise the results presented in this paper to nonlinear BCA,
where the preimages are generated by a Nonlinear Feedback Shift Register (NFSR) dis-
turbed by the LFSR which generates configuration y. We remark that this concatenation
is also the main primitive upon which the stream cipher Grain is based [8]. Hence,
finding a general method to study the periods of preimages of nonlinear BCA could
also be useful to cryptanalyse this cipher. This study could be further generalised to
generic surjective CA. In this regard, a possible starting point could be a result reported
in [5], which implies that if F : FZq → F

Z
q is a surjective linear CA, then there exists t ∈N

such that the t-th iterate Ft is bipermutive. Finally, a further extension of this research
would be to analyse the periods of spatially periodic configurations in the case of multi-
dimensional cellular automata, by considering suitable notions of bipermutivity such as
the ones introduced in [6].
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