N

N
N

HAL

open science

Scaling HDFS with a Strongly Consistent Relational
Model for Metadata

Kamal Hakimzadeh, Hooman Peiro Sajjad, Jim Dowling

» To cite this version:

Kamal Hakimzadeh, Hooman Peiro Sajjad, Jim Dowling. Scaling HDFS with a Strongly Consistent
Relational Model for Metadata. 4th International Conference on Distributed Applications and In-
teroperable Systems (DAIS), Jun 2014, Berlin, Germany. pp.38-51, 10.1007/978-3-662-43352-2 4 .
hal-01287731

HAL Id: hal-01287731
https://inria.hal.science/hal-01287731
Submitted on 14 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01287731
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Scaling HDFS with a Strongly Consistent
Relational Model for Metadata

Kamal Hakimzadeh, Hooman Peiro Sajjad, Jim Dowling

KTH - Royal Institute of Technology
Swedish Institute of Computer Science (SICS)
{mahbh, shps, jdowling}@kth.se

Abstract. The Hadoop Distributed File System (HDFS) scales to store
tens of petabytes of data despite the fact that the entire file system’s
metadata must fit on the heap of a single Java virtual machine. The size
of HDFS’ metadata is limited to under 100 GB in production, as garbage
collection events in bigger clusters result in heartbeats timing out to the
metadata server (NameNode).

In this paper, we address the problem of how to migrate the HDFS’
metadata to a relational model, so that we can support larger amounts
of storage on a shared-nothing, in-memory, distributed database. Our
main contribution is that we show how to provide at least as strong con-
sistency semantics as HDFS while adding support for a multiple-writer,
multiple-reader concurrency model. We guarantee freedom from dead-
locks by logically organizing inodes (and their constituent blocks and
replicas) into a hierarchy and having all metadata operations agree on a
global order for acquiring both explicit locks and implicit locks on sub-
trees in the hierarchy. We use transactions with pessimistic concurrency
control to ensure the safety and progress of metadata operations. Finally,
we show how to improve performance of our solution by introducing a
snapshotting mechanism at NameNodes that minimizes the number of
roundtrips to the database.

1 Introduction

Distributed file systems, such as the Hadoop Distributed File System (HDFS),
have enabled the open-source Big Data revolution, by providing a highly avail-
able (HA) storage service that enables petabytes of data to be stored on com-
modity hardware, at relatively low cost [2]. HDFS’ architecture is based on
earlier work on the Google Distributed File System (GFS) [4] that decoupled
metadata, stored on a single node, from block data, stored across potentially
thousands of nodes. In HDFS, metadata is kept in-memory on a single NameN-
ode server, and a system-level lock is used to implement a multiple-reader, single
writer concurrency model. That is, HDFS ensures the consistency of metadata
by only allowing a single client at a time to mutate its metadata. The metadata
must fit on the heap of a single Java virtual machine (JVM) [10] running on the
NameNode.

The current implementation of HDFS does, however, support highly available
metadata through an eventually consistent replication protocol, based on the

Active/Standby replication pattern, but limited to having a single standby node.
All read and write requests are handled by the Active node, as reads at the
Standby node could return stale data. The replication protocol is based on the
Active node making quorum-based updates to a recovery log, called the edit log,
persistently stored on a set of journal nodes. The Standby node periodically pulls
updates to the edit log and applies it to its in-memory copy of the metadata. The
quorum-based replication protocol requires at least three journal nodes for high
availability. Failover from the Active to the Standby can, however, take several
tens of seconds, as the Standby first has to apply the set of outstanding edit log
entries and all nodes need to reach agreement on who the current Active node
is. They solve the latter problem by using a Zookeeper coordination service that
also needs to run on at least three nodes to provide a high availability [7].

The challenge we address in this paper is how to migrate HDFS’ metadata
from highly optimized data structures stored in memory to a distributed re-
lational database. Using a relational database to store file system metadata is
not a novel idea. WinFs [13], a core part of the failed Windows Longhorn, was
supposed to use Microsoft SQL Server to store its file system metadata, but
the idea was abandoned due to poor performance. However, with the advent of
New SQL systems [17], we believe this is an idea whose time has now come.
Recent performance improvements for distributed in-memory databases make it
now feasible. Version 7.2 of MySQL Cluster, an open-source new SQL database
by Oracle, supports up to 17.6 million transactional 100-byte reads/second on
8 nodes using commodity hardware over an infiniband interconnect [17]. In ad-
dition to this, recent work on using relational databases to store file system
metadata has shown that relational databases can outperform traditional inode
data structures when querying metadata [5].

Our implementation of HDFS replaces the Active-Standby and eventually
consistent replication scheme for metadata with a transactional shared memory
abstraction. Our prototype is implemented using MySQL Cluster [14]. In our
model, the size of HDFS’ metadata is no longer limited to the amount of mem-
ory that can be managed on the JVM of a single node [10], as metadata can
now be partitioned across up to 48 nodes. By applying fine-grained pessimistic
locking, our solution allows multiple compatible write operations [8] to progress
simultaneously. Even though our prototype is built using MySQL Cluster, our
solution can be generalized to support any transactional data store that either
supports transactions with at least read-committed isolation level and row-level
locking. Our concurrency model also requires implicit locking, and is motivated
by Jim Gray’s early work on hierarchical locking [8]. We model all HDF'S meta-
data objects as a directed acyclic graph of resources and then with a row-level
locking mechanism we define the compatibility of metadata operations so as to
isolate transactions for the fewest possible resources allowing a maximum number
of concurrent operations on metadata. We show how serializable transactions are
required to ensure the strong consistency of HDFS’ metadata, by showing how
anomalies that can arise in transaction isolation levels lower than serializable
[1] can produce inconsistencies in HDFS metadata operations. As our solution

produces a high level of load on the database, we also introduce a snapshot layer
(per-transaction cache) to reduce the number of roundtrips to the database.

2 HDFS Background and Concurrency Semantics

Distributed file systems have typically attempted to provide filesystem semantics
that are as close as possible to the POSIX strong model of consistency [19].
However, for some operations, HDFS provides a consistency level weaker than
POSIX. For example, because of the requirement to be able to process large files
that are still being written, clients can read files that are opened for writing.
In addition, files can be appended to, but existing blocks cannot be modified.
At the file block level, HDFS can be considered to have sequential consistency
semantics for read and write operations [19], since after a client has successfully
written a block, it may not be immediately visible to other clients. However,
when a file has been closed successfully, it becomes immediately visible to other
clients, that is, HDFS supports linearizability [6] at the file read and write level.

Metadata in HDFS. Similar to POSIX file systems, HDFS represents both
directories and files as inodes (INode) in metadata. Directory inodes contain a
list of file inodes, and files inodes are made up a number of blocks, stored in
a BlockInfo object. A block, in its turn, is replicated on a number of different
data nodes in the system (default 3). Each replica is a Replica object in meta-
data. As blocks in HDFS are large, typically 64-512 MB in size, and stored on
remote DataNodes, metadata is used to keep track of the state of blocks. A
block being written is a PendingBlock, while a block can be under-replicated if
a DataNode fails (UnderReplicatedBlock) or over-replicated (EzcessReplica) if
that DataNode recovers after the block has been re-replicated. Blocks can also
be in an InvalidatedBlock state. Similarly, replicas (of blocks) can be in Repli-
caUnderConstruction and CorruptedReplica states. Finally, a Lease is a mutual
grant for a number of files being mutated by a single client while LeasePath is
an exclusive lock regarding a single file and a single client.

Tying together the NameNode and DataNodes. Filesystem operations
in HDFS, such as file open/close/read/write/append, are blocking operations
that are implemented internally as a sequence of metadata operations and block
operations orchestrated by the client. First, the client queries or mutates meta-
data at the NameNode, then blocks are queried or mutated at DataNodes, and
this process may repeat until the filesystem operation returns control to the
client. The consistency of filesystem operations is maintained across metadata
and block operations using leases stored in the NameNode. If there is a failure
at the client and the client doesn’t recover, any leases held by the client will
eventually expire and their resources will be freed. If there is a failure in the
NameNode or a DataNode during a filesystem operation, the client may be able
to retry the operation to make progress or if it cannot make progress it will try
to release the leases and return an error (the NameNode needs to be contactable
to release leases).

HDFS’ Single-Writer Concurrency Model for Metadata Operations.
The NameNode is the bottleneck preventing increased write scalability for HDFS
applications [16], and this bottleneck is the result of its multiple-reader, single-
writer concurrency model [20]. Firstly, metadata is not partitioned across nodes.
Secondly, within the NameNode, a global read/write lock (FSNamesystem lock -
a Java language ReentrantReadWriteLock) protects the namespace by grouping
the NameNode’s operations into read or write operations. The NameNode uses
optimized data structures like multi-dimensional linked-lists for accessing blocks,
replicas and DataNode information on which it is almost impossible to use fine-
grained concurrency control techniques. The data structures are tightly coupled,
and generally not indexed as memory access is fast and indexing would increase
metadata storage requirements.

As the FSNamesystem lock is only acquired while updating metadata in
memory, the lock is only held for a short duration. However, write operations also
incur at least one network round-trip as they have to be persisted at a quorum
of journal nodes. If writes were to hold FSNamesystem lock while waiting for the
network round-trip to complete, it would introduce intolerable lock contention.
So, writes release the FSNamesystem lock after applying updates in memory,
while waiting for the updates to be persisted to the journal nodes. In addition
to this, to improve network throughput to the journal nodes, writes are sent in
batches [11] to journal nodes. When batched writes return, the thread waiting
for the write operation returns to the client. However, thread scheduling anoma-
lies at the NameNode can result in writes returning out-of-order, thus violating
linearizability of metadata. As threads don’t hold the FSNamesystem lock while
waiting for edits to complete, it is even possible that thread scheduling anoma-
lies could break sequential consistency semantics by returning a client’s writes
out-of-order. However, metadata operations also acquire leases while holding the
FSNamesystem lock, thus making individual filesystem operations linearizable.

3 Problem Definition

We are addressing the problem of how to migrate HDFS’ metadata to a relational
model, while maintaining consistency semantics at least as strong as HDFS’ Na-
meNode currently provides. We assume that the database supporting the re-
lational model provides support for transactions. While metadata consistency
could be ensured by requiring that transactions’ execute at a serializable isola-
tion level, distributed relational databases typically demonstrate poor through-
put when serializing all updates across partitions [18]. In HDFS, filesystem op-
erations typically traverse the root directory, and the root inode is, therefore,
a record that is frequently involved in many different transactions. As the root
directory can only be located on one partition in a distributed database, transac-
tions that take a lock on the root (and other popular directories) will frequently
cross partitions. Thus, the root directory and popular directories become a syn-
chronization bottleneck for transactions. A challenge is safely removing them
from transactions’ contention footprint, without having to give up on strong
consistency for metadata. If we are to implement a consistency model at least as

strong consistency as that provided for HDFS’ metadata, we need transactions,
and they need to support at least read-committed isolation level and row-level
locks, so that we can implement stronger isolation levels when needed.

Another challenge we have is that, in the original HDFS, metadata opera-
tions, each executed in their own thread, do not read and write metadata objects
in the same order. Some operations may first access blocks and then inodes, while
other operations first access inodes and then blocks. If we encapsulate metadata
operations in transactions, locking resources as we access them, cycles will be
introduced resulting in deadlocks. Another problem, that is also an artifact of
HDFS’s NameNode design, is that many operations read objects first, and then
update them later within the same metadata operation. When these operations
are naively implemented as transactions, deadlock occurs due to transactions
upgrading read locks to exclusive locks.

Finally, as we are moving the metadata to remote hosts, an excessive number
of roundtrips from a NameNode to the database increases the latency of filesys-
tem operation latencies and reduces throughput. Although we cannot completely
avoid network roundtrips, we should avoid redundant fetching of the same meta-
data object during the execution of a transaction.

4 Hierarchical Concurrency Model

The goal of our concurrency model is to support as a high a degree of concurrent
access to HDFS’ metadata as possible, while preserving freedom from deadlock
and livelock. Our solution is based on modelling the filesystem hierarchy as a di-
rected acyclic graph (DAG), and metadata operations that mutate the DAG are
in a single transaction or that either commits or, in the event of partial failures
in the distributed database, aborts. Aborted operations are transparently retried
at NameNodes unless the error is not recoverable. Transactions pessimistically
acquire locks on directory /file subtrees and file/block /replica subtrees, and these
locks may be either explicit or implicit depending on the metadata operation.
Ezxplicit locking requires a transaction to take locks on all resources in the sub-
tree. Implicit locking, on the other hand, only requires a transaction to take one
explicit lock on the root of a subtree and it then implicitly acquires locks on
all descendants in the subtree. There is a trade-off between overhead of taking
too many locks with explicit locking over lower level of concurrency with implicit
locking [8]. However, metadata operations not sharing any subtrees can be safely
executed concurrently.

4.1 Building a DAG of Metadata Operations

After careful analysis of all metadata operations in the NameNode, we have
classified them into three different categories based on the primary metadata
object used to start the operation:

1. path operations,
2. block operations,
3. lease operations.

The majority of HDFS’ metadata operations are path operations that take an
absolute filesystem path to either a file or directory as their primary parameter.
Path operations typically lock one or more inodes, and often lock block objects,
lease paths and lease objects. Block operations, on the other hand, take a block
identifier as their primary parameter and contain no inode information. An ex-
ample block operation is AddBlock: when a block has been successfully added
to a DataNode, the DataNode acknowledges that the block has been added to
the NameNode that then updates the block’s inode. Blocks are unique to in-
odes, as HDFS does not support block sharing between files. Lease operations
also provide a filesystem path, but it is just a subpath that is used to find all
the lease-paths for the files containing that subpath. In figure la, we can see
how block and lease operations can mutate inodes, introducing cycles into the
metadata hierarchy and, thus, deadlock.

Our solution to this problem, in figure (1b), is to break up both block op-
erations and lease operations into two phases. In the first phase, we start a
transaction that executes only read operations, resolving the inodes used by the
operations at a read committed isolation level. This transaction does not intro-
duce deadlock. In the second phase, we start a new transaction that acquires
locks in a total order, starting from the root directory. This second transaction
needs to validate data acquired in the first phase (such as inode id(s)). Now
path, block and lease operations all start acquiring locks starting from the root
inode.

We need to ensure that metadata operations do not take locks on inodes in
a conflicting order. For example, if a metadata operation operation(z,y) that
take two inodes as parameters always takes a lock on the first inode x then
on the second inode y, then the concurrent execution of operation(a,b) and
operation(b,a) can cause deadlock. The solution to this problem is to define a
total ordering on inodes, a total order rule, and ensure all transactions acquire
locks on inodes using this global ordering. The total order follows the traversal
of the file system hierarchy that depth-first search would follow, traversing first
towards the leftmost child and terminating at the rightmost child. The first inode
is the root inode, followed by directory inodes until the leftmost child is reached,
then all nodes in that directory, then going up and down the hierarchy until the
last inode is reached.

More formally, we use the hierarchy of the file system to map inodes to a
partially ordered set of IDs. A transaction that already holds a lock for an inode
with ID m can only request a lock on an inode with ID n if n > m. This
mechanism also implements implicit locking, as directory inodes always have a
lower ID than all inodes in its subtree.

Our total ordering is impossible for range queries (with or without indexes),
because not all databases support ordered queries. We fix this issue by also
taking implicit locks in such cases. As paths are parsed in a consistent order
from the root to leaf inodes in the path, when we take an exclusive lock on a
directory inode, we implicitly lock its subtree. This prevents concurrent access to
the subtree, and thus reduces parallelism, but solves our problem. Fortunately,

restart from root

Path
Ops

~~~~~~ ------
Lease e Lease
OpsO restart from root 0PSO
(a) HDFS’ Directed Graph has cycles. (b) Acyclic DAG. Ops start from root,

locks taken in order from leftmost child.
I: INode, B: BlockInfo, L: Lease, LP: LeasePath, CR: CorruptedReplica, URB: UnderRepliatedBlock, R: Replica,

UCR: UnderConstructionReplica, PB: PendingBlock, IB: InvalidatedBlock, ER: ExcessReplica

Fig.1: Access graph of HDFS metadata

typical operations, such as getting blocks for a file and writing to a file do not
require implicit locks at the directory level. However, we do take implicit locks
at the file inode level, so when a node is writing to a file, by locking the inode,
we implicitly lock all block and replica objects within that file.

4.2 Preventing Lock Upgrades

A naive implementation of our relational model would translate read and write
operations on metadata in the existing NameNode to read and write operations
directly on the database. However, assuming each metadata operation is en-
capsulated inside a single transaction, such an approach results in locks being
upgraded, potentially causing deadlock. Our solution is to only acquire a lock
once on each data item within a metadata operation, and we take the lock with
the highest strength lock that will be required for the duration of that transac-
tion.

4.3 Snapshotting

As we only want to acquire locks once for each data item, and we are assuming an
architecture where the NameNode accesses a distributed database, it makes no
sense for the NameNode to read or write the same data item more than once from
the database within the context of a single transaction. For any given transac-
tion, data items can be cached and mutated at a NameNode and only updated
in the database when the transaction commits. We introduce a snapshotting
mechanism for transactions that, at the beginning of each transaction, reads all
the resources a transaction will need, taking locks at the highest strength that
will be required. On transaction commit or abort, the resources are freed. This
solution enables NameNodes to perform operations on the per-transaction cache
(or snapshot) of the database state during the transaction, thus reducing the
number of roundtrips required to the database. Note, this technique is not im-
plementing snapshot isolation [1], we actually support serializable transactions.



Algorithm 1 Snapshotting taking locks in a total order.
1: snapshot.clear

2: operation doOperation

3: tx.begin

4 create-snapshot()

5: performTask()

6: tx.commit

7: operation create-snapshot

8: S = total order_sort(op.X)

9: foreach x in S do

10: if x is a parent then level = x.parent_level lock
11: else level = x.strongest lock type
12: tx.lockLevel(level)

13: snapshot += tx.find(x.query)

14: end for

15: operation performTask
16: //Operation Body, referring to transaction cache for data

An outline of our concurrency model for transactions, including total order locks
and snapshotting, is given in algorithm 1.

5 Correctness Discussion

In our solution, transactions are serializable, meaning that transactions are
sortable in the history of operations. Therefore, it is always true that at any
moment in time, all readers get the final and unique view of the mutated data
which is strongly consistent. We ensure that transactions that contain both a
read and a modify filesystem operation for the same shared metadata object
should be serialized based on the serialization rule:

=V (ws, wj) if Xoi N Xuj # @ then transactions of (w;, w;) must be serialized;
— YV (ri,wj)if Xy N Xy # @ then transactions of (r;, w;)must be serialized.

First, we use the hierarchy of the file system to define a partial ordering over
inodes. Transactions follow this partial ordering when taking locks, ensuring
that the circular wait condition for deadlock never holds. Similarly, the partial
ordering ensures that if a transaction takes an exclusive lock on a directory inode,
subsequent transactions will be prevented from accessing the directory’s subtree
until the lock on the directory’s lock is released. Implicit locks are required for
operations such as creating files, where concurrent metadata operations could
return success even though only one of them actually succeeded. For operations
such as deleting a directory, explicit locks on all child nodes are required.

To show that our solution is serializable, we use an anomalies-based definition
of isolation levels, and then we justify why none of these anomalies happen in
our solution [1]. The list of anomalies that can arise in transactions are namely
Dirty Write, Dirty Read, Fuzzy Read, Lost Update, Read Skew, Write Skew, and



Phantom Reads [1]. Assuming well-formed locking [1], that is, we have no bugs
in our locking code, then the system guarantees that it is never possible that
two concurrent transactions could mutate the same data item. This prevents
Dirty Reads and Write, as well as Fuzzy Reads and Read Skew. Similarly, Lost
Updates only occur if we do not have well-formed locking. Similarly, Write Skew
is impossible, as a reader and writer transactions require concurrent access to
the same data item. Likewise for a single data item, predicates are also taken
into account in our solution in the form of implicit locks. All predicates are also
locked even if the metadata operation does not intend to change them directly,
thus making Phantom Reads impossible. Finally, we only execute index scans
when we have an implicit lock preventing the insertion of new rows that could be
returned by that index scan. This means that, for example, when listing files in
a directory we take an implicit lock on the directory so that no new files can be
inserted in the directory while the implicit lock is held. Similarly, list all blocks
for an inode only happens when we have an implicit lock on the inode.

6 Experiments

We used MySQL Cluster as the distributed relational database for metadata. In
experiments the MySQL Cluster nodes and the NameNode run on machines each
with 2 AMD 6 core CPUs (2.5 GHz clock speed, 512 KB cache size) connected
with 1 GB Ethernet. The versions of our software were: MySQL Cluster 7.2.8,
Java virtual machine 1.6 and ClusterJ 7.1.15a as the connector.

6.1 Capacity
Based on Shvachko in [16], HDFS files on average contain 1.5 blocks and, assum-

ing a replication factor of 3, then 600 bytes of memory is required per file. Due
to garbage collection effects, the upper limit on the size of the JVM heap for the
NameNode is around 60GB, enabling the NameNode to store roughly 100 mil-
lion files [16]. Existing clusters at Facebook have larger block sizes, up to 1 GB,
and carefully configure and manage the JVM to scale the heap up to 100 GB,
leading to larger clusters but not to significantly more files. For our NameNode,
we estimate the amount of metadata consumed per file by taking into account
that each INode, BlockInfo and Replica row in database require 148, 64 and
20 bytes, respectively. Per file, our system creates 1 INode, 2 BlockInfo and 6
Replica rows, which is 396 bytes. MySQL Cluster supports up to 48 data-nodes
and, in practice, each node can have up to 256GB of memory for storage. So
in principle, a MySQL Cluster implementation can scale up to 12 TB in size,
although the largest cluster we are aware of is only 4 TBs. If we conservatively
assume that MySQL Cluster can support up to 3.072 TB for metadata, then
with a replication factor of 2 for the metadata in MySQL cluster, our file system
can store up to 4.1 billion files. This is a factor of 40 increase over Shvachko’s
estimate for HDFS from 2010.

6.2 Snapshots reduce the Number of Roundtrips to the Database
Our snapshotting layer, or Transaction Cache, caches data items retrieved from
the database in the local memory of the NameNode. This minimizes the num-



60 T T T -

without snapshotting =coes
with snapshotting

50

40 -

30 -

Roundtrips

"

°l % %
0
MKDIR START COMPLETE ADD
FILE BLOCK

GET
BLOCK
LOCATIONS

Fig. 2: Impact of snapshotting on database roundtrips

ber of roundtrips to the database and consequently the overall latency for the
metadata operation. We wrote an experiment to analyze a number of popular
metadata operations, counting the number of roundtrips to the database that
our Transaction Cache saves for each metadata operation. GET BLK LOC
is a metadata operation that returns the addresses of the DataNodes storing a
replica of a given block. MKDIR creates directories recursively. START FILE
creates INodes for all the non-existent inodes, writes the owner of the lease and
creates a new lease-path entry. COMPLETE, sent by the client after having
successfully written the last block of a file, removes all the under-construction-
replicas and marks the corresponding BlockInfo as complete. ADD BLOCK
adds a new BlockInfo and returns a list containing the location for its replicas.
As can be seen in figure 2, GET BLK LOC, START FILE, and COMPLETE
reduce the number of roundtrips to the database by 60%, 40% and 50%.

6.3 Row-level Lock in MySQL Cluster

To demonstrate the feasibility of our approach on a real database, we present a
micro-benchmark on the performance of row-level locking in MySQL Cluster. In
this setup, MySQL Cluster has 4 DataNodes, each running on a different host.
In this experiment, we vary the number of threads and the lock type taken,
while we measure the total time for threads to read a set of rows of data in a
pre-existing namespace. This experiment simulates the cost of a taking a lock
on a parent directory and then reading the rows required to read in a file (inode,
blocks, and replicas).

In the namespace structure in figure 3a, the root and a parent directory are
shared between all threads while each thread is assigned just one file to read.
All threads read the root directory without a lock (at read committed isolation
level), but they each acquire a different type of lock on the parent directory.
Threads that take write locks on the parent directory must be executed serially,
while threads that take either a shared lock (read lock) or no lock can execute
in parallel.

The results for 10,000 transactions are shown in the figure 3b. As the num-
ber of threads is increased, the time to perform 10,000 transactions decreases



" no-lock
shared-lock 1
write-lock e

Time(sec.)

20 30 40 50 60
i i Threads(#)

) Benchmark Namespace b) MySQL Cluster throughput benchmark
Fig. 3: Influence of locklng on MySQL Cluster throughput

almost linearly for reading with shared lock until about 30 threads are run in
parallel, then the time taken levels out, finally increasing slightly, starting from
50+ threads. We believe this increase is because of the extra overhead of acquir-
ing/releasing locks at the data nodes in MySQL Cluster. For transactions that
do not take any locks, the time taken decreases continually up to the 60 threads
used in our experiments. However, for the write lock, we can see that the total
time is halved for more than one thread but it doesn’t decrease after that. This
is because only one thread can acquire the write lock on the parent at a time,
and the threads must wait until the lock is released before they can read the
data.

6.4 System-level vs Row-level Locking

In order to compare the performance of Apache HDFS’ NameNode using a
system-level lock (FSNamesystem lock) with our NameNode that uses row-level
locks, we implemented a NameNode benchmark as an extension of NNThrough-
putBenchmark [16]. In this benchmark, we measure the throughput of open and
create operations on two different locking mechanisms with a constant 64 num-
ber of threads while increasing the number of directories (decreasing number of
files per directory). The number of concurrent threads on each parent directory
is a function of the number of directories. The modification we made to the
NNThroughputBenchmark is that we allocated one directory per thread.

The result of a create operation for 16384 (2'4) files is depicted in figure 4a.
Asg the diagram shows, the throughput for creating files under a single directory
is the same for both the system-level lock in Apache’s HDFS and our row-level
lock. This is because all 64 threads try to acquire a write lock on the same
directory in the NameNode. The advantage of row-level locking is seen when we
increase the number of directories. Increasing the number of directories, we see
that the throughput of our NameNode with row-level locking increases while for
Apache’s NameNode using a system-level lock, the throughput remains almost



T T T T T 6000 T T T
1600 | system level lock system level lock

1400 - row level lock | 5000 /\/%
1200 1

4000 -
1000

o (5]
3 b 3000 -
s 800 r 3
o o
600 2000 |
400 |
1 L
200 | 000
0 . . . . . . 0 . . . . . .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Directories(#) Directories(#)
(a) Create Operation (b) Open Operation

Fig. 4: Impact of the row-level lock on throughput

constant. For the open operation in figure 4b, row-level locking and system-level
locking perform almost the same, since both row-level and system-level locks
allow multiple read locks to be acquired simultaneously.

7 Related Work

Microsoft’s WinFs [13] is an early attempt at building a distributed filesystem for
a networked desktop environment with the goal of centrally managing updates
to the distributed filesystem’s metadata in a relational database. The database
supported efficient searching and filtering of metadata. However, in contrast to
our model clients mutated local copies of the filesystem and then used peer-
to-peer synchronization with conflict resolution, resulting in a model where the
metadata was eventually consistent.

HDFS v1 [2] follows the single metadata server model. Google’s GFS [4],
HDFS v2 [20] and TidyFs [3] have a highly available master/slave replication
model for metadata, while Ceph [21] and Lustre [15] partition metadata across
distributed metadata servers. However, in contrast to HDFS, Ceph and Lustre
are object-based file systems, somewhat simplifying the partitioning of metadata.
Google’s successor to GFS, Collosus, also partitions metadata across many ma-
chines, but the mechanisms of how they maintain consistency across partitions
are not public knowledge [12]. Similarly, MapR has built a new proprietary ver-
sion of HDFS with partitioned metadata, although MapR have stated at the
Hadoop Summit 2011 that the metadata is not replicated using a strongly con-
sistent replication protocol.

GFS’s replication scheme is based on batching operation log updates to the
local disk of the primary server and replicating them to a remote server to handle
failures by reconstructing state of the file system. TidyFs [3] supports flat URL-
based files and replicates metadata using Paxos [9]. In Ceph [21], the main data
structure is the Directory that stores information about its child inodes. By using
a two phase commit algorithm, Ceph dynamically partitions the namespace tree
and evenly distributes it over a cluster of metadata servers (MDS). Lustre’s



general object model stores both metadata and block data in a cluster of Object
Storage Devices (OSD) [15], so for replication Lustre relies on the promises of
the underlying OSD cluster, while its Distributed Lock Manager (DLM) library
assures the consistency of the file system.

It is also worth mentioning that our approach is similar to multi-version
concurrency control (MVCC), in that we take a copy of the data items, however,
in contrast to MVCC, we only work on a single copy of the data items and we
take pessimistic locks.

8 Conclusion and Future Work

In this paper, we introduced a new relational model for HDFS’ metadata. We
also showed how to migrate metadata from highly performant and in-memory
data structures in Apache’s HDFS to a relational representation that guarantees
strong consistency for metadata. In particular, we demonstrated that how meta-
data operations could be made serializable and deadlock-free using pessimistic-
locking concurrency control, requiring only locking and transactions that support
a read-committed isolation level. The mechanisms we introduced to ensure free-
dom from deadlock were the representation of a logical DAG for the metadata,
specifying a global order for acquiring locks on metadata objects, preventing
lock upgrades, and using of implicit locks to lock subtrees. We showed that the
performance of the database underlying our system is competitive, and that our
NameNode architecture can potentially scale to store 40 times more metadata
than Apache’s NameNode.

In future work, we will extend our system to support a multiple NameNode
architecture. Certain cluster-wide NameNode tasks, such as replication manage-
ment, should only be executed by a single NameNode at a time. We are also
working on optimizing our schemas for representing inodes, blocks, and replicas
to reduce their footprint, and to support distribution aware transactions - we
want to reduce the number of partitions that transactions for common operations
must cross to help improve throughput.

References

1. Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A Critique of ANSI SQL Isolation Levels. ACM SIGMOD Record, 24(2):1-
10, 1995.

2. Dhruba Borthakur. The Hadoop Distributed File System: Architecture and Design,
2007. http://hadoop.apache.org/docs/r0.18.0/hdfs design.pdf, [Online; accessed
20-Nov-2011].

3. Dennis Fetterly, Maya Haridasan, Michael Isard, and Swaminathan Sundararaman.
TidyFS: A Simple and Small Distributed File System. In Proc. of USENIXATC’11,
page 34. USENIX Association, 2011.

4. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
In Proc. of SOSP’03, pages 29-43. ACM, 2003.

5. Haryadi S Gunawi, Abhishek Rajimwale, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. SQCK: A Declarative File System Checker. In Proc. of OSDI’08,
pages 131-146. USENIX Association, 2008.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness Con-
dition for Concurrent Objects. ACM TPL, 12(3):463-492, 1990.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proc. of
USENIXATC’10, pages 11-11. USENIX Association, 2010.

G. Putzolu J. Gray, R. Lorie and I. Traiger. Granularity of Locks and Degrees of
Consistency in a Shared Database. In IFIP Working Conference on Modelling in
Data Base Management Systems, pages 365-394. IFIP, 1976.

Leslie Lamport. The Part-Time Parliament. ACM TOCS’98, 16(2):133-169, 1998.

. Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual

Machine Specification. Addison-Wesley, 2013.

Todd Lipcon. Quorum-Journal Design, 2012.
https://issues.apache.org/jira/browse/HDFS-3077, [Online; accessed 11-Dec-
2012].

Marshall Kirk McKusick and Sean Quinlan. GFS: Evolution on Fast-forward. ACM
Queue, 7(7):10, 2009.

Lev Novik, Irena Hudis, Douglas B Terry, Sanjay Anand, Vivek Jhaveri, Ashish
Shah, and Yunxin Wu. Peer-to-Peer Replication in WinFS. Technical ReportMSR-
TR-2006-78, Microsoft Research, 2006.

Mikael Ronstrém and Jonas Oreland. Recovery Principles of MySQL Cluster 5.1.
In Proc. of VLDB’05, pages 1108-1115. VLDB Endowment, 2005.

Philip Schwan. Lustre: Building a File System for 1000-node Clusters. In Proc. of
OLS’03, 2003.

Konstantin V Shvachko. HDFS Scalability: The limits to growth. login, 35(2):6-16,
2010.

Michael Stonebraker. New Opportunities for New SQL. CACM, 55(11):10-11,
2012.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proc. of SIGMOD’12, pages 1-12. ACM, 2012.

José Valerio, Pierre Sutra, Etienne Riviére, and Pascal Felber. Evaluating the Price
of Consistency in Distributed File Storage Services. In Proc. of DAIS’2013, pages
141-154. Springer, 2013.

Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li, and Ying Li. Hadoop High
Availability Through Metadata Replication. In Proc. CloudDB’09, pages 37-44.
ACM, 2009.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos
Maltzahn. Ceph: A Scalable, High-Performance Distributed File System. In Proc.
of OSDI’06, pages 307-320. USENIX Association, 2006.



