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Regularization of linear-quadratic control
problems with L1-control cost

Christopher Schneider and Walter Alt

Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität

07740 Jena, Germany
{christopher.schneider,walter.alt}@uni-jena.de

Abstract. We analyze L2-regularization of a class of linear-quadratic
optimal control problems with an additional L1-control cost depend-
ing on a parameter β. To deal with this nonsmooth problem we use an
augmentation approach known from linear programming in which the
number of control variables is doubled. It is shown that if the optimal
control for a given β∗ ≥ 0 is bang-zero-bang, the solutions are contin-
uous functions of the parameter β and the regularization parameter α.
Moreover we derive error estimates for Euler discretization.

Keywords: Optimal Control, Bang-Bang Control, L1-Minimization, Non-
smooth Analysis, Regularization, Discretization.

1 Introduction

The regularization of optimal control problems by a L2-term α
2 ‖u‖

2
L2 is often

used in order to get a smoother optimal control. In this cases α can be viewed
as a regularization parameter and one is interested in the question how the
solutions depend on this parameter. For the special case that the control vari-
able appears linearly in the control problem and the optimal control without
regularization (α = 0) has bang-bang structure this question has been inves-
tigated in Deckelnick/Hinze [1] for a class of elliptic control problems and in
Alt/Seydenschwanz [2] for a general class of linear-quadratic control problems
governed by ordinary differential equations.

Maurer/Vossen [3] investigate first order necessary and second order suf-
ficient optimality conditions for a class of nonlinear control problems involv-
ing a L1-term in the cost functional, where the parameter β is kept fixed.
They also propose some numerical algorithms for the solution of such prob-
lems. Sakawa [4] also considers a special numerical algorithm for a fixed pa-
rameter β > 0. Stadler [5] and Casas et al. [6,7] investigate classes of elliptic
control problems with a L1-term in the cost functional, which is interpreted as
a regularization term. They derive results on the dependence of the solutions
on the parameter β and error estimates for discretizations, but an additional
L2-regularization term with fixed parameter α is used in order to get smoother
solutions. In Wachsmuth/Wachsmuth [8] the dependence of solutions of a class
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of elliptic control problems on the regularization parameter α is studied while
the parameter β is kept fix.

Results for the dependence of the solutions on the parameter β and error esti-
mates for discretizations for a general class of linear-quadratic control problems
governed by ordinary differential equations have been recently derived in [9]. In
the present paper, we investigate the regularization of such control problems and
the dependence of solutions on the parameter β and the regularization parame-
ter α assuming that for a fixed parameter β∗ the corresponding optimal control
is of bang-zero-bang type.

2 Problem formulation

With X = X1 × X2, X1 = W 1
∞(0, tf ;Rn), X2 = L∞(0, tf ;Rm), we consider

the following family of L2-regularized linear-quadratic control problems with
L1-control cost depending on the parameters α ≥ 0 and β ≥ 0:

min
(x,u)∈X

fα,β(x, u)

s. t. ẋ(t) = A(t)x(t) +B(t)u(t) a.e. on [0, tf ] ,
x(0) = a ,
u(t) ∈ U a.e. on [0, tf ] ,

(PQα,β)

where fα,β is a linear-quadratic cost functional with an additional nonsmooth
L1-term defined by

fα,β(x, u) =
1

2
x(tf )TQx(tf ) + qTx(tf )

+

∫ tf

0

1

2
x(t)TW (t)x(t) + w(t)Tx(t) + r(t)Tu(t) dt

+ β ‖u‖L1 +
α

2
‖u‖2L2 .

Here, u(t) ∈ Rm is the control, and x(t) ∈ Rn is the state of the system at
time t, where t ∈ [0, tf ]. Further Q ∈ Rn×n is a symmetric and positive semidef-
inite matrix, q ∈ Rn, and the functions W : [0, tf ] → Rn×n, w : [0, tf ] → Rn,
r : [0, tf ]→ Rm, A : [0, tf ]→ Rn×n, and B : [0, tf ]→ Rn×m are Lipschitz contin-
uous. The matrices W (t) are assumed to be symmetric and positive semidefinite,
and the set U ∈ Rm is defined by lower and upper bounds, i.e.

U = {u ∈ Rm | b` ≤ u ≤ bu}

with b`, bu ∈ Rm, b` < bu, where all inequalities are to be understood compo-
nentwise.

While the regularization term α
2 ‖u‖

2
L2 leads to a smooth optimal control for

α > 0 the term β ‖u‖L1 may be interpreted as both a regularization or some
(nonsmooth) L1-control cost. We are interested in the behavior of a solution
uα,β of Problem (PQα,β) depending on both parameters α and β.
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3 Optimality conditions

We denote by
U = {u ∈ X2 | u(t) ∈ U a.e. on [0, tf ]}

the set of admissible controls, and by

F = {(x, u) ∈ X | u ∈ U , ẋ(t) = A(t)x(t) +B(t)u(t) a.e. on [0, tf ], x(0) = a}

the feasible set of (PQα,β). Since U is nonempty, the feasible set F is nonempty,
too. And since U is bounded, it follows that ẋ is bounded for any feasible pair
(x, u) ∈ F , and therefore F ⊂ X. Moreover, there is some constant c such that
‖x‖1,∞ ≤ c ‖u‖L∞ for any solution x of the system equation, which implies that
F is bounded.

A feasible pair (xα,β , uα,β) ∈ F is called a minimizer for Problem (PQα,β)

if fα,β(xα,β , uα,β) ≤ fα,β(x, u) for all (x, u) ∈ F . Since the feasible set F
is nonempty, closed, convex and bounded, and the cost functional is convex
and continuous, a minimizer (xα,β , uα,β) ∈ W 1

2 (0, tf ;Rn) × L2(0, tf ;Rm) of
(PQα,β) exists (see [10, Chap. II, Prop. 1.2]), and since U is bounded we have

(xα,β , uα,β) ∈ X = W 1
∞(0, tf ;Rn)× L∞(0, tf ;Rm).

Let (xα,β , uα,β) ∈ F be a minimizer of (PQα,β). Then there exist an ele-

ment γα,β ∈ ∂‖uα,β‖L1 of the subdifferential of ‖uα,β‖L1 and a function λα,β ∈
W 1
∞(0, tf ;Rn) such that the adjoint equation

−λ̇α,β(t) = A(t)Tλα,β(t) +W (t)xα,β(t) + w(t) a.e. on [0, tf ] ,

λα,β(tf ) = Qxα,β(tf ) + q ,
(1)

and the minimum principle[
B(t)Tλα,β(t) + r(t) + αuα,β(t) + β γα,β(t)

]T (
u− uα,β(t)

)
≥ 0 ∀u ∈ U (2)

hold a.e. on [0, tf ] (compare e.g. [11, Theorem 10.47] or [3, Sect. 2]).

Remark 1. Since (PQα,β) is a convex optimization problem for all α ≥ 0 and

β ≥ 0, a pair (xα,β , uα,β) ∈ F satisfying the minimum principle (2) and solving
the adjoint equation (1) with some functions γα,β and λα,β is a solution of
(PQα,β) (compare [11, Propositon 4.12]).

Provided α = 0 we are able to evaluate the minimum principle (2) in more
detail (compare [3] and [9]) and obtain

u0,βi (t) =



bu,i, if ξβi (t) < −β ,
undetermined ∈ ]0, bu,i] , if ξβi (t) = −β ,
0 , if ξβi (t) ∈ ]−β, β[ ,

undetermined ∈ [b`,i, 0[ , if ξβi (t) = β ,

b`,i , if ξβi (t) > β ,

(3)
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where ξβ(t) := B(t)Tλ0,β(t) + r(t). If we assume that the set of switching times

Mβ
i =

{
t ∈ [0, tf ]

∣∣∣ ξβi (t) = β or ξβi (t) = −β
}
.

is finite, then by (3) the i-th component of the optimal control has a bang-zero-
bang structure.

4 Problem transformation

In common with [3] and [9] we formulate a transformed problem (TQα,β) in order
to study the dependence of the optimal control on the parameters α and β. This
is a well known augmentation approach from linear programming wherewith
we obtain a linear-quadratic control problem with smooth cost functional (see
e.g. [12]).

Introducing new controls v ∈ X̃2 := L∞(0, tf ;R2m) and using the matrix

M :=


1 −1

1 −1
. . .

. . .

1 −1

 ∈ Rm×2m (4)

we have

min
(x,v)∈X1×X̃2

f̄α,β(x, v)

s. t. ẋ(t) = A(t)x(t) + B(t)v(t) a.e. on [0, tf ] ,
x(0) = a ,
v(t) ∈ V a.e. on [0, tf ] ,

(TQα,β)

where B(t) := B(t)M . There are new box constraints for the controls,

V :=
{
v ∈ R2m | v ≥ 0 , v2i−1 ≤ bu,i , v2i ≤ −b`,i , i = 1, . . . ,m

}
,

and fα,β is a linear-quadratic cost functional:

f̄α,β(x, v) =
1

2
x(tf )TQx(tf ) + qTx(tf )

+

∫ tf

0

1

2
x(t)TW (t)x(t) + w(t)Tx(t) + r(t)TMv(t) dt

+ β ‖Mv‖L1 +
α

2
‖Mv‖2L2 .

With the same argumentation as above for Problem (PQα,β) we are able to show
that a minimizer of Problem (TQα,β) exists. We denote the set of admissible
controls by

V =
{
v ∈ X̃2 | v(t) ∈ V a.e. on [0, tf ]

}
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and the feasible set of Problem (TQα,β) by T ⊂ X1 × X̃2, where

T = {(x, v) | v ∈ V , ẋ(t) = A(t)x(t) + B(t)v(t) a.e. on [0, tf ] , x(0) = a} .

Although Problem (TQα,β) admits controls with components v2i−1, v2i being
positive simultaneously, such controls cannot be optimal (see [3, Sect. 4], [9,
Sect. 3], [12, p. 42 et seq.]). Therefore, all optimal controls satisfy

vα,β2i−1(t) = max
{

0, uα,βi (t)
}
, vα,β2i (t) = max

{
0,−uα,βi (t)

}
. (5)

The optimality conditions also prove this result. By (5) and v(t) ≥ 0 we now are
able to simplify

‖Mv‖L1 = ‖v‖L1 =

∫ tf

0

2m∑
i=1

vi(t) dt and ‖Mv‖2L2 = ‖v‖2L2 ,

which nicely shows, that a L1- or L2-regularization of the original problem im-
plies the same regularization of the transformed problem. We finally introduce
the minimum principle of Problem (TQα,β)[

σα,β
]T (

v − vα,β(t)
)
≥ 0 ∀v ∈ V , (6)

where

σα,β := MT
(
B(t)Tλα,β(t) + r(t)

)
+ α vα,β(t) + β e , (7)

with e := (1, . . . , 1)T ∈ R2m. The adjoint equation (1) as well as the adjoint
variables λα,β do not change im comparison to Problem (PQα,β). A detailed
discussion of the optimality conditions can be found in [3] and [9].

5 Uniqueness of solutions

It is well known that the solution of Problem (TQα,β) is uniquely determined
for each β ≥ 0, if α > 0 (compare e.g. [13, Satz 3.2.5]). This extends with (5) to
Problem (PQα,β).

In the case of α = 0 we consider a fixed parameter β∗ ≥ 0 and assume
that the optimal control v0,β

∗
of Problem (TQ0,β∗) is of bang-bang type which

implies an optimal control u0,β
∗

of bang-zero-bang type for Problem (PQ0,β∗)
by (5). To ensure this we assume that

(B1) There exists a solution (x0,β
∗
, v0,β

∗
) ∈ T of (TQ0,β∗) such that the set Σ

of zeros of the components of the switching function σ0,β∗ defined by (7)
is finite and 0, tf /∈ Σ, i.e. Σ = {s1, . . . , sl} with 0 < s1 < . . . < sl < tf .

Let I(sj) := {1 ≤ i ≤ 2m | σ0,β∗

i (sj) = 0} be the set of active indices for the
components of the switching function. In order to get stability of the bang-bang
structure under perturbations we need an additional assumption (compare [14]):
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(B2) The functions B and r are differentiable, Ḃ and ṙ are Lipschitz continuous,
and there exists σ̄ > 0 such that

min
1≤j≤l

min
i∈I(sj)

{∣∣σ̇0,β∗

i (sj)
∣∣} ≥ 2σ̄ .

Remark 2. Assumption (B2) can be slightly relaxed (see e.g. [15,9]).

The following result is extracted from [14, Proof of Lemma 3.3]. Proofs can
also be found in [2], [15] and [9].

Lemma 1. Let (x0,β
∗
, v0,β

∗
) be a minimizer for Problem (TQ0,β∗) and let the

switching function σ0,β∗(t) be defined by (7). If Assumptions (B1) and (B2) are
satisfied, then there are constants ω, γ, δ̄ > 0 independent of β such that for any
feasible pair (x, v)∫ tf

0

σ0,β∗(t)T
(
v(t)− v0,β

∗
(t)
)

dt ≥ ω
∥∥v − v0,β∗∥∥2

L1 (8)

if ‖v − v0,β∗‖L1 ≤ 2γδ̄, and∫ tf

0

σ0,β∗(t)T
(
v(t)− v0,β

∗
(t)
)

dt ≥ ω
∥∥v − v0,β∗∥∥

L1 (9)

if ‖v − v0,β∗‖L1 ≥ 2γδ̄.

By the help of standard arguments this result implies uniqueness of the so-
lution of (TQ0,β∗) (compare [14, Theorem 2.2]). It follows with (5) that Prob-
lem (PQ0,β∗) has a unique solution, too.

6 Calmness of solutions

In this section for α ≥ 0 and β ≥ 0 we denote by (xα,β , uα,β) and (xα,β , vα,β) the
solutions of (PQα,β) and (TQα,β), respectively. We want to study the dependence
of solutions on α and β. We derive estimates which show that the solutions as
functions of the regularization parameters α and β are calm at α = 0 and β = β∗

(compare Dontchev/Rockafellar [16, Sect. 1C]). For this purpose we combine the
results achieved in [9] and [2].

Theorem 1. Let (B1) and (B2) be satisfied for some β∗ ≥ 0. Then for any
α ≥ 0 and β ≥ 0 the estimate∥∥vα,β − v0,β∗∥∥

L1 ≤ c1 (α+ |β − β∗|) (10)

holds, where the constant c1 is independent of α and β.
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Proof. We only consider the case ‖vα,β − v0,β∗‖L1 ≤ 2γδ̄ and refer to [9] and [2]
for the case ‖vα,β − v0,β∗‖L1 ≥ 2γδ̄ which can be handled analogously. Since
Assumptions (B1) and (B2) are satisfied, for α, β ≥ 0 by (8) we have∫ tf

0

σ0,β∗(t)T
(
vα,β(t)− v0,β

∗
(t)
)

dt ≥ ω
∥∥vα,β − v0,β∗∥∥2

L1 (11)

with ω > 0. By the minimum principle (6) we obtain∫ tf

0

σα,β(t)T
(
v0,β

∗
(t)− vα,β(t)

)
dt ≥ 0 . (12)

Adding (12) and (11) it follows that∫ tf

0

(
σ0,β∗(t)− σα,β(t)

)T (
vα,β(t)− v0,β

∗
(t)
)

dt ≥ ω
∥∥vα,β − v0,β∗∥∥2

L1 . (13)

Since

σ0,β∗(t)− σα,β(t) = B(t)T
(
λ0,β

∗
(t)− λα,β(t)

)
+ (β∗ − β) e− α vα,β(t) ,

and due to the fact that xα,β , x0,β
∗

satisfy the system equation, and λα,β , λ0,β
∗

satisfy the adjoint equation we obtain∫ tf

0

[
B(t)T

(
λ0,β

∗
(t)− λα,β(t)

)]T
(vα,β(t)− v0,β

∗
(t)) dt

=
(
x0,β

∗
(tf )− xα,β(tf )

)T
Q
(
xα,β(tf )− x0,β

∗
(tf )

)
+

∫ tf

0

(
x0,β

∗
(t)− xα,β(t)

)T
W (t)

(
xα,β(t)− x0,β

∗
(t)
)

dt .

Together with (13) this implies

ω
∥∥vα,β − v0,β∗∥∥2

L1 +
(
xα,β(tf )− x0,β

∗
(tf )

)T
Q
(
xα,β(tf )− x0,β

∗
(tf )

)
+

∫ tf

0

(
xα,β(t)− x0,β

∗
(t)
)T

W (t)
(
xα,β(t)− x0,β

∗
(t)
)

dt

≤
∫ tf

0

[
(β∗ − β) e− α vα,β(t)

]T (
vα,β(t)− v0,β

∗
(t)
)

dt

≤ |β − β∗|
∥∥vα,β − v0,β∗∥∥

L1 + α
∥∥vα,β∥∥

L∞

∥∥vα,β − v0,β∗∥∥
L1 .

Since the matricesQ andW (t), t ∈ [0, tf ], are assumed to be positive semidefinite
and ω > 0, we obtain

ω
∥∥vα,β − v0,β∗∥∥2

L1 ≤
(
|β − β∗|+ α

∥∥vα,β∥∥
L∞

) ∥∥vα,β − v0,β∗∥∥
L1 .

We now get (10) with some constant c1 independent of α and β. ut
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Remark 3. By Theorem 1 we also obtain estimates for the optimal states∥∥xα,β − x0,β∗∥∥
1,1
≤ c̄1 (α+ |β − β∗|)

and for the optimal controls uα,β of the original problem (PQα,β), by using the

matrix (4) and the relation (5) between uα,β and vα,β∥∥uα,β − u0,β∗∥∥
L1 =

∥∥Mvα,β −Mv0,β
∗∥∥
L1 ≤ ‖M‖1

∥∥vα,β − v0,β∗∥∥
L1

≤ c1 (α+ |β − β∗|) .

If we choose some β in a sufficiently small neighborhood of β∗ this result can
even be improved.

Theorem 2. Let (B1) and (B2) be satisfied for some β∗ ≥ 0. Then there exist
ρ > 0 and a constant c2 independent of α ≥ 0 and ρ, such that for any βi ∈ R,
i = 1, 2, with βi ≥ 0 and |βi − β∗| < ρ the estimate∥∥vα,β1 − v0,β2

∥∥
L1 ≤ c2 (α+ |β1 − β2|) (14)

holds.

Proof. We use [9, Theorem 6.3, Remark 10], which proved the local Lipschitz-
continuity of the optimal control depending on β, where the constant c̃ is inde-
pendent of β: ∥∥u0,β1 − u0,β2

∥∥
L1 ≤ c̃ |β1 − β2| . (15)

In addition to this we are able to extend the result of [2, Theorem 4.1] using the
problem transformation introduced in Sect. 4 and obtain∥∥uα,β1 − u0,β1

∥∥
L1 ≤ c̄ α (16)

with some constant c̄ independent of α. Together (15) and (16) lead to∥∥uα,β1 − u0,β2
∥∥
L1 ≤

∥∥uα,β1 − u0,β1
∥∥
L1 +

∥∥u0,β1 − u0,β2
∥∥
L1

≤ c̃ α+ c̄ |β1 − β2| ,

which implies (14). ut

7 Discretization

For the numerical solution of Problem (PQα,β) we use the Euler discretization
scheme described in [15] and [9]. Given a natural number N and let hN = tf/N
be the meshsize, we approximate the cost functional fα,β by

fα,β,N (x, u) =
1

2
xTNQxN + qTxN + hN

N−1∑
i=0

1

2
xTiW (ti)xi + w(ti)

Txi + r(ti)
Tui

+ hN

β N−1∑
i=0

m∑
j=1

|uj,i|+
α

2

N−1∑
i=0

m∑
j=1

u2j,i

 ,
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and Problem (PQα,β) by

min fα,β,N (x, u)

s. t. xi+1 = xi + hN (A(ti)xi +B(ti)ui) , i = 0, . . . , N − 1 ,
x0 = a ,
ui ∈ U , i = 0, . . . , N − 1 .

(PQN
α,β)

Remark 4. Note that analogously to [9] we solve a transformed discretized prob-
lem (compare also Sect. 4) to compute the solution of Problem (PQα,β) numer-
ically.

Theorem 3. Let (x0,β
∗
, u0,β

∗
) be the solution of Problem (PQ0,β∗) for which

Assumptions (B1) and (B2) are satisfied. Then, for sufficiently large N , choosing
α = cαhN and β = β∗ + cβhN with constants cα and cβ, any optimal control

uα,βh of Problem (PQN
α,β) can be estimated by∥∥uα,βh − u0,β

∗∥∥
L1 ≤ cuhN ,

where the constant cu is independent of N .

Proof. Using [17, Theorem 5.2] and [9, Theorem 5.1, Remark 8] we have∥∥uα,βh − u0,β
∗∥∥
L1 ≤

∥∥uα,βh − u0,β
∥∥
L1 +

∥∥u0,β − u0,β∗∥∥
L1

≤ cαh+ c̃β |β − β∗|

with some constant c̃β independent of β, which implies the assertion. ut

Example 1 (The Rocket Car). We consider the popular example of the rocket
car, driving from some starting point to it’s destination (0, 0).

min
1

2

(
x1(5)2 + x2(5)2

)
+ β ‖u‖L1 +

α

2
‖u‖2L2

s. t. ẋ1(t) = x2(t) , ẋ2(t) = u(t) a. e. on [0, 5] ,
x1(0) = 6 , x2(0) = 1 ,
u(t) ∈ [−1, 1] a. e. on [0, 5] .

Table 1 shows numerical results for different meshsizes which confirm the theoret-
ical findings of Theorem 3. To solve the discretized problems we used Ipopt [18].

Table 1. Discretization for different N , β∗ = 1, β = β∗ + hN and α = 10hN .

N 125 250 500 1000 2000 4000

‖uα,βh − u0,β∗‖L1 0.2644 0.1344 0.0644 0.0331 0.0177 0.0083
‖uα,β
h
−u0,β∗‖

L1

hN
6.6098 6.7177 6.4409 6.6123 7.0826 6.6752
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