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Mining Attribute-Based Access Control Policies
from Logs?

Zhongyuan Xu and Scott D. Stoller

Department of Computer Science, Stony Brook University, USA

Abstract. Attribute-based access control (ABAC) provides a high level
of flexibility that promotes security and information sharing. ABAC pol-
icy mining algorithms have potential to significantly reduce the cost
of migration to ABAC, by partially automating the development of an
ABAC policy from information about the existing access-control policy
and attribute data. This paper presents an algorithm for mining ABAC
policies from operation logs and attribute data. To the best of our knowl-
edge, it is the first algorithm for this problem.

1 Introduction

ABAC is becoming increasingly important as security policies become more dy-
namic and more complex. In industry, more and more products support ABAC,
using a standardized ABAC language such as XACML or a vendor-specific
ABAC language. In government, the Federal Chief Information Officer Council
called out ABAC as a recommended access control model [1, 4]. ABAC allows “an
unprecedented amount of flexibility and security while promoting information
sharing between diverse and often disparate organizations” [4]. ABAC overcomes
some of the problems associated with RBAC, notably role explosion [4].

ABAC promises long-term cost savings through reduced management effort,
but manual development of an initial policy can be difficult and expensive [4].
Policy mining algorithms promise to drastically reduce the cost of migrating to
ABAC, by partially automating the process.

Role mining, i.e., mining of RBAC policies, is an active research area and a
currently relatively small (about $70 million) but rapidly growing commercial
market segment [3]. In contrast, there is, so far, relatively little work on ABAC
policy mining. We recently developed an algorithm to mine an ABAC policy
from an ACL policy or RBAC policy [10].

However, an ACL policy or RBAC policy might not be available, e.g., if the
current access control policy is encoded in a program or is not enforced by a com-
puterized access control mechanism. An alternative source of information about
the current access control policy is operation logs, or “logs” for short. Many
software systems produce logs, e.g., for auditing, accounting, and accountability
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purposes. Molloy, Park, and Chari proposed the idea of mining policies from logs
and developed algorithms for mining RBAC policies from logs [6].

The main challenge is that logs generally provide incomplete information
about entitlements (i.e., granted permissions). Specifically, logs provide only a
lower bound on the entitlements. Therefore, the generated policy should be al-
lowed to include over-assignments, i.e., entitlements not reflected in the logs.

This paper presents an algorithm for mining ABAC policies from logs and
attribute data. To the best of our knowledge, it is the first algorithm for this
problem. It is based on our algorithm for mining ABAC policies from ACLs [10].
At a high level, the algorithm works as follows. It iterates over tuples in the
user-permission relation extracted from the log, uses selected tuples as seeds for
constructing candidate rules, and attempts to generalize each candidate rule to
cover additional tuples in the user-permission relation by replacing conjuncts in
attribute expressions with constraints. After constructing candidate rules that
together cover the entire user-permission relation, it attempts to improve the
policy by merging and simplifying candidate rules. Finally, it selects the highest-
quality candidate rules for inclusion in the generated policy.

Several changes are needed to our algorithm for mining ABAC policies from
ACLs to adapt it to mining from logs. When the algorithm generalizes, merges,
or simplifies rules, it discards candidate rules that are invalid, i.e., that produce
over-assignments. We modify those parts of the algorithm to consider those
candidate rules, because, as discussed above, over-assignments must be permit-
ted. To evaluate those candidate rules, we introduce generalized notions of rule
quality and policy quality that quantify a trade-off between the number of over-
assignments and other aspects of quality. We consider a metric that includes the
normalized number of over-assignments in a weighted sum, a frequency-sensitive
variant that assigns higher quality to rules that cover more frequently used en-
titlements, along the lines of [6], and a metric based on a theory quality metric
in inductive logic programming [7, 8].

ABAC policy mining is similar to inductive logic programming (ILP), which
learns logic-programming rules from facts. Mining ABAC policies from logs and
attribute data is similar to ILP algorithms for learning from positive examples,
because those algorithms allow the learned rules to imply more than the given
facts (i.e., in our terminology, to have over-assignments). We implemented a
translation from ABAC policy mining to Progol [8], a well-known ILP system.

We evaluated our algorithm and the ILP-based approach on some relatively
small but non-trivial handwritten case studies and on synthetic ABAC policies.
The results demonstrate our algorithm’s effectiveness even when the log reflects
only a fraction of the entitlements. Although the original (desired) ABAC policy
is not reconstructed perfectly from the log, the mined policy is sufficiently similar
to it that the mined policy would be very useful as a starting point for policy
administrators tasked with developing that ABAC policy.



2 ABAC policy language

This section presents the ABAC policy language used in our work. It is adopted
from [10]. We consider a specific ABAC policy language, but our approach is
general and can be adapted to other ABAC policy languages. Our ABAC pol-
icy language contains the common ABAC policy language constructs, except
arithmetic inequalities and negation, which are left for future work.

Given a set U of users and a set Au of user attributes, user attribute data is
represented by a function du such that du(u, a) is the value of attribute a for user
u. There is a distinguished user attribute uid that has a unique value for each
user. Similarly, given a set R of resources and a set Ar of resource attributes,
resource attribute data is represented by a function dr such that dr(r, a) is the
value of attribute a for resource r. There is a distinguished resource attribute
rid that has a unique value for each resource. We assume the set Au of user
attributes can be partitioned into a set Au,1 of single-valued user attributes which
have atomic values, and a set Au,m of multi-valued user attributes whose values
are sets of atomic values. Similarly, we assume the set Ar of resource attributes
can be partitioned into a set Ar,1 of single-valued resource attributes and a set
of Ar,m of multi-valued resource attributes. We assume there is a distinguished
atomic value ⊥ used to indicate that an attribute’s value is unknown.

A user-attribute expression (UAE) is a function e such that, for each user
attribute a, e(a) is either the special value >, indicating that e imposes no
constraint on the value of a, or a set (interpreted as a disjunction) of possible
values of a excluding ⊥. We refer to e(a) as the conjunct for a. A UAE e uses
attribute a if e(a) 6= >. Let attr(e) denote the set of attributes used by e.

A user u satisfies a UAE e, denoted u |= e, iff (∀a ∈ Au,1. e(a) = > ∨ ∃v ∈
e(a). du(u, a) = v) and (∀a ∈ Au,m. e(a) = > ∨ ∃v ∈ e(a). du(u, a) ⊇ v). For
multi-valued attributes, we use the condition du(u, a) ⊇ v instead of du(u, a) = v
because elements of a multi-valued user attribute typically represent some type
of capabilities of a user, so using ⊇ expresses that the user has the specified
capabilities and possibly more. For example, suppose Au,1 = {dept,position}
and Au,m = {courses}. The function e1 with e1(dept) = {CS} and e1(position) =
{grad,ugrad} and e1(courses) = {{CS101,CS102}} is a user-attribute expression
satisfied by users in the CS department who are either graduate or undergraduate
students and whose courses include CS101 and CS102.

In examples, we may write attribute expressions with a logic-based syntax,
for readability. For example, the above expression e1 may be written as dept =
CS∧position ∈ {ugrad, grad}∧ courses ⊇ {CS101,CS102}. For an example that
uses ⊇∈, the expression e2 that is the same as e1 except with e2(courses) =
{{CS101}, {CS102}} may be written as dept = CS ∧ position ∈ {ugrad, grad} ∧
courses ⊇∈ {{CS101}, {CS102}}, and is satisfied by graduate or undergraduate
students in the CS department whose courses include either CS101 or CS102.

The meaning of a user-attribute expression e, denoted [[e]]U , is the set of users
in U that satisfy it. User attribute data is an implicit argument to [[e]]U . We say
that e characterizes the set [[e]]U .



A resource-attribute expression (RAE) is defined similarly, except using the
set Ar of resource attributes instead of the set Au of user attributes. The se-
mantics of RAEs is defined similarly to the semantics of UAEs, except simply
using equality, not ⊇, in the condition for multi-valued attributes in the defini-
tion of “satisfies”, because we do not interpret elements of multi-valued resource
attributes specially (e.g., as capabilities).

Constraints express relationships between users and resources. An atomic
constraint is a formula f of the form au,m ⊇ ar,m, au,m 3 ar,1, or au,1 = ar,1,
where au,1 ∈ Au,1, au,m ∈ Au,m, ar,1 ∈ Ar,1, and ar,m ∈ Ar,m. The first two forms
express that user attributes contain specified values. This is a common type of
constraint, because user attributes typically represent some type of capabilities
of a user. Let uAttr(f) and rAttr(f) refer to the user attribute and resource
attribute, respectively, used in f . User u and resource r satisfy an atomic con-
straint f , denoted 〈u, r〉 |= f , if du(u,uAttr(f)) 6= ⊥ and dr(u, rAttr(f)) 6= ⊥
and formula f holds when the values du(u,uAttr(f)) and dr(u, rAttr(f)) are
substituted in it.

A constraint is a set (interpreted as a conjunction) of atomic constraints.
User u and resource r satisfy a constraint c, denoted 〈u, r〉 |= c, if they satisfy
every atomic constraint in c. In examples, we write constraints as conjunctions
instead of sets. For example, the constraint “specialties ⊇ topics ∧ teams 3
treatingTeam” is satisfied by user u and resource r if the user’s specialties include
all of the topics associated with the resource, and the set of teams associated
with the user contains the treatingTeam associated with the resource.

A user-permission tuple is a tuple 〈u, r, o〉 containing a user, a resource, and
an operation. This tuple means that user u has permission to perform operation
o on resource r. A user-permission relation is a set of such tuples.

A rule is a tuple 〈eu, er, O, c〉, where eu is a user-attribute expression, er is a
resource-attribute expression, O is a set of operations, and c is a constraint. For a
rule ρ = 〈eu, er, O, c〉, let uae(ρ) = eu, rae(ρ) = er, ops(ρ) = O, and con(ρ) = c.
For example, the rule 〈true, type=task ∧ proprietary=false, {read, request},
projects 3 project ∧ expertise ⊇ expertise〉 used in our project management case
study can be interpreted as “A user working on a project can read and request
to work on a non-proprietary task whose required areas of expertise are among
his/her areas of expertise.” User u, resource r, and operation o satisfy a rule ρ,
denoted 〈u, r, o〉 |= ρ, if u |= uae(ρ) ∧ r |= rae(ρ) ∧ o ∈ ops(ρ) ∧ 〈u, r〉 |= con(ρ).

An ABAC policy is a tuple 〈U,R,Op, Au, Ar, du, dr,Rules〉, where U , R, Au,
Ar, du, and dr are as described above, Op is a set of operations, and Rules is a
set of rules.

The user-permission relation induced by a rule ρ is [[ρ]] = {〈u, r, o〉 ∈ U ×R×
Op | 〈u, r, o〉 |= ρ}. Note that U , R, du, and dr are implicit arguments to [[ρ]].

The user-permission relation induced by a policy π with the above form is
[[π]] =

⋃
ρ∈Rules [[ρ]].



3 Problem Definition

An operation log entry e is a tuple 〈u, r, o, t〉 where u ∈ U is a user, r ∈ R is
a resource, o ∈ Op is an operation, and t is a timestamp. An operation log is
a sequence of operation log entries. The user-permission relation induced by an
operation log L is UP(L) = {〈u, r, o〉 | ∃t. 〈u, r, o, t〉 ∈ L}.

The input to the ABAC-from-logs policy mining problem is a tuple I =
〈U,R,Op, Au, Ar, du, dr, L〉, where U is a set of users, R is a set of resources,
Op is a set of operations, Au is a set of user attributes, Ar is a set of resource
attributes, du is user attribute data, dr is resource attribute data, and L is an
operation log, such that the users, resources, and operations that appear in L
are subsets of U , R, and Op, respectively. The goal of the problem is to find a set
of rules Rules such that the ABAC policy π = 〈U,R,Op, Au, Ar, du, dr,Rules〉
maximizes a suitable policy quality metric.

The policy quality metric should reflect the size and meaning of the pol-
icy. Size is measured by weighted structural complexity (WSC) [5], and smaller
policies are considered to have higher quality. This is consistent with usability
studies of access control rules, which conclude that more concise policies are
more manageable. Informally, the WSC of an ABAC policy is a weighted sum
of the number of elements in the policy. Specifically, the WSC of an attribute
expression is the number of atomic values that appear in it, the WSC of an
operation set is the number of operations in it, the WSC of a constraint is the
number of atomic constraints in it, and the WSC of a rule is a weighted sum
of the WSCs of its components, namely, WSC(〈eu, er, O, c〉) = w1WSC(eu) +
w2WSC(er) +w3WSC(O) +w4WSC(c), where the wi are user-specified weights.
The WSC of a set of rules is the sum of the WSCs of its members.

The meaning [[π]] of the ABAC policy is taken into account by consider-
ing the differences from UP(L), which consist of over-assignments and under-
assignments. The over-assignments are [[π]] \UP(L). The under-assignments are
UP(L)\[[π]]. Since logs provide only a lower-bound on the actual user-permission
relation (a.k.a entitlements), it is necessary to allow some over-assignments, but
not too many. Allowing under-assignments is beneficial if the logs might contain
noise, in the form of log entries representing uses of permissions that should not
be granted, because it reduces the amount of such noise that gets propagated
into the policy, and it improves the stability of the generated policy. We define
a policy quality metric that is a weighted sum of these aspects:

Qpol(π, L) = WSC(π) + wo | [[π]] \UP(L)| / |U | (1)

where the policy over-assignment weight wo is a user-specified weight for over-
assignments, and for a set S of user-permission tuples, the frequency-weighted
size of S with respect to log L is |S|L =

∑
〈u,r,o〉∈S freq(〈u, r, o〉, L), where the

relative frequency of a user-permission tuple in a log is given by the frequency
function freq(〈u, r, o〉, L) = |{e ∈ L | userPerm(e) = 〈u, r, o〉}| / |L|, where the
user-permission part of a log entry is given by userPerm(〈u, r, o, t〉) = 〈u, r, o〉.

For simplicity, our presentation of the problem and algorithm assume that
attribute data does not change during the time covered by the log. Accommo-



dating changes to attribute data is not difficult. It mainly requires re-defining
the notions of policy quality and rule quality (introduced in Section 4) to be
based on the set of log entries covered by a rule, denoted [[ρ]]LE, rather than
[[ρ]]. The definition of [[ρ]]LE is similar to the definition of [[ρ]], except that, when
determining whether a log entry is in [[ρ]]LE, the attribute data in effect at the
time of the log entry is used.

4 Algorithm

Our algorithm is based on the algorithm for mining ABAC policies from ACLs
and attribute data in [10]. Our algorithm does not take the order of log entries
into account, so the log can be summarized by the user-permission relation UP0

induced by the log and the frequency function freq, described in the penultimate
paragraph of Section 3.

Top-level pseudocode appears in Figure 1. We refer to tuples selected in
the first statement of the first while loop as seeds. The top-level pseudocode
is explained by embedded comments. It calls several functions, described next.
Function names hyperlink to pseudocode for the function, if it is included in the
paper, otherwise to the description of the function.

The function addCandRule(su, sr, so, cc, uncovUP ,Rules) in Figure 2 first
calls computeUAE to compute a user-attribute expression eu that characterizes
su, and computeRAE to compute a resource-attribute expression er that charac-
terizes sr. It then calls generalizeRule(ρ, cc, uncovUP ,Rules) to generalize rule
ρ = 〈eu, er, so, ∅〉 to ρ′ and adds ρ′ to candidate rule set Rules. The details of
the functions called by addCandRule are described next.

The function computeUAE(s, U) computes a user-attribute expression eu
that characterizes the set s of users. Preference is given to attribute expres-
sions that do not use uid, since attribute-based policies are generally preferable
to identity-based policies, even when they have higher WSC, because attribute-
based generalize better. Similarly, computeRAE(s,R) computes a resource-attribute
expression that characterizes the set s of resources. Pseudocode for computeUAE
and computeRAE are omitted. The function candidateConstraint(r, u) returns
a set containing all of the atomic constraints that hold between resource r and
user u. Pseudocode for candidateConstraint is straightforward and omitted.

The function generalizeRule(ρ, cc, uncovUP ,Rules) in Figure 3 attempts to
generalize rule ρ by adding some of the atomic constraints in cc to ρ and eliminat-
ing the conjuncts of the user attribute expression and/or the resource attribute
expression corresponding to the attributes used in those constraints, i.e., map-
ping those attributes to >. We call a rule obtained in this way a generalization
of ρ. Such a rule is more general than ρ in the sense that it refers to relation-
ships instead of specific values. Also, the user-permission relation induced by a
generalization of ρ is a superset of the user-permission relation induced by ρ.
generalizeRule(ρ, cc, uncovUP ,Rules) returns the generalization ρ′ of ρ with the
best quality according to a given rule quality metric. Note that ρ′ may cover



tuples that are already covered (i.e., are in UP); in other words, our algorithm
can generate policies containing rules whose meanings overlap.

A rule quality metric is a function Qrul(ρ,UP) that maps a rule ρ to a totally-
ordered set, with the ordering chosen so that larger values indicate high quality.
The second argument UP is a set of user-permission tuples. Our rule quality
metric assigns higher quality to rules that cover more currently uncovered user-
permission tuples and have smaller size, with an additional term that imposes
a penalty for over-assignments, measured as a fraction of the number of user-
permission tuples covered by the rule, and with a weight specified by a parameter
w′o, called the rule over-assignment weight.

Qrul(ρ,UP) =
| [[ρ]] ∩UP |
|ρ|

× (1− w′o × |overAssign(ρ)|
| [[ρ]] |

).

In generalizeRule, uncovUP is the second argument to Qrul, so [[ρ]] ∩ UP is the
set of user-permission tuples in UP0 that are covered by ρ and not covered by
rules already in the policy. The loop over i near the end of the pseudocode for
generalizeRule considers all possibilities for the first atomic constraint in cc that
gets added to the constraint of ρ. The function calls itself recursively to determine
the subsequent atomic constraints in c that get added to the constraint.

We also developed a frequency-sensitive variant of this rule quality metric.
Let Qfreq

rul denote the frequency-weighted variant of Qrul, obtained by weighting
each user-permission tuple by its relative frequency (i.e., fraction of occurrences)
in the log, similar to the definition of λ-distance in [6]. Specifically, the definition

of Qfreq
rul is obtained from the definition of Qrul by replacing | [[ρ]] ∩ UP | with

| [[ρ]] ∩UP |L (recall that | · |L is defined in Section 3).
We also developed a rule quality metric QILP

rul based closely on the theory
quality metric for inductive logic programming described in [7]. Details of the
definition are omitted to save space.

The function mergeRules(Rules) in Figure 3 attempts to improve the qual-
ity of Rules by removing redundant rules and merging pairs of rules. A rule ρ
in Rules is redundant if Rules contains another rule ρ′ such that every user-
permission tuple in UP0 that is in [[ρ]] is also in [[ρ′]]. Informally, rules ρ1 and ρ2
are merged by taking, for each attribute, the union of the conjuncts in ρ1 and
ρ2 for that attribute. If adding the resulting rule ρmrg to the policy and remov-
ing rules (including ρ1 and ρ2) that become redundant improves policy quality
and does not introduce over-assignments where none existed before, then ρmrg is
added to Rules, and the redundant rules are removed from Rules. As optimiza-
tions (in the implementation, not reflected in the pseudocode), meanings of rules
are cached, and policy quality is computed incrementally. mergeRules(Rules) up-
dates its argument Rules in place, and it returns a Boolean indicating whether
any rules were merged.

The function simplifyRules(Rules) attempts to simplify all of the rules in
Rules. It updates its argument Rules in place, replacing rules in Rules with
simplified versions when simplification succeeds. It returns a Boolean indicating
whether any rules were simplified. It attempts to simplify each rule in several



// Rules is the set of candidate rules
Rules = ∅
// uncovUP contains user-permission tuples
// in UP0 that are not covered by Rules
uncovUP = UP0.copy()
while ¬uncovUP .isEmpty()

// Select an uncovered tuple as a “seed”.
〈u, r, o〉 = some tuple in uncovUP
cc = candidateConstraint(r, u)
// su contains users with permission 〈r, o〉
// and that have the same candidate
// constraint for r as u
su = {u′ ∈ U | 〈u′, r, o〉 ∈ UP0

∧ candidateConstraint(r, u′) = cc}
addCandRule(su, {r}, {o}, cc, uncovUP ,Rules)
// so is set of operations that u can apply to r
so = {o′ ∈ Op | 〈u, r, o′〉 ∈ UP0}
addCandRule({u}, {r}, so, cc, uncovUP ,Rules)

end while

// Repeatedly merge and simplify
// rules, until this has no effect
mergeRules(Rules)
while simplifyRules(Rules)

&& mergeRules(Rules)
skip

end while
// Select high quality rules into Rules ′.
Rules ′ = ∅
Repeatedly move highest-quality rule
from Rules to Rules ′ until∑

ρ∈Rules′ [[ρ]] ⊇ UP0, using

UP0 \ [[Rules ′]] as second argument to
Qrul, and discarding a rule if it does
not cover any tuples in UP0 currently
uncovered by Rules ′.
return Rules ′

Fig. 1. Policy mining algorithm. The pseudocode starts in column 1 and continues in
column 2.

function addCandRule(su, sr, so, cc, uncovUP ,Rules)
// Construct a rule ρ that covers user-perm. tuples {〈u, r, o〉 | u ∈ su ∧ r ∈ sr ∧ o ∈ so}.
eu = computeUAE(su, U); er = computeRAE(sr, R); ρ = 〈eu, er, so, ∅〉
ρ′ = generalizeRule(ρ, cc, uncovUP ,Rules); Rules.add(ρ′); uncovUP .removeAll([[ρ′]])

Fig. 2. Compute a candidate rule ρ′ and add ρ′ to candidate rule set Rules

ways, including elimination of redundant sets using function elimRedundantSets,
elimination of conjuncts, elimination of constraints, elimination of elements of
sets in conjuncts for multi-valued user attributes, and elimination of overlap
between rules. The detailed definition is similar to the one in [10] and is omitted
to save space.

4.1 Example

We illustrate the algorithm on a small fragment of our university case study (cf.
Section 5.1). The fragment contains a single rule ρ0 = 〈true, type ∈ {gradebook},
{addScore, readScore}, crsTaught 3 crs〉 and all of the attribute data from the
full case study, except attribute data for gradebooks for courses other than cs601.
We consider an operation log L containing three entries: {〈csFac2, cs601gradebook,
addScore, t1〉, 〈csFac2, cs601gradebook, readScore, t2〉, 〈csStu3, cs601gradebook,
addScore, t3〉}. User csFac2 is a faculty in the computer science department who
is teaching cs601; attributes are position = faculty, dept = cs, and crsTaught =
{cs601}. csStu3 is a CS student who is a TA of cs601; attributes are position =



function generalizeRule(ρ, cc, uncovUP ,
Rules)

// ρbest is best generalization of ρ
ρbest = ρ
// gen[i][j] is a generalization of ρ using
// cc′[i]
gen = new Rule[cc.length][3]
for i = 1 to cc.length
f = cc[i]
// generalize by adding f and eliminating
// conjuncts for both attributes used in f .
gen[i][1] = 〈uae(ρ)[uAttr(f) 7→ >],

rae(ρ)[rAttr(f) 7→ >],
ops(ρ), con(ρ) ∪ {f}〉

// generalize by adding f and eliminating
// conjunct for user attribute used in f
gen[i][2] = 〈uae(ρ)[uAttr(f) 7→ >], rae(ρ),

ops(ρ), con(ρ) ∪ {f}〉
// generalize by adding f and eliminating
// conjunct for resource attrib. used in f .
gen[i][3] = 〈uae(ρ), rae(ρ)[rAttr(f) 7→ >],

ops(ρ), con(ρ) ∪ {f}〉
end for
for i = 1 to cc.length and j = 1 to 3

// try to further generalize gen[i]
ρ′′ = generalizeRule(gen[i][j], cc[i+1 ..],

uncovUP ,Rules)
if Qrul(ρ

′′, uncovUP) > Qrul(ρbest,
uncovUP)

ρbest = ρ′′

end if
end for
return ρbest

function mergeRules(Rules)
// Remove redundant rules
redun = {ρ ∈ Rules | ∃ ρ′ ∈ Rules \ {ρ}.

[[ρ]] ∩UP0 ⊆ [[ρ′]] ∩UP0}
Rules.removeAll(redun)
// Merge rules
workSet = {(ρ1, ρ2) | ρ1 ∈ Rules ∧ ρ2 ∈ Rules

∧ ρ1 6= ρ2 ∧ con(ρ1) = con(ρ2)}
while not(workSet.empty())

(ρ1, ρ2) = workSet .remove()
ρmrg = 〈uae(ρ1) ∪ uae(ρ2),

rae(ρ1) ∪ rae(ρ2),
ops(ρ1) ∪ ops(ρ2), con(ρ1)〉

// Find rules that become redundant
// if merged rule ρmrg is added
redun = {ρ ∈ Rules | [[ρ]] ⊆ [[ρmrg]]}
// Add the merged rule and remove redun-
// dant rules if this improves policy quality
// and does not introduce over-assignments.
// where none existed before.
if Qpol(Rules ∪ {ρmrg} \ redun) < Qpol(Rules)
∧ (noOA(ρ1) ∧ noOA(ρ2)⇒ noOA(ρmrg))
Rules.removeAll(redun)
workSet .removeAll({(ρ1, ρ2) ∈ workSet |

ρ1 ∈ redun ∨ ρ2 ∈ redun})
workSet .addAll({(ρmrg, ρ) | ρ ∈ Rules

∧ con(ρ) = con(ρmrg)})
Rules.add(ρmrg)

end if
end while
return true if any rules were merged

Fig. 3. Left: Generalize rule ρ by adding some formulas from cc to its constraint and
eliminating conjuncts for attributes used in those formulas. f [x 7→ y] denotes a copy of
function f modified so that f(x) = y. a[i..] denotes the suffix of array a starting at index
i. Right: Merge pairs of rules in Rules, when possible, to reduce the WSC of Rules. (a, b)
denotes an unordered pair with components a and b. The union e = e1∪e2 of attribute
expressions e1 and e2 over the same set A of attributes is defined by: for all attributes a
in A, if e1(a) = > or e2(a) = > then e(a) = > otherwise e(a) = e1(a)∪ e2(a). noOA(ρ)
holds if ρ has no over-assignments, i.e., [[ρ]] ⊆ UP0.

student, dept = cs, and crsTaught = {cs601}. cs601gradebook is a resource with
attributes type = gradebook, dept = cs, and crs = cs601.

Our algorithm selects user-permission tuple 〈csFac2, cs601gradebook, addScore〉
as the first seed, and calls function candidateConstraint to compute the set of
atomic constraints that hold between csFac2 and cs601gradebook; the result is



cc = {dept = dept, crsTaught 3 crs}. addCandRule is called twice to com-
pute candidate rules. The first call to addCandRule calls computeUAE to com-
pute a UAE eu that characterizes the set su containing users with permission
〈addScore, cs601gradebook〉 and with the same candidate constraint as csFac2
for cs601gradebook; the result is eu = {position ∈ {faculty, student} ∧ dept ∈
{cs}∧crsTaught ⊇ {{cs601}}}. addCandRule also calls computeRAE to compute
a resource-attribute expression that characterizes {cs601gradebook}; the result
is er = {crs ∈ {cs601}∧dept ∈ {cs}∧type ∈ {gradebook}}. The set of operations
considered in this call to addCandRule is simply so = {addScore}. addCandRule
then calls generalizeRule, which generates a candidate rule ρ1 which initially
has eu, er and so in the first three components, and then atomic constraints
in cc are added to ρ1, and conjuncts in eu and er for attributes used in cc are
eliminated; the result is ρ1 = 〈position ∈ {faculty, student}, type ∈ {gradebook},
{addScore},dept = dept ∧ crsTaught 3 crs〉, which also covers the third log en-
try. Similarly, the second call to addCandRule generates a candidate rule ρ2 =
〈position ∈ {faculty}, type ∈ {gradebook}, {addScore, readScore},dept = dept ∧
crsTaught 3 crs〉, which also covers the second log entry.

All of UP(L) is covered, so our algorithm calls mergeRules, which attempts to
merge ρ1 and ρ2 into rule ρ3 = 〈position ∈ {faculty, student}, type ∈ {gradebook},
{addScore, readScore},dept = dept ∧ crsTaught 3 crs〉. ρ3 is discarded because
it introduces an over-assignment while ρ1 and ρ2 do not. Next, simplifyRules
is called, which first simplifies ρ1 and ρ2 to ρ′1 and ρ′2, respectively, and then
eliminates ρ′1 because it covers a subset of the tuples covered by ρ′2. The final
result is ρ′2, which is identical to the rule ρ0 in the original policy.

5 Evaluation Methodology

We evaluate our policy mining algorithms on synthetic operation logs generated
from an ABAC policy (some handwritten and some synthetic) and probability
distributions characterizing the frequency of actions. This allows us to evaluate
the effectiveness of our algorithm by comparing the mined policies with the
original ABAC policies. We are eager to also evaluate our algorithm on actual
operation logs and actual attribute data, when we are able to obtain them.

5.1 ABAC Policies

Case Studies. We developed four case studies for use in evaluation of our al-
gorithm, described briefly here. Details of the case studies, including all policy
rules, various size metrics (number of users, number of resources, etc.), and some
illustrative attribute data, appear in [10].

Our university case study is a policy that controls access by students, in-
structors, teaching assistants, registrar officers, department chairs, and admis-
sions officers to applications (for admission), gradebooks, transcripts, and course
schedules. Our health care case study is a policy that controls access by nurses,
doctors, patients, and agents (e.g., a patient’s spouse) to electronic health records



(HRs) and HR items (i.e., entries in health records). Our project management
case study is a policy that controls access by department managers, project
leaders, employees, contractors, auditors, accountants, and planners to budgets,
schedules, and tasks associated with projects. Our online video case study is a
policy that controls access to videos by users of an online video service.

The number of rules in the case studies is relatively small (10 ± 1 for the
first three case studies, and 6 for online video), but they express non-trivial
policies and exercise all the features of our policy language, including use of set
membership and superset relations in attribute expressions and constraints. The
manually written attribute dataset for each case study contains a small number
of instances of each type of user and resource.

For the first three case studies, we generated a series of synthetic attribute
datasets, parameterized by a number N , which is the number of departments for
the university and project management case studies, and the number of wards for
the health care case study. The generated attribute data for users and resources
associated with each department or ward are similar to but more numerous than
the attribute data in the manually written datasets. We did not bother creating
synthetic data for the online video case study, because the rules are simpler.

Synthetic Policies. We generated synthetic policies using the algorithm proposed
by Xu and Stoller [10]. Briefly, the policy synthesis algorithm first generates the
rules and then uses the rules to guide generation of the attribute data; this
allows control of the number of granted permissions. The algorithm takes Nrule,
the desired number of rules, as an input. The numbers of users and resources
are proportional to the number of rules. Generation of rules and attribute data
is based on several probability distributions, which are based loosely on the case
studies or assumed to have a simple functional form (e.g., uniform distribution).

5.2 Log Generation

The inputs to the algorithm are an ABAC policy π, the desired completeness of
the log, and several probability distributions. The completeness of a log, relative
to an ABAC policy, is the fraction of user-permission tuples in the meaning of
the policy that appear in at least one entry in the log. A straightforward log
generation algorithm would generate each log entry by first selecting an ABAC
rule, according to a probability distribution on rules, and then selecting a user-
permission tuple that satisfies the rule, according to probability distributions on
users, resources, and operations. This process would be repeated until the speci-
fied completeness is reached. This algorithm is inefficient when high completeness
is desired. Therefore, we adopt a different approach that takes advantage of the
fact that our policy mining algorithm is insensitive to the order of log entries and
depends only on the frequency of each user-permission tuple in the log. In par-
ticular, instead of generating logs (which would contain many entries for popular
user-permission tuples), our algorithm directly generates a log summary, which
is a set of user-permission tuples with associated frequencies (equivalently, a set
of user-permission tuples and a frequency function).



Probability Distributions. An important characteristic of the probability distri-
butions used in synthetic log and log summary generation is the ratio between
the most frequent (i.e., most likely) and least frequent items of each type (rule,
user, etc.). For case studies with manually written attribute data, we manually
created probability distributions in which this ratio ranges from about 3 to 6. For
case studies with synthetic data and synthetic policies, we generated probability
distributions in which this ratio is 25 for rules, 25 for resources, 3 for users, and
3 for operations (the ratio for operations has little impact, because it is relevant
only when multiple operations appear in the same rule, which is uncommon).

5.3 Metrics

For each case study and each associated attribute dataset (manually written or
synthetic), we generate a synthetic operation log using the algorithm in Section
5.2 and then run our ABAC policy mining algorithms. We evaluate the effective-
ness of each algorithm by comparing the generated ABAC policy to the original
ABAC policy, using the metrics described below.

Syntactic Similarity. Jaccard similarity of sets is J(S1, S2) = |S1∩S2| / |S1∪S2|.
Syntactic similarity of UAEs is defined by Su

syn(e, e′) = |Au|−1
∑
a∈Au

J(e(a), e′(a)).

Syntactic similarity of RAEs is defined by Sr
syn(e, e′) = |Ar|−1

∑
a∈Ar

J(e(a), e′(a)).
The syntactic similarity of rules 〈eu, er, O, c〉 and 〈e′u, e′r, O′, c′〉 is the average
of the similarities of their components, specifically, the average of Su

syn(eu, e
′
u),

Sr
syn(er, e

′
r), J(O,O′), and J(c, c′). The syntactic similarity of rule sets Rules and

Rules ′ is the average, over rules ρ in Rules, of the syntactic similarity between
ρ and the most similar rule in Rules ′. The syntactic similarity of policies π and
π′ is the maximum of the syntactic similarities of the sets of rules in the poli-
cies, considered in both orders (this makes the relation symmetric). Syntactic
similarity ranges from 0 (completely different) to 1 (identical).

Semantic Similarity. Semantic similarity measures the similarity of the entitle-
ments granted by two policies. The semantic similarity of policies π and π′ is
defined by J([[π]] , [[π′]]). Semantic similarity ranges from 0 (completely different)
to 1 (identical).

Fractions of Under-Assignments and Over-Assignments. To characterize the se-
mantic differences between an original ABAC policy π0 and a mined policy π in
a way that distinguishes under-assignments and over-assignments, we compute
the fraction of over-assignments and the fraction of under-assignments, defined
by | [[π]] \ [[π0]] | / | [[π]] | and | [[π0]] \ [[π]] | / | [[π]] |, respectively.

6 Experimental Results

This section presents experimental results using an implementation of our algo-
rithm in Java. The implementation, case studies, and synthetic policies used in
the experiments are available at http://www.cs.stonybrook.edu/~stoller/.

http://www.cs.stonybrook.edu/~stoller/


Over-Assignment Weight. The optimal choice for the over-assignment weights
wo and w′o in the policy quality and rule quality metrics, respectively, depends on
the log completeness. When log completeness is higher, fewer over-assignments
are desired, and larger over-assignments weights give better results. In experi-
ments, we take wo = 50c−15 and w′o = wo/10, where c is log completeness. In a
production setting, the exact log completeness would be unknown, but a rough
estimate suffices, because our algorithm’s results are robust to error in this esti-
mate. For example, for case studies with manually written attribute data, when
the actual log completeness is 80%, and the estimated completeness used to
compute wo varies from 70% to 90%, the semantic similarity of the original and
mined policies varies by 0.04, 0.02, and 0 for university, healthcare, and project
management, respectively.

Experimental Results. Figure 4 shows results from our algorithm. In each graph,
curves are shown for the university, healthcare, and project management case
studies with synthetic attribute data with N equal to 6, 10, and 10, respectively
(average over results for 10 synthetic datasets, with 1 synthetic log per synthetic
dataset), the online video case study with manually written attribute data (av-
erage over results for 10 synthetic logs), and synthetic policies with Nrule = 20
(average over results for 10 synthetic policies, with 1 synthetic log per policy).
Error bars show standard deviation. Running time is at most 12 sec for each
problem instance in our experiments.

For log completeness 100%, all four case study policies are reconstructed ex-
actly, and the semantics of synthetic policies is reconstructed almost exactly:
the semantic similarity is 0.98. This is a non-trivial result, especially for the case
studies: an algorithm could easily generate a policy with over-assignments or gen-
erate more complex rules. As expected, the results get worse as log completeness
decreases. When evaluating the results, it is important to consider what levels of
log completeness are likely to be encountered in practice. One datapoint comes
from Molloy et al.’s work on role mining from real logs [6]. For the experiments in
[6, Tables 4 and 6], the actual policy is not known, but their algorithm produces
policies with 0.52% or fewer over-assignments relative to UP(L), and they inter-
pret this as a good result, suggesting that they consider the log completeness to
be near 99%. Based on this, we consider our experiments with log completeness
below 90% to be severe stress tests, and results for log completeness 90% and
higher to be more representative of typical results in practice.

Syntactic similarity for all four case studies is above 0.87 for log completeness
60% or higher, and is above 0.93 for log completeness 80% or higher. Syntactic
similarity is lower for synthetic policies, but this is actually a good result. The
synthetic policies tend to be unnecessarily complicated, and the mined policies
are better in the sense that they have lower WSC. For example, for 100% log
completeness, the mined policies have 0.98 semantic similarity to the synthetic
policies (i.e., the meaning is almost the same), but the mined policies are simpler,
with WSC 17% less than the original synthetic policies.

Semantic similarity is above 0.7 for log completeness 60% or higher, and
above 0.89 for log completeness 80% or higher, for synthetic policies and for case
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Fig. 4. Top: Syntactic similarity and semantic similarity of original and mined ABAC
policies, as a function of log completeness. Bottom: Fractions of over-assignments and
under-assignments in mined ABAC policy, as a function of log completeness. The legend
(omitted from some graphs to save space) is the same for all four graphs.

studies other than healthcare. The semantic similarity is lower for healthcare,
because the over-assignment weight given by the above formula is not optimal for
this policy. In fact, if the optimal value of wo is used for each log completeness,
the semantic similarity for healthcare is always above 0.99. Better automated
tuning of wo is a direction for future work.

The fractions of over-assignments and under-assignments are below 0.24 and
0.05, respectively, when log completeness is 80% or higher, for synthetic policies
and for case studies other than healthcare. The fractions are higher for health-
care, because wo is not well chosen, as discussed above.

Comparison of Rule Quality Metrics. The above experiments use the first rule
quality metric, Qrul, in Section 4. We also performed experiments using Qfreq

rul and
QILP

rul on case studies with manually written attribute data and synthetic policies.

We found that there is no clear winner between Qrul and Qfreq
rul (sometimes one

is better, sometimes the other is better), and QILP
rul gives worse results overall.

Comparison with Inductive Logic Programming. To translate ABAC policy min-
ing from logs to Progol [8], we used the translation of ABAC policy mining from
ACLs to Progol in [10, Sections 5.5, 16], except negative examples corresponding
to absent user-permission tuples are omitted from the generated program, and
the statement set(posonly)? is included, telling Progol to use its algorithm for



learning from positive examples. For the four case studies with manually writ-
ten attribute data (in contrast, Figure 4 uses synthetic attribute for three of the
case studies), for log completeness 100%, semantic similarity of the original and
Progol-mined policies ranges from 0.37 for project management and healthcare
to 0.93 for online video, while our algorithm exactly reconstructs all four policies.

7 Related Work

We are not aware of prior work on ABAC mining from logs. The closest topics
of related work are ABAC mining from ACLs and role mining from logs.

7.1 ABAC Policy Mining from ACLs

Our policy mining algorithm is based on our algorithm for ABAC policy mining
from ACLs [10]. The main differences are described in Section 1.

Ni et al. investigated the use of machine learning algorithms for security
policy mining [9]. In the most closely related part of their work, a supervised
machine learning algorithm is used to learn classifiers (analogous to attribute
expressions) that associate users with roles, given as input the users, the roles,
user attribute data, and the user-role assignment. Perhaps the largest difference
between their work and ABAC policy mining is that their approach needs to
be given the roles and the role-permission or user-role assignment as training
data; in contrast, ABAC policy mining algorithms do not require any part of
the desired high-level policy to be given as input. Also, their work does not
consider anything analogous to constraints and does not attempt to optimize
the size or readability of the generated policy.

Association rule mining is another possible basis for ABAC policy mining.
However, association rule mining algorithms are not well suited to ABAC policy
mining, because they are designed to find rules that are probabilistic in nature
and are supported by statistically strong evidence. They are not designed to
produce a set of rules that are strictly satisfied, that completely cover the input
data, and are minimum-sized among such sets of rules. Consequently, unlike our
algorithm, they do not give preference to smaller rules or rules with less overlap.

7.2 Role Mining from Logs

Gal-Oz et al. [2] assume that logs record sets of permissions exercised together
in one high-level operation. Their role mining algorithm introduces roles whose
sets of assigned permissions are the sets of permissions in the log. Their algo-
rithm introduces over-assignments by removing roles with few users or whose
permission set occurs few times in the log and re-assigning their members to
roles with more permissions. Their algorithm does not use attribute data.

Molloy et al. apply a machine learning algorithm that uses a statistical ap-
proach, based upon a generative model, to find the policy that is most likely
to generate the behavior (usage of permissions) observed in the logs [6]. They



give an algorithm, based on Rosen-Zvi et al.’s algorithm for learning Author-
Topic Models (ATMs), to mine meaningful roles from logs and attribute data,
i.e., roles such that the user-role assignment is statistically correlated with user
attributes. Their approach can be adapted to ABAC policy mining from logs,
but its scalability in this context is questionable, because the adapted algorithm
would enumerate and then rank all tuples containing a UAE, RAE and con-
straint (i.e., all tuples with the components of a candidate rule other than the
operation set), and the number of such tuples is very large. In contrast, our
algorithm never enumerates such candidates.

Zhang et al. use machine learning algorithms to improve the quality of a
given role hierarchy based on users’ access patterns as reflected in operation logs
[12, 11]. These papers do not consider improvement or mining of ABAC policies.
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