
HAL Id: hal-01284858
https://inria.hal.science/hal-01284858

Submitted on 8 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Consistent Query Plan Generation in Secure
Cooperative Data Access

Meixing Le, Krishna Kant, Sushil Jajodia

To cite this version:
Meixing Le, Krishna Kant, Sushil Jajodia. Consistent Query Plan Generation in Secure Cooperative
Data Access. 28th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec),
Jul 2014, Vienna, Austria. pp.227-242, �10.1007/978-3-662-43936-4_15�. �hal-01284858�

https://inria.hal.science/hal-01284858
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Consistent Query Plan Generation in
Secure Cooperative Data Access

Meixing Le Krishna Kant Sushil Jajodia
meile@cisco.com kkant@temple.edu jajodia@gmu.edu
Cisco Corp. Temple Univ. Geoerge Mason Univ.

Abstract. In this paper, we consider restricted data sharing between a
set of parties that wish to provide some set of online services requiring
such data sharing. We assume that each party stores its data in private
relational databases, and is given a set of mutually agreed set of autho-
rization rules that may involve joins over relations owned by one or more
parties. Although the query planning problem in such an environment
is similar to the one for distributed databases, the access restrictions
introduce significant additional complexity that we address in this pa-
per. We examine the problem of efficiently enforcing rules and generating
query execution plans in this environment. Because of the exponential
complexity of optimal query planning, our query planning algorithm is
heuristics based but produces excellent, if not optimal, results in most
of the practical cases.

Keywords: Rule enforcement, Consistent query planning, Cooperative data ac-
cess

1 Introduction

Providing rich services to clients with minimal manual intervention or paper doc-
uments requires the enterprises involved in the service path to collaborate and
share data in an orderly manner. For instance, to enable automated shipping of
merchandise and status checking, the e-commerce vendor and shipping company
should be able to exchange relevant information, perhaps by enabling queries
to retrieve data from each other’s databases. Similarly, in order to provide in-
tegrated payment and payment status services to the client, the e-commerce
vendor needs to share data with the credit card companies or other vendors that
specialize in payment processing. There may even be a need for some data shar-
ing between the payment processing and shipping companies so that the issue
of payment for shipping can be smoothly handled.

Traditionally, such cross enterprise data access has been implemented in ad
hoc ways. In particular, incoming queries may not be allowed to directly access
the databases maintained by a company, and instead handled via some interme-
diate module. This has the advantage of isolation but could be quite inefficient.
More significantly, cross-enterprise data access is typically driven by bilateral
agreements between the two parties that no other party knows anything about.

While attractive from isolation perspective, such bilateral agreements introduce
a high degree of cost, complexity, and inefficiency into the processes. In partic-
ular, bilateral agreements may require more data to be exposed to other parties
so that it is possible to answer complex queries that require composition of data
from multiple parties. Bilateral agreements also rule out possibilities of sharing
computation results between parties. For instance, if the e-commerce company
needs to get information involving join of data over three parties (e.g., the e-
commerce company itself, a warehouse, and a shipping company), under bilateral
agreements, we have to bring the relevant data from the other two parties to
the e-commerce company first and then do joins. With multiparty interactions
enabled, such data may already be available. The purpose of this paper is to
explore the general multi-party collaboration model and to develop algorithms
for safely implementing the authorization rules so that only desired data can be
accessed by authorized parties.

We assume that the multi-party data sharing is driven by twin consideration
of business need and privacy; therefore, the rules are expected to grant sufficient
privileges for answering the agreed upon set of queries but no more. We assume
that the collaborating parties generally trust one another and play by the rules.
Typically, this would be enforced through legal and financial provisions in the
agreements, but there may still be a need to take the “trust-but-verify” approach.
The verification issue is beyond the scope of this paper and will be addressed
in future work. The purpose of this paper is to focus on efficient mechanisms
for executing queries in what amounts to a distributed database with access
restrictions. To the best of our knowledge this is the first work of its kind, even
though query planning in distributed databases has been considered extensively.

Although the enterprise data may appear in a variety of forms, this paper
focuses on the relational model, with authorization rules specifying access to
certain attributes over individual relations and their meaningful joins (e.g., join
over key attributes). For simplicity and schema level treatment, we do not con-
sider tuple selections as part of the rules in this paper. The problem then is to
find ways of enforcing the rules and constructing efficient query plans.

Since each party is likely to frame rules from its own perspective, the rules
taken together may suffer from inconsistency, unenforceability, and other issues.
The consistency problem refers to the fact that if a party is provided access to
two relations, say R and S, it is very difficult to prevent it from joining these
relations, but the rule may deny access to R ./ S. Our previous research has
addressed this issue [12] and here we simply assume that the rules are upwards
closed, i.e., access to R and S will automatically enable access to R ./ S. The
enforceability problem can be illustrated as follows: If a party P is given access
to R ./ S but it and no other party has access to both R and S, it is not possible
to actually compute R ./ S. We have examined this problem in [13]. In some
cases, enforceability requires introducing a trusted third party [14] that is given
sufficient access rights to perform the operation in question (e.g., R ./ S in our
example). Third parties bring in their own security risks, and we do not consider

them in this paper. We instead focus on generating efficient query plans in an
environment without any trusted third parties, and do so in two steps:

1) We examine each authorization rule and check whether the rule can be
totally enforced (or implemented) among the collaborating parties. Since this
issue has been addressed in [13], we do not focus on this step here.

2) We build a safe and efficient query plan based on the available rule en-
forcement steps. We discuss the complexity of finding optimal answer in our
scenario, and how it differs from classical query processing. We then propose
an efficient algorithm that derives query plans based on a greedy heuristic. We
prove that our algorithms are both correct and complete, and experimentally
show the quality of the results.

The rest of the paper is organized as follows. Following the related work
in Section 2, the problem is defined formally in Section 3. Section 4 analyzes
the complexity of query planning. Section 5 then describes the algorithm for
generating query plans.

2 Related Work

The problem of collaborative data access has been considered in the past, and
this has inspired our multi-party collaboration approach. In particular, De-
Capitani, et.al. [7] consider such a model and discuss an algorithm to check
if a query with a given query plan tree can be safely executed. However, this
work does not address the problem of how the given rules are implemented and
how the query plan trees are generated. The same authors have also proposed a
possible architecture for the collaborative data access in [8] but this work does
not address query planning. As we shall show shortly, regular query optimizers
cannot be used here since they do not comprehend access restrictions and may
fail to generate some possible query plans.

There are also existing works on distributed query processing under protec-
tion requirements [4, 15] which consider a limited access pattern called binding
pattern. It is assumed that the accessible data is based on some input data.
For instance, a party can provide names and ID’s of some individuals, it may
be allowed to access their medical records. This is a completely different model
from ours. There are also many classical works on query processing in centralized
and distributed systems [3, 11, 5], but they do not deal with constraints from the
data owners, which differs from our work.

Answering queries that takes advantage of materialized views is another well
investigated research direction. Some of these works focus on query optimiza-
tion [9] which use materialized views to further optimize existing query plans. In
our case, we need to generate a query plan from scratch. Some works use views
for maintaining physical data independence and for data integration [16]. They
assume the scenario where data is organized in different formats and comes from
different sources, and accessing data via views may not provide the complete in-
formation to answer the queries. Using authorization views for fine-grained access
control is discussed in [17], and [19] analyzed the query containment problem un-

der such access control model. Similarly, conjunctive queries are used to evaluate
the query equivalence and information containment, and the work [10] presented
several theoretical results. Compared to these works, our data model is homoge-
neous across the parties, and our authorization model not only puts constraints
based on relational views but also the interactions among collaborating parties.
Consequently, generating a query plan in our scenario is even more complicated.
Some results from these works can be complementary to our work and can be
used to further optimize the query plans generated by our approach. However,
this is out of the scope of this paper.

In addition, there are services such as Sovereign joins [2] to provide third
party join services; we can think this as one possible third party model in our
scenario. There is also some research [1, 6, 18] about how to secure the data for
out-sourced database services. These methods are also useful for enforcing the
authorization rules, but we consider the scenario without any involvement of
third parties.

3 Problem and Definitions

We consider a group of collaborating parties each with its own relational database
but with collectively known key attributes and authorizations that allow for use-
ful joins among the tables. We assume that the join schema is also collectively
known, and we only consider select-project-join (SPJ) queries. To enable work-
ing at the schema level, selections are treated like projections (i.e., attributes
mentioned in selection predicates are assumed to be accessible). We also allow
an incoming query to be answered by any party that has the required authoriza-
tions. The basic query planning problem is as follows: Given a set of authorization
rules R on n cooperating parties, and a query q authorized by R, find an efficient
query execution plan for q that is consistent with the rules R.

3.1 A Running Example

In the following, we use a running e-commerce scenario with four parties: (a)
E-commerce, denoted as E, is a company that sells products online, (b) Cus-
tomer Service, denoted C, that provides customer service functions (potentially
for more than one Company), (c) Shipping, denoted S, provides shipping services
(again, potentially to multiple companies), and finally (d) Warehouse, denoted
W , is the party that provides storage services. To keep the example simple, we
assume that each party owns but one table described as follows. In reality, each
party may have several tables that are available for collaborative access, in ad-
dition to those that are entirely private and thus not relevant for collaborative
query processing.

1. E-commerce (order id, product id, total) as E
2. Customer Service (order id, issue, agent) as C
3. Shipping (order id, addr, delivery type) as S

4. Warehouse (product id, location) as W

The relations are self-explanatory, with underlined attributes indicating the
key attributes. In the following, we use oid to denote order id for short, pid for
product id, and delivery for delivery type. The possible join schema is given in
figure 1. Relations E, C, S can join over their common attribute oid; relation E
can join with W over the attribute pid. The relations are in BCNF, and the only
FD (Functional Dependency) in each relation is the underlined key attribute
determining the non-key attributes. To keep our discussion simple, we do not
consider foreign keys in this paper. Foreign keys are unlikely to be used for
linking data across organizational boundaries; nevertheless, our model can be
easily extended to consider foreign key constraints.

3.2 Definitions and authorization model

An authorization rule rt is a triple [At, Jt, Pt], where Jt is called the join path
of the rule, At is the authorized attribute set, and Pt is the party authorized to
access the data.

C (oid, issue, agent)

S (oid, addr, delivery)

E (oid, pid, total)

W (pid, location)

oid

oid

oi
d

pi
d

Fig. 1. The given join schema for the example

Definition 1 A join path Jt is the result of a series of joins over the relations
JRt = {R1, R2...Rn} with specified equi-join predicates (Al1, Ar1), (Al2, Ar2)...
(Aln, Arn) among them, where (Ali, Ari) are the lists of join attributes from two
relations. The length of a join path is the cardinality of JRt.

The authorized attributes is given by At part of the rule rt, which we assume
to include all key attributes as well. Table 1 shows all the rules in our example
system. (The last column specifies the party to which the authorization is given.)
Since our analysis does not deal with selections directly, all attributes appearing
in selection predicates are treated as projection attributes. Thus, a query q can
be represented by a pair [Aq, Jq], where Aq is the set of attributes appearing in
the Selection and Projection predicates. For instance, the SQL query “q: Select
oid, total, addr From E Join S On E.oid = S.oidWhere delivery = ‘ground’” can
be represented as the pair [Aq, Jq], where Aq is the set {oid, total, addr, delivery};
Jq is the join path E ./oid S. We say Ji ∼= Jj (join path equivalence) if any tuple
in Ji appears in Jj and vice versa. Then, a query q is authorized if there exists
a rule rt such that Jt ∼= Jq and Aq ⊆ At. In other words, the rule and the
authorized query must have the equivalent join paths.

Authorized attribute set Auth. Join Path To
1 {pid, location} W PW

2 {oid, pid} E PW

3 {oid, pid, location} E ./pid W PW

4 {oid, pid, total} E PE

5 {oid, pid, total, issue} E ./oid C PE

6 {oid, pid, total, issue, addr} S ./oid E ./oid C PE

7 {oid, pid, location, total, addr} S ./oid E ./pid W PE

8 {oid, pid, issue, agent, total,
addr, delivery}

S ./oid E ./oid
C ./pid W

PE

9 {oid, addr, delivery} S PS

10 {oid, pid, total} E PS

11 {oid, pid, total, addr, delivery} E ./oid S PS

12 {oid, pid, total, location} E ./pid W PS

13 {oid, location, pid, total, addr,
delivery}

S ./oid E ./pid W PS

14 {oid, pid} E PC

15 {oid, issue, agent} C PC

16 {oid, pid, issue, agent} E ./oid C PC

17 {oid, pid, issue, agent, total,
addr, location}

S ./oid C ./oid
E ./pid W

PC

Table 1. Auth. rules for running Example

To answer a query that is
authorized by the rules, we
still need a query execu-
tion plan (or “query plan”
for short) where each of the
steps corresponds to an au-
thorized and realizable opera-
tion. In our model, the query
execution plan pl can also
be represented with a triple
[Apl, Jpl, Ppl] just like a rule.
Here, the join path not only
for local joins but also counts
the data transmitted between
the parties as we will discuss
later. For this plan to be valid,
it is necessary that Jpl ∼= Jq
and Aq ⊆ Apl. We introduce
the notion of consistent query
plan next, and only consistent plans are considered safe to answer the queries.

The desired query plan can be represented hierarchically where at each level,
a number of sub-plans are combined to get the next higher level plan. The
access plans for basic relations owned by the parties form the bottom level in
this structure. For instance, there is a query plan to retrieve all the information
of rule r3 in Table 1, and such a plan contains a join over two subplans based on
rules r1 and r2 respectively. The subplan for r1 is to access table W on PW . The
subplan for r2 is an access plan reading table S at PS , and another operation
transmitting the data from PS to PW . The example plan authorized by r3 has
the Jpl = E ./pid W , and Apl = {oid, pid, location}. We say a rule rt authorizes
(�) a plan pl, if Jpl ∼= Jt, Ppl = Pt, and Apl ⊆ At.

Definition 2 An operation in a query plan is consistent with the given rules
R, if for the operation, there exist rules that authorize access to the input tuples
of the operation and to the resulting output tuples.

For the three types of operations in our scenario, we give the corresponding
conditions for consistent operation.

1. For a projection (π) to be consistent with the rule set R, there must be a
rule rp that authorizes (�) the input information.

2. Join (./) is a binary operation where two input subplans pli1 and pli2 produce
the resulting plan plo = pli1 ./ pli2. For a join operation to be consistent
with R, all the three plans need to be authorized by rules. Since join is
performed at a single party, and rules are upwards closed, if the input plans
are authorized by rules, the join operation is consistent.

3. Data transmission (→) involves an input plan pli on a party Pi and an output
plan plo for a party Po 6= Pi. If there are rules ri, ro ∈ R with equivalent

join paths (i.e., Ji ∼= Jo), and ri � pli, ro � plo, then the data transmission
operation is consistent with R.1

For our example, rule r8 authorizes PE to get information on the join path
(S ./ E ./ C ./ W). Also note that although the attribute set of rule r11 is
contained in that of rule r8, there is no rule for PE to get these attributes on
the join path of (E ./ S). Therefore, party S, the owner of rule r11 cannot send
these attributed to PE .

Definition 3 A query execution plan pl is consistent with the rules R, if for
each step of the operation in the plan is consistent with the given rule set R.

3.3 Inadequacy of Classical Query Planning

Generating a consistent plan that answers an authorized query in our scenario
is much more complex than the well studied problem of query planning for dis-
tributed databases (without any access restrictions). We illustrate this by an ex-
ample. Suppose that there are two collaborating parties PR and PS with database
schemas R(A,B,C), and S(A,D,E) respectively (A is the key attribute for both
relations). The party PR has an authorization rule rR = {A,B,C,D}, R ./ S (in
addition to access to its own data). The party PS has two authorization rules:
rS1 = {A,B}, R and rS2 = {A,B,C,D,E}, R ./ S. Let us now consider how to
generate a consistent plan to answer a query for {A,B,C,D,E} over the join
path of R ./ S.

In classical query planning, we will generate a query plan tree and try to as-
sign the appropriate operations to different parties. There is no constraint of data
access in classical case. Therefore, either party PR or PS can retrieve the other
relation and do the join to answer the query. From performance considerations,
semi-joins [11] are usually used in the distributed query processing. However, in
our case, even a semi-join is not enough to generate the consistent query plan
for the query. It is clear that neither PR and PS can obtain the desired result
with just one join. If we use the semi-join method, the only possibility is that PR
sends {A} to PS ; PS does the join and ships {A,D}, R ./ S back to PR, which
then computes {A,B,C,D}, R ./ S by doing another join. This, in turn is passed
back to party PS , which then obtains the desired result. In contrast, if we use
regular join, then party PS can have at best the attributes {A,B,D,E}, R ./ S
through one join operation.

To generate the consistent plan for answering the query, it is required that we
do the semi-join first, and party PR again sends the {A,B,C}, R ./ S to party
PS . Another join operation at party PS could then give the required query re-
sults. Figure 2 illustrates the situation. Each box is a rule, and the authorization
rule that authorizes the query is in dashed box. The numbers on the arrows in-
dicate the ordered steps for the consistent query plan. It is clear that generating

1 If Pi is sending information with attributes not in Ao, Pi should do a projection
operation πAo(pli) first.

a consistent query plan under the data access constraints can be lot more com-
plicated than for distributed query planning. In the following section, we show
the complication of query processing in cooperative data access environment.

4 Complexity of query planning

A, B, C, D, E

R S

A, B

SR

A, D, E

PS

PR

R

A, B, C

A, B, C, D

R S

[2]

(A,D,E), R S
[3]

(A,B,C,D), R S

[4]

[5]

(A,B,C), R S

[1]
(A), R

Fig. 2. Illustration of Query Planning

From performance perspec-
tive, we always want consis-
tent and optimal query plans
with minimal costs. Unfor-
tunately, finding the optimal
query plan is NP -hard in
such a cooperative data access
scenario.

Theorem 1 Finding the optimal query plan to answer an authorized query is
NP -hard.

Proof. The optimization of set covering problem is known to be NP-hard. In the
set covering problem, there is a set of elements U = {A1, A2, ..., An}, and there
is also a set of subsets S = {S1, S2, ...Sm} where Si is a set of elements from U
and is assigned a cost. The task is to find a subset of S, say C, that has minimal
total cost and covers all the attributes in set U . We can convert this set covering
problem into the cooperative query planning problem and thereby prove that
the optimal query planning problem is also NP-hard.

Consider 2 basic relations R and S which can join together over a key at-
tribute A0, distinct from the element set U that we will also use as attributes in
our construction. We assign all the attributes in U to relation R, which will have
the schema {A0, A1, A2, ..., An}. For each Si in S, we make an authorization rule
{A0, Si} on relation S. Thus, for m+ 1 parties, P0, P1 . . . Pn have the following
authorization rules:

1. Party P0 owns R and has a rule r0 that authorizes the desired query for
retrieving the entire set U over the join path J = R ./ (./ni=1 Si). Note that
P0 cannot unilaterally obtain the join path J .

2. Each of the other parties Pi, i = 1 . . . n, has a rule ri on the relation S with
attributes Si

⋃
{A0}.

Note that P0 cannot locally do the join R ./ S, but other parties can enforce
their rules ri locally, and their costs are known. Therefore, for P0 to answer the
query, it needs a plan bringing attributes from other parties and merging them
at P0 (multi-way join on attribute A0) to answer the query. The optimal plan
needs to choose the rules with minimal costs, and the union of their attribute
sets must cover the query attribute set. If the optimal query plan can be found
in polynomial time, the set covering problem also has a polynomial solution,
which proves the assertion. ut

4.1 Query plan cost model

It is reasonable to assume that the number of tuples in the relations are known.
Assuming we have the historical statistic information of the tables, so we can
estimate the join results accurately. The notion of join selectivity [11], a number
between 0 and 1.0 provides an estimate for the size of the joined relation. We
assumed that the join selectivity between the relations are known so that the
number of tuples in a join path can be estimated.

The cost of a query plan mainly includes two parts: 1) cost of the join op-
erations, and 2) cost of data transmission among the parties. We assume joins
are done by nested loop and indices on join attributes are available. Let Size()
denote the number of tuples in the relation, and Pages() is the number of pages
in the relation. Consider two relations R and S, of which R is the smaller one,
i.e., Size(R) < Size(S). Let α denote the output cost of generating each tuple
in the results, and let P(X,Y) denote the known join selectivity. Let β denote the
per I/O cost. Assuming the cost of finding matching tuples in S is 1. Then the
cost of a join operation between R and S can be estimated as:

α(Size(R) ∗ Size(S) ∗ P(R,S)) + β(Pages(R) + Size(R) ∗ 1)
The costs of data transmission is only decided by the size of the data being

shipped. Let γ denote the per tuple cost for data transmission. Then the cost of
moving R ./ S from a party to another is given by: γ(Size(R)∗Size(S)∗P(R,S))

It is worth noticing that our algorithm does not tie to any specified cost
model, this is one easy cost model that we can adopt.

4.2 Enumerating All Query Plans

Unlike classical query planning, we face a number of hurdles, as illustrated next.
To generate a consistent plan for a query, we first need a plan that enforces
the query join path. This can be further joined with other plans to get all the
requested attributes. Obviously, in order to consider a join path of length n,
one needs to consider all top level join subpaths of with lengths k and n − k
for suitable values of k. Unfortunately, this is insufficient. Since a longer join
path will generally produce relations with fewer tuples, it is often desirable to
consider joins of overlapping relations in cooperative data access environment.
For instance, generating a join path of R ./ S ./ T may be better done as
(R ./ S) ./ (S ./ T) instead of, say, (R ./ S) ./ (T). It all depends on the
authorization rules setting in the environment as well as the sizes of relations
and costs of operations.

An added difficulty is that we can’t just pick the subpaths based on the join
cost – we also need to pay attention to the attributes we are able to access by
doing the join. For instance, if the goal is to answer {A,B,C,D} on join path
R ./ S ./ T , we may have two ways of getting it: (a) A subplan pl1 that yields
that attribute set {A,B}, and (b) A higher cost subplan pl2 that yields the
attribute set {A,C,D}. Since we need more work to get missing attributes, at
this stage we can’t even pick one of these, and instead must keep both. Thus, in
general, we need to maintain many “partial” plans. For each such partial plan,

we then need to consider the problem of retrieving the missing attributes. This,
in turn, requires checking all possible combinations of relevant rules, followed by
a recursive procedure to find enforcement plan for the chosen relevant rules. It
is clear that the exhaustive enumerate to find the globally optimal answer can
be extremely expensive.

E

PA

O,P,T,I,A
E C

O,P,T,I,A,D,Y
S E C

O,P,T,D,Y
E S

O,P

C

O,I

S

O,D

O,I,A,D,Y
C S

E

O,P,I
E C

O,P,I,Y
S E C

O.P,Y
E S

O,P

C
O,I

S
O,Y

O,I,Y
C S

PT

E

O,P,A
E C

O,P,A,Y
S E C

O.P,Y
E S

O,P

C
O,A

S
O,D

O,A,D
C S

E

O,T,I
E C

O,T,I,D
S E C

O.T,D
E S

O,T

C
O,I

S
O,D

O,I,D
C S

PB PC

r1 r2 r3

r4 r5 r6

r7

r8 r9 r10

r11 r12 r13

r14

r15 r16 r17

r18 r19 r20

r21

r22 r23 r24

r25 r26 r27

r28

Attribute names: O oid; P pid; T total; I issue; A agent; D addr; Y delivery

Fig. 3. A simple worst case example

We illustrate the complexity of exhaustive enumeration via the case of join
path length of 3 for our running example. In figure 3, there are four parties
PA, PT , PB , PC and they all have rules on equivalent join paths. The attribute
names are simplified to save space. In the example, an incoming query asks for
all the attributes {O,P, T, I, A,D, Y } on (S ./ E ./ C) and only r7 (dashed box)
can authorize the query.

Although there are many ways to enforce the query join path S ./ E ./ C,
none of them can totally enforce all the query attributes. The possible ways to
enforce the join path locally on Pt is 3∗(1+2) = 9 (each join path of length 2 can
join with other two rules of length 2 and one rule of length 1). Considering other
3 parties, we have (3 ∗ 4 ∗ (1 + 2 ∗ 4)) ∗ 4 = 432 (considering join across parties)
different ways of enforcing the join path, and these plans result in 10 different
missing attribute sets (although there are many enforcement plans, many of
their enforced attribute sets are overlapped). For each of them, we need to check
the ways to get missing attributes. For example, if the missing attribute set
is {total, agent, delivery}. Then, there are 12 relevant rules having the missing
attributes, and the possible combinations to consider are 212-1.

5 Consistent query planning

Due to the difficulties in enumerating all possible ways of answering a query, we
consider using a greedy algorithm.

5.1 Greedy Query planning algorithm

To find an efficient consistent query plan, we always choose the optimal query
plan to enforce the join path first, and then apply greedy set covering mechanism

on the missing attributes (the attributes cannot be enforced with the join path
enforcement plan) to find required relevant rules (rules authorize subplans for
the complete query plan). The optimal enforcement plan for a join path on a
specified party can be pre-determined by extending the rule enforcement check-
ing algorithm in a dynamic programming way [13]. As discussed, the selected
plan usually results in a missing attribute set. To get these attributes, we explore
the graph structure to decompose the target rule rt (the rule authorizes the in-
coming query q) into a set of relevant rules that can provide these attributes.
We record the required operations among these rules, and then recursively find
ways to enforce these rules to generate a query plan.

As the join path enforcement plan enforces Jt, it can be extended to get
missing attributes that appear in the relevant rules of basic relations on all Jt-
cooperative parties (cooperative parities which have authorization rules on
join path Jt). This can be done through semi-join operations. In such cases, the
party Pt can send only the join attributes to its Jt-cooperative party, and the
receiving party does a local join to get these attributes and send it back. Pt then
performs another join to add these attributes to the query plan. The remaining
missing attributes can always be found in the relevant rules on Jt-cooperative
parties. However, these relevant rules are defined on join paths instead of basic
relations. Similar to the above case, the missing attributes carried by these rel-
evant rules can be brought to the final plan by performing semi-join operations.

The next step is to determine these relevant rules (rules can provide missing
attributes and the join paths include a subset of relations of Jt). Here, we always
pick the relevant rule that covers the most attributes in the missing attribute set
until all the missing attributes are covered by the picked rules. This is a greedy
approach, and is similar in spirit to the approximate algorithms used for the set
covering problem. The relevant rules effectively allow us to decompose the rule
(i.e., express in terms of) rules with smaller join paths. The missing attributes
are also reduced in the process by considering the rules involving basic relations.
During the decomposition, the algorithm associates the set of attributes with the
decomposed rule that are the missing attributes expected to be delivered by this
rule. We record the operations between the existing plan and these decomposed
ones. If they are on the same party, a join operation between them is recorded.
Otherwise, a semi-join operation is recorded. Since each decomposed rule can
be further decomposed, the algorithm uses a queue to process the rules until all
the rules are on basic relations. This decomposition process gives the hierarchal
relationships among rules that indicate how required attributes can be added to
the final plan. After this step, the query plan is going to use all the attributes
that available locally (all the picked relevant rules on the same party Pt), and
it removes these duplicate attributes (non-key attributes) from remote parties
(via projections).

The decomposition process gives a set of rules, but we also need the subplans
to enforce the join paths of these rules so as to generate a complete plan. To
achieve that, we inspect the join paths of these decomposed rules from bottom-
up. We use another priority queue to keep all the join paths from the decomposed

relevant rules, and the shortest join path is always processed first. This allows the
use of results from the enforcement plans of sub join paths as much as possible.
The algorithm uses the best enforcement plan for each join path as discussed.
When an enforcement plan of a join path is retrieved, the algorithm combines
previously recorded operations to generate the subplan for the decomposed rule
on such join path. Finally, the algorithm finds the plans for each join paths
in the queue, and generates the final query plan with a series of ordered op-
erations starting from the basic relations. The entire process is summarized in
Algorithm 4.

5.2 Properties of the Algorithm

Require: The structure of rule set R, Incoming query q
Ensure: Generate a plan answering q.
1: if There is a rule rt, Jt ∼= Jq and Aq ⊆ At then
2: Missing attribute set Am ← Aq

3: Initialize queue Q, and priority queue P
4: Enqueue rt to Q with Am

5: while Queue Q is not empty do
6: Dequeue rule rt and the associated Am

7: for Each Jt-cooperative party do
8: Finds the attribute set Ab from basic relations
9: Am ← Am \ Ab

10: Record connections between rb and rt
11: while Am 6= ∅ do
12: for Each relevant rule rs on Pco do
13: Find the rule with max Am

⋂
As

14: Enqueue the rule rs with π(Am)
15: Enqueue the join path Js to priority queue P
16: Record connections between rs and rt
17: Am = Am \ As

18: while The priority queue P is not empty do
19: Dequeue the rule rs with join path Js
20: Add the path to enforce Js to plan
21: for Each Js-cooperative party do
22: if The party has recorded Ab on Js then
23: Add (./ /→) operations between rb and rs
24: for Each decomposed rule rd from rs do
25: Add (./ /→) operations between rd and rs
26: else
27: The query q cannot be answered

Fig. 4. Query Planning Algorithm

In this section we
show that the query
planning algorithm is
correct.

Theorem 2 A query
plan generated by Query
Planning Algorithm is
consistent with the set
of rules R.

The proof is omit-
ted as it’s straightfor-
ward according to our
definition of query
plan consistency.

5.3 Preliminary
performance
evaluation of the
algorithm

Finding a globally op-
timal query plan is

not only NP-hard for the situation we are considering, it is also extremely dif-
ficult to systematically and efficiently enumerate all possible cases with large
number of parties and rules. In view of this and the space limitations of the
paper, we only illustrate comparative performance for the following three situa-
tions, all relating to our running e-commerce example.
Here we assume that the selected join path enforcement plan carries the maximal
attributes along with it. Since we do not have any assumptions on the sizes of
the relations and join selectivities between them, we cannot calculate the exact
costs of the plans to compare the them. For simplicity, we use the number of
joins as the metric to evaluate the efficiency of the plans. This would be a good
representation of actual cost if all the relations have roughly the same size.

Example 1 Consider the situation in figure 3 and given the same query dis-
cussed before which only rule r7 can authorize, the optimal plan should be as
follows: join the three rules on basic relations which are r1, r2, r3 at Pt to en-
force the join path of S ./ E ./ C with attribute set {oid, pid, issue, addr}.
Then Pt sends the oid on the join path of S ./ E ./ C to other three parties
PA, PB , PC , and does semi-joins with each of the party to obtain the missing
attributes {total, agent,
delivery} one from each party. Finally, Pt does a local join with this information
got from remote parties and such a plan answering the query. The related rules
for the consistent query plan are marked using bold boxes in the figure. In this
case study, our greedy algorithm generates the same optimal plan. The optimal
way to enforce join path S ./ E ./ C is the local enforcement at Pt, and our plan
also gets the missing attributes via semi-join operations. Note that manually
finding the optimal plan is easy only under the assumption that all the relations
are of the same size.

oid, issue, pid, location total,
assistant, addr,delivery

S C E W

oid, pid,location
total, addr, delivery

S E W

oid, pid, issue,
agent

C E

oid,issue,
agent

E

oid, pid

S

oid, addr,
delivery

E

oid, pid

C

PE PS
PCPw

oid, pid, location
total, addr

S E W

W

pid, location

oid,
pid,total
location

E W
oid, pid
location

E W
oid, pid,

total,issue

E C

r1 r2

r3 r5

r7

r8

r9

r12

r13

r14

r16

r15

oid, pid, issue, agent,
total, addr, location

C S E W

r17

E

oid, pid, total

r4

Fig. 5. Simplified relevance graph

Example 2 Con-
sider a query with
the join path S ./
C ./ E ./ W ,
and an attribute set
that includes every
attribute of rule r8
except delivery. Fig-
ure 5 illustrates the
rules corresponding to
our running example.
Unrelated rules are
removed, and rules on
the graph are applied in the generated query plan. For such a query, our algo-
rithm first finds the optimal way to enforce the join path, which can be repre-
sented as

[((r1 ./ r2 → PS) ./ r9)→ PE] ./ [r14 ./ r15 → PE] (1)

This plan results in a missing attribute set {total, agent}. Next, the algorithm
adds a local join with rule r4 to retrieve total, and a semi-join with rule r16 to
obtain the attribute agent because PE and PC are J8-cooperative parties (J8
is equivalent to J17). Here, r16 is enforced during the join path enforcement.
In figure 5, the solid lined between rules indicates the steps for enforcing the
query join path, and the dashed lines are the operations for retrieving missing
attributes. The dashed box shows the rule r8 which authorizes the query. In fact,
there are only two ways to enforce the query join path in this example. The other
way is to perform r9 ./ r10 first and then join with r12 at party PS . By doing that,
the plan can carry the attribute total and only has agent as missing attribute.
However, if we compare the two plans, the difference is that our plan gets the
attribute total via a join among relation E and join path S ./ C ./ E ./ W , and

the latter plan performs the join among E and S at party PS . Since the longer
join path usually has fewer tuples, the former plan is better. As for the missing
attribute agent, it can only be retrieved from party PS , and getting it from r16
is better than r15. Therefore, the query plan generated by our algorithm is again
the optimal plan.

E

PA

E C

oid,pid,total,issue,
agent, addr

S E C

oid,pid

C S

E

oid,pid,
total,issue,

agent

E C

oid,pid,
total

C

oid,issue,
agent

PT

C
oid,

agent

S

oid,
addr

oid,addr,
agent

C S PB

r1

r2 r3

r4

r5 r6

r7

r8 r9

r10
oid,addr,

agent

oid,pid,
total,issue,

agent

Fig. 6. A simple non-optimal example

Example 3 Here we consider a sit-
uation where the algorithm does not
produce an optimal plan. Consider a
query which is the same as rule r4. As
shown in figure 6, the bold boxes are
used in enforcing the query join path
S ./ E ./ C by our algorithm, which
is

[(r8 ./ r9 → PT) ./ r1] (2)

The other way to enforce it is to enforce rule r7 at party PA first, and send
the results to party PT to enforce R2 and join with R3. That is

[(r8 ./ r9 → PT) ./ (r5 ./ r6 → PT)] (3)

As the latter plan requires one more join and data transmission operation,
our plan to enforce the query join path appears better. However, the latter plan
has no missing attribute, and our plan needs to enforce rule r7 again to retrieve
attributes {total, issue} which includes more operations. Therefore, our plan is
not optimal in this case. However, compared to the optimal plan, our generated
plan only has one extra step involving r1 joining with r3, which means that the
cost difference between the two plans is likely not significant.

Due to the space limitations, we have listed only 3 detailed case studies
here. In addition, we have evaluated other example queries based on our running
example given in Table 1. Table 2 lists seven other examples. The second column
shows the queries in “attribute set, join path” format, and the third column
shows the consistent query plans generated by our algorithm. The symbols π, ./
and→ correspond to the projection, join and data transmission operations. The
last column shows whether the generated query plan is optimal, and it turns
out that the plan is indeed optimal in all seven cases. This is typical of the
behavior we have seen so far, although because of the complexities generating
optimal query plans we have so far been unable to generate and test cases in
large numbers. We, however, believe that the algorithm does produce optimal
or near optimal solution in nearly all practical situations.

Complexity of the algorithm Assuming Nq rules are locally relevant to the
query q, the number of relevant rules on Jt-cooperative parties is Nr, and C is a
constant to record operations. The overall worst case complexity of our greedy
algorithm is O(Nq ∗N2

r ∗ C), which is O(N3)(N is the total number of rules).

Example Query Gerenated Query Plan Optimal?
1 {oid, pid, location}, E ./
W

r1 ./ r2 on PW Yes

2 {oid, pid, total, issue},
E ./ C

(π(oid)r14 ./ π(oid, issue)r15 → PE) ./ r4 Yes

3 {oid, pid, total, addr},
E ./ S

π(oid, addr)r9 ./ π(oid, pid, total)r10 Yes

4 {oid, pid, total, deliv-
ery}, S ./ E ./ W

(π(pid)r1 ./ r2 → PS) ./ π(oid, delivery)r9 ./
π(oid, total)r10

Yes

5 {oid, pid, total, addr},
S ./ E ./ W

((π(pid)r1 ./ r2 → PS) ./ π(oid, addr)r9 → PE) ./
π(oid, total)r4

Yes

6 {oid, pid, total, addr},
S ./ C ./ E ./ W

((π(pid)r1 ./ r2 → PS) ./ π(oid, addr)r9 → PE) ./
(π(oid)r14 ./ π(oid, issue)r15 → PE)π(oid, total)r4

Yes

7 {oid, pid, agent}, S ./
C ./ E ./ W

((π(pid)r1 ./ r2 → PS) ./ π(oid)r9 → PE) ./
(π(oid)r14 ./ π(oid, agent)r15 → PE)→ PC

Yes

Table 2. Illustration of quality of some generated query plans

6 Conclusions and future work

In previous research work, a flexible data authorization model has been proposed
to meet the security requirements for collaborative computing among different
data owners in a collaborative environment. A regular query optimizer cannot
give consistent query plans under the constraints of these rules. In this paper, we
propose an algorithm to generate corresponding efficient consistent query plans
for answerable queries.

For the future work, we will study the problem of making the unenforceable
rules to be enforceable. We can consider using a trusted third party to enforce
the rules, and we may also augment the given set of rules. Trusted third parties
can be also used to improve the consistent query planning. To evaluate of our
approaches comprehensively, we will study the cooperative relationships among
enterprises in various real world scenarios, and test our mechanism under these
cases. In addition, we will investigate the problem where data are horizontally
fragmented and distributed among different parties, which adds selection to the
picture. In fact, extension of the model to include limited forms of selection is
one area that we wish to pursue in the future. We also plan to extend our model
to more general applications that involve non-numeric data (e.g., textual or im-
age data) where the regular join operation may be not be the most interesting
operation. Finally, we wish to examine the issue of verifying whether the collab-
orative parties are really following the rules as advertised or may be behaving
in undesirable ways.

References

1. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Mot-
wani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep A secret: A distributed
architecture for secure database services. In CIDR, pages 186–199, 2005.

2. R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovereign joins. In Proceedings
of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8 April
2006, Atlanta, GA, USA, page 26. IEEE Computer Society, 2006.

3. P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr. Query
processing in a system for distributed databases (SDD-1). ACM Transactions on
Database Systems, 6(4):602–625, Dec. 1981.

4. A. Cal̀ı and D. Martinenghi. Querying data under access limitations. In Proceedings
of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12,
2008, Cancún, México, pages 50–59. IEEE, 2008.

5. S. Chaudhuri. An overview of query optimization in relational systems. In Pro-
ceedings of the 7th ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 34–43, 1998.

6. V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Keep a few: Outsourcing data while maintaining confidentiality. In ESORICS,
volume 5789 of Lecture Notes in Computer Science, pages 440–455, 2009.

7. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Controlled information sharing in collaborative distributed query processing. In
ICDCS 2008, Beijing, China, June 2008.

8. S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Authorization enforcement in distributed query evaluation. Journal of Computer
Security, 19(4):751–794, 2011.

9. J. Goldstein and P. Larson. Optimizing queries using materialized views: a prac-
tical, scalable solution. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 331–342.

10. A. Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

11. D. Kossmann. The state of the art in distributed query processing. ACM Computer
Survey, 32(4):422–469, 2000.

12. M. Le, K. Kant, and S. Jajodia. Access rule consistency in cooperative data
access environment. In 8th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom2012), pages 11 –20,
oct. 2012.

13. M. Le, K. Kant, and S. Jajodia. Consistency and enforcement of access rules in
cooperative data sharing environment. In Computers and Security, Nov. 2013.

14. M. Le, K. Kant, and S. Jajodia. Rule enforcement with third parties in secure
cooperative data access. In 27th Data and Applications Security and Privacy,
DBSec 2013, July 2013.

15. C. Li. Computing complete answers to queries in the presence of limited access
patterns. VLDB Journal, 12(3):211–227, 2003.

16. R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for answering queries
using views. VLDB J, 10(2-3):182–198, 2001.

17. S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting tech-
niques for fine-grained access control. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’04, 2004.

18. R. Sion. Query execution assurance for outsourced databases. In VLDB, pages
601–612. ACM, 2005.

19. Z. Zhang and A. Mendelzon. In Database Theory - ICDT 2005, volume 3363, pages
259–273. 2005.

