
HAL Id: hal-01284852
https://inria.hal.science/hal-01284852

Submitted on 8 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Design Patterns for Multiple Stakeholders in Social
Computing

Pooya Mehregan, Philip L. Fong

To cite this version:
Pooya Mehregan, Philip L. Fong. Design Patterns for Multiple Stakeholders in Social Computing.
28th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2014,
Vienna, Austria. pp.163-178, �10.1007/978-3-662-43936-4_11�. �hal-01284852�

https://inria.hal.science/hal-01284852
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Design Patterns for Multiple Stakeholders in
Social Computing

Pooya Mehregan and Philip W. L. Fong

Department of Computer Science
University of Calgary
Calgary, AB, Canada

{pmehrega, pwlfong}@ucalgary.ca

Abstract. In social computing, multiple users may have privacy stakes
in a content (e.g., a tagged photo). They may all want to have a say on
the choice of access control policy for protecting that content. The study
of protection schemes for multiple stakeholders in social computing has
captured the imagination of researchers, and general-purpose schemes for
reconciling the differences of privacy stakeholders have been proposed.
A challenge of existing multiple-stakeholder schemes is that they can be
very complex. In this work, we consider the possibility of simplification
in special cases. If we focus on specific instances of multiple stakehold-
ers, are there simpler design of access control schemes? We identify two
design patterns for handling a significant family of multiple-stakeholder
scenarios. We discuss efficient implementation techniques that solely rely
on standard SQL technology. We also identify scenarios in which general-
purpose multiple-stakeholder schemes are necessary. We believe that fu-
ture work on multiple stakeholders should focus on these scenarios.

Keywords

Social Computing, Privacy, Multiple Stakeholders, Discretionary Access Control,
Owner, Controller, Design Pattern.

1 Introduction

The advent of social computing has brought about fundamental changes in our
understanding of Discretionary Access Control (DAC). In traditional DAC, such
as the Graham-Denning model [6, 12], every object is associated with a distin-
guished user known as the owner of that object. Ownership in DAC is not
about property rights. Rather, the owner is the user who has full administrative
privileges over that object: i.e., that user is granted the privileges to adminis-
trate the access control policies of the resource. Every object has exactly one
owner, though ownership is transferrable. The owner may selectively delegate
some administrative privileges to other users known as the controllers of the
object. This classical picture requires revision in the face of the new privacy
needs of social computing.

In social computing, users often annotate contents that are originally con-
tributed by others (e.g., commenting, liking). At other times, contents come to
be associated with users other than the original contributors (e.g., photo tag-
ging). There are also scenarios in which multiple users co-contribute a piece of
information (e.g., friendship articulation). In all these scenarios, multiple users
have a privacy stake in a given content: they all have an interest in determining
the access control policy for the content. The classical picture of one owner del-
egating administrative duties to trusted controllers is no longer valid. Different
stakeholders of the same content now have diverse privacy preferences, and they
do not necessarily agree with one another. Yet, existing social computing sys-
tems still insist that the visibility of a content is controlled by a unique “owner”.
The privacy shortcomings of such a practice have been well-documented [19].

Squiccinarini et al. [15, 16] were the first to identify the need to take into
account the often diverse privacy preferences of all stakeholders when the ac-
cess control policy of a resource is to be selected. Subsequent works (e.g., [19,
21]), especially the seminal contributions of Squiccinarini et al. [15–17] and Hu
et al. [7, 9, 8], have firmly established the necessity and feasibility of access con-
trol schemes that reconcile the diverse protection needs of multiple stakeholders.
Such schemes have come to be called by different names, such as co-ownership
[17, 16, 15], collaborative privacy management/control [17, 15, 8], and multiparty
access control [9, 7]. For the sake of neutrality, we choose to call this phenomenon
multiple stakeholders. Many of the proposed schemes for multiple stakehold-
ers are very general, equipped with conflict resolution mechanisms that are not
easy to understand by a regular user.

In this paper, we raise the question of simplification: Are there cases in
which general-purpose multiple-stakeholder schemes are overkill? If we focus
on specific instances of multiple stakeholders (e.g., liking, photo tagging, etc),
can we honor the diverse privacy preferences of the stakeholders through simple
designs of access control schemes? Our answers to these questions are univocally
affirmative. Our goal is not to question the value of general-purpose schemes for
multiple stakeholders. (There are instances in which general-purpose schemes
are absolutely irreplaceable, as we shall see in §8.) Rather, our goal is to sharpen
future discussions of multiple stakeholders, and to put forward access control
schemes that can be used today, by social computing vendors such as Facebook
and Google+. Specifically, our contributions are the following:

1. We propose two design patterns [5] for addressing a large number of multiple-
stakeholder instances (§3, §4). Out of the five examples of multiple stake-
holders that are quoted in the literature, our design patterns can address the
privacy needs of three of them.

2. We identify previously unpublished privacy breaches in some of the above
instances of multiple stakeholders, and propose ways to prevent them (§5).

3. We propose an implementation strategy for the design patterns that rely
solely on standard SQL technology (§6), and demonstrate that the resulting
performance meets the responsiveness requirements of web applications (§7).

4. We carefully identify scenarios in which general-purpose schemes of multiple
stakeholders are needed (§8).

2 Related Work

The first work that identifies and addresses the problem of multiple stakeholders
is that of Squicciarini et al. [15, 16]). In their proposal, whenever the privacy
policy of a co-administrated object is to be decided, stakeholders are asked to
take part in an auction. Stakeholders earn credits by creating objects and shar-
ing their ownerships with other users. Using their credits, the stakeholders give
their highest bid for the privacy policy they want to be selected for the co-
administrated object. Then, the highest bid wins the auction and the privacy
policy associated with the winning bid is adopted. The stakeholders then get
taxed from their credits, with amounts depending on how dominant their roles
were in determining the outcome of auction (winning privacy policy). The auc-
tion is based on a mechanism called Clarke-Tax, which in turn is a special case of
Vickrey-Clarke-Groves (VCG). Inference techniques based on Folksonomies have
also been proposed to prevent repetition of auctions for similar objects which
are co-administrated by the same stakeholders. The biggest drawback for this
work is its low usability. Users will have difficulty figuring out how the auction
works and how to translate their privacy to a bid amount. The need for usabil-
ity is later addressed in a subsequent work of Squicciarini et al. [17], in which
majority-voting is used in place of complex auctions.

The work in [19] not only points out the problem of multiple stakeholders
(that some stakeholders do not have control over the objects for which they have
a privacy stake), but also demonstrates concretely its consequences. Specifically,
the authors demonstrated how inference attacks may result from not addressing
the privacy preferences of stakeholders. They also considered a simple solution
in which the conjunction of the stakeholders’ privacy preferences are taken as
the access control policy for the co-administrated object.

In [21], stakeholders collaborate in authoring a policy for a co-administrated
object. The policy can be edited by each of the stakeholders, with the following
restrictions. Every policy is divided into two parts: (a) the weak conditions
and (b) the strong conditions. Weak conditions are negotiable conditions of
access. Each stakeholder can freely modify the weak conditions, even if they
are contributed by other stakeholders. The strong conditions are non-negotiable
conditions of access. When a stakeholder contributes a strong condition, the
authorship is recorded. Only the author of a strong condition can revise it. Con-
flict resolution is performed manually. For example, when the strong conditions
become overly restrictive for a stakeholder, there is the option for revising the ob-
ject itself (e.g., blurring parts of a picture) in order to inspire other stakeholders
to relax their strong conditions.

In the seminal work of Hu and Ahn [7, 9], a comprehensive requirement analy-
sis for the problem of multiple stakeholders is given. Different types of controllers
(i.e., stakeholders) are distinguished: the owner is the user whose profile is host-

ing the co-administrated object; the contributor is the user who contributes
the co-owned object to the owner’s profile; stakeholders are users who have
been “tagged” in the co-administrated object; distributers are users who have
re-shared the co-administrated object on their profiles. Each stakeholder spec-
ifies for the co-administrated object her preferred privacy policies as well as a
sensitivity level. The latter is a normalized quantity representing the perceived
privacy sensitivity of the object. Obviously, the privacy policies specified by the
various controllers may not agree with one another. This is the first work that
draws connection between conflict resolution and policy composition. Voting
schemes have been proposed for resolving conflicts among the policies specified
by the controllers.

In [8], another scheme for conflict resolution has been proposed. The funda-
mental assumption is that there is a trade-off between the need for privacy and
the desire to share. The two are operationalized into two corresponding quanti-
ties: privacy risk and sharing loss. A quantitative scheme is devised to trade off
the two quantities.

In the works above, the various instances of the multiple-stakeholder prob-
lem are treated in a uniform manner, hence a generic solution is proposed for
all the problem instances. This approach does not take into account the idiosyn-
crasies of different instances of multiple stakeholders, which occasionally admit
straightforward and efficient solutions. This is the topic to which we now turn.

3 Design Pattern: Simple Annotations

A design pattern is a reusable software design for a recurring software design
problem [5]. In this and the next section, we discuss respectively two design pat-
terns for two well-defined families of multiple-stakeholder scenarios. This section
presents a design pattern known as Simple Annotations.

3.1 Setting

Social computing systems support not only the sharing of contents, but also
further social interactions that are prompted by the initial sharing of contents.
Examples of such social interactions include commenting, liking, tagging and
resharing. We use the term annotations to refer to these secondary contents
that are associated with a shared content. Annotations that are not further
annotated are said to be simple . The more complex subject of higher order
annotations (i.e., annotations of annotations) is discussed in the next section.

The author of an annotation can be different from the author of the annotated
content. When an annotated content is displayed, the annotations are displayed
along with it. In mainstream social computing systems, the author of the an-
notated content is taken to be the DAC owner of the content-annotations
aggregate : i.e., the author of the annotated content is the one who can specify
the privacy setting of both the original content and its annotations.

3.2 Privacy Challenges

The problem of the mainstream design is that the authors of annotations also
have privacy stakes in the visibility of the content-annotations aggregate, and yet
they have absolutely no say in the visibility of the annotations that they authored.
In fact, we accept the following as a general design principle in the context of
multiple stakeholders.

Design Principle 1 Every stakeholder of a content shall have a say on the
access control policy that protects the content.

The users of Facebook came to notice this issue when the Ticker [18, 10, 20]
(a real-time news feed which appears at side of the Facebook page) started show-
ing the friends of users their activities such as what they have liked, commented
and shared. Facebook claims that, Ticker is not breaching users’ privacy since
no privacy setting has been changed and the information showed in Ticker is
already there and visible by those who can view it in the Ticker. That is, the
privacy settings of the annotated (i.e., liked, commented, or shared) contents al-
ready allow access to the the content-annotations aggregate. Below is Facebook’s
announcement regarding the privacy of News Feed and Ticker [4]:

“People included in the audience of the post can see your comment or
like in News Feed or ticker as well as other places around Facebook. You
can check who something is shared with by going to the post and hovering
over the audience icon.”

What Facebook fails to appreciate is that the privacy preferences of annotation
authors are not honoured. When a user likes a content, she has absolutely no
control over who may or may not be able to see that she likes the content. In the
following, we explain in concrete terms how the privacy of annotation authors
are breached in the cases of liking, tagging and (re)sharing.

Liking. In Facebook, users can “like” (also “+1” in Google+) a content to show
their support for, affirmation of, or interest in that content. When the content
is displayed, a total number of “likes” is also displayed, and the viewer of the
content may also follow a link to display the full list of users who have liked
the content. When the list is displayed, the following information of each liker
is displayed: (a) display name, (b) thumbnail picture, and (c) link to profile.

A user who expresses her affirmation of a content may want the “like” to
be displayed with discretion. For example, liking a political commentary may
lead to troubles in certain countries, and yet, expressing such affirmations is an
important democratic expression. Currently, there is no mechanism in Facebook
that would allow the liker to control the visibility of his or her likes.

Tagging. Users can tag one another in today’s social network systems. Facebook,
Google+ and Instagram all have this feature. Specifically, users can tag one
another in contents such as pictures, videos and textual information like statuses,

comments and captions, usually by means of a mention tag ‘@’ followed by the
display name of a user.

The tagging of photos has been a classical example for multiple stakeholders
in the literature [7, 9, 8, 15, 17, 19]. When a user uploads a photo in which other
users appear, the former is disclosing potentially sensitive information about the
latter. This by itself is a privacy issue, but this is not an instance of the multiple-
stakeholder problem. It becomes a multiple-stakeholder scenario when the latter
users are tagged by the former user — when the identities of these users are
explicitly associated with the photo. These tags will be displayed together with
the photo. It was not long ago that Facebook introduced a privacy setting that
requires users to ask for other users’ consent before they can get them tagged in
a content.

Sharing. Facebook users can reshare a content that is originally posted by an-
other user. There are two types of reshares in Facebook: (a) link reshares and
(b) content reshares.

In link reshares, a user u posts a URL l along with a caption. A viewer v of
the posting can reshare l (without the caption). There are two ways in which
user privacy can be breached. First, the original posting of l by u shows both the
total number of reshares, as well as a link that lists all the resharers. When this
link is followed, the identity of v will be disclosed. The situation is analogous to
that of liking. Second, the resharing of l by v is displayed with the phrase “via
u”, which discloses the identity of u. The situation is analogous to tagging.

In content reshares, a user u uploads some content c (e.g., photo) to Facebook.
A viewer v of c can reshare c. Again, there are two privacy concerns in play here.
First, the identity of v appears in a list associated with the posting of c by u.
As noted above, this is analogous to liking. Second, u is clearly a stakeholder for
the resharing of c by v. User u specifies a policy pu,c for controlling access to c,
and v specifies a policy pv,c for controlling access to the reshared c. A user w
can access the reshared c when pu,c ∧ pv,c is satisfied.

3.3 Solution: Separation of Protection

Previous works in multiple stakeholders take the content-annotations aggregate
as an indivisible entity, and thus attempt to address the multiple-stakeholder
problem at that level. Our use of the term “aggregate” to refer to a content and
its annotations is intended to make explicit the fact that we are not dealing with
an atomic entity, but rather a composite one. Recognizing this, we articulate the
following design principle.

Design Principle 2 If every component of an aggregate entity can have a dif-
ferent set of stakeholders, then each component should be protected separately by
a different access control policy.

The applicability of the above principle depends on the allocation of stakeholders.
Notice that a stakeholder of an annotated content also has a privacy stake

in its annotations, for the latter convey information about the former.

Design Principle 3 Every stakeholder of an annotated content is a stakeholder
of its annotations.

In short, an annotation inherits all the stakeholders of the content to which it
annotates. These stakeholders are called inherited stakeholders. Stakeholders
of a content that are not inherited are called principal stakeholders.

Consider, for instance, a hypothetical social computing system in which ev-
ery content has exactly one principal stakeholder, namely, the author of that
content. Applying Design Principle 3, a simply annotated content has exactly
one stakeholder (i.e., the content’s author), while a simple annotation has two
stakeholders (i.e., the annotated content’s author and the annotation’s author).
Since every component of a content-annotations aggregate has a different set
of stakeholders, Design Principle 2 mandates that each must be protected by a
separate policy.

How then are we to assign an access control policy to each component? Our
goal is to simplify the design of protection schemes for multiple stakeholders.
Consequently, we make two design choices that are aimed at producing simple
and yet effective protection. The first decision is to minimize the effort of policy
specification that needs to be performed by a user.

Design Decision 4 Every stakeholder u of content c has a preferred policy
pu,c that expresses the privacy preference of u for c. If u is a principal stakeholder
of c, then u will explicitly specify pu,c. Otherwise, u is an inherited stakeholder
of c, c is an annotation of some content c′, and u is also a stakeholder of c′:
then pu,c = pu,c′ .

In short, preferred policies are inherited by annotations. A second design choice
is to realize Design Principle 1 by simple conjunction of preferred policies.

Design Decision 5 Suppose Sc = {u1, . . . , uk} is the set of stakeholders for
content c, and their preferred policies for c are pu1,c, . . . , puk,c. Then the access
control policy pc for content r is

∧
u∈Sc

pu,c.

We use the following examples to illustrate how the design works out in practice.

Liking. The author of a content c that can be liked will specify a preferred policy
p1 for c. Because the content author is the sole and principal stakeholder of the
content, the visibility of c is controlled solely by p1. When another user “likes”
c, she will be given the opportunity to specify a preferred policy p2 for this like
entry. The access control policy for this like entry is p1 ∧ p2.

When c is displayed, the total number of likes will be displayed, together
with a link for displaying the “likers”. When that link is followed, not all likers
are displayed. The system will check the access control policy of each like entry,
and display only those that are accessible by the viewer.

Tagging. In the same vein, every tag is protected separately from the content
to which the tag belong. The content itself is protected solely by the preferred
policy of its author, who is the principal stakeholder of the content. The principal

stakeholder of a tag is the user identified by the tag. This user will specify a
preferred policy for the tag. The author of the original content is an inherited
stakeholder of the tag. Consequently, each tag is protected by the conjunction
of two preferred policies: (a) the preferred policy of the content, and (b) the
preferred policy of the user who is being tagged. When the content is displayed,
only a subset of its tags are displayed. Tags for which the access control policy is
not satisfied are not displayed. To simplify policy specification, a user may have
a default policy for controlling the visibility of tags that identify her.

Sharing. Recall the three kinds of privacy concerns surrounding link and content
resharing. First, the listing of resharers along with the original posting is anal-
ogous to liking, and thus can be handled by a scheme like the one we proposed
above for liking. Second, the “via” clause in a reshared link behaves like a tag,
and thus it can be handled by a scheme like the one we proposed above for tag-
ging. Third, a reshared content is protected in Facebook using exactly the same
design as outlined in Design Decisions 4 and 5, which speak to the robustness of
these two design decisions.

4 Design Pattern: Higher Order Annotations

The design pattern we present in this section handles higher order annota-
tions. That is, an annotation can be further annotated. The classical example
of such higher order annotations is commenting. A posting in a forum can be
annotated by comments, which in turn can be further commented on.

4.1 Replying Comments

In most of today’s social network systems and online communities, users are able
to leave comments on the contents created by themselves or other users. One
type of comments mimic the structure of emails. In this type of comments, a user
explicitly selects the content that her comment replies to (just like replying to an
email). This is a common practice in forums and online communities. Therefore,
comments of this type constitute a tree-like structure with the original content
as the root of the tree and different threads of comments become branches of
the tree. We call this type of comments replying comments because of their
resemblance to replying emails. Facebook has added replying comments in the
posts that have several hundreds of comments. However, the depth of the tree
of comments cannot grow more than two in this case.

Design Principles 1, 2 and 3, and Design Decisions 4 and 5 all apply to this
setting. Suppose c0, c1, . . . , ck is a thread of contents, such that c0 is a non-
annotation content (root), and ci is annotated by ci+1. Let ui be the author (and
thus principal stakeholder) of ci. Then the stakeholders of ck are u0, u1, . . . , uk.
Each ui must explicitly specify a preferred policy pi for ci. Preferred policies are
inherited, and thus the access control policy for ck is the conjunction

∧k
i=0 pi.

4.2 Appending Comments

Replying comments do not cover all types of commenting mechanisms in social
computing. A notable exception is the mechanism that we call appending com-
ments, which is widely deployed in many social network systems. A comment
that a user creates gets appended to the end of all the existing comments for the
original contents (hence appending comments). Unlike replying comments, this
type of comments has less structure than replying comments, and thus it makes
the allocation of stakeholders more ambiguous. In the worst case, a newly in-
troduced appending comment may be (implicitly) responding to all the existing
comments (and thus annotating all preceding comments as well as the original
content). Consequently, rather than a tree structure, the original content and
its appending comments form a sequence c0, c1, . . . , ck, where c0 is the original
content, and c1, . . . , ck are the appending comments.

Applying Design Principles 1, 2 and 3, and Design Decisions 4 and 5 to this
situation yields the following. Suppose ui is the author (and thus principal stake-
holder) of ci, and pi is the preferred policy explicitly specified by ui for ci. The
stakeholders of ci are u0, u1, . . . , ui. Therefore, the access control policy for ck
will be the conjunction

∧k
i=0 pi. Note the difference between this conjunction

and the one for replying comments. In the case of replying comments, the ac-
cess control policy of a comment is the conjunction of the preferred policies of
the ancestors of that comment. In the case of appending comments, the access
control policy of a comment is the conjunction of the preferred policies of all the
preceding comments.

4.3 Hybrid Solution for Comments

The scheme proposed above for appending comments has a drawback analogous
to a well-known problem in Low Watermark Model of Biba [2]. The accessibility
of comments becomes increasingly restrictive as users create more and more
comments: if a user is able to view a highly restrictive comment (restrictive in
terms of access control policy), then this user will not be able to leave a comment
with a less restrictive access control policy.

To overcome this drawback, we propose a hybrid solution, in which a user
may annotate a content by either appending comment or replying comment.
Comments are by default appending comments. The author of an appending
comment implicitly consents to adopting the most liberal preferred policy (i.e.,
everyone). Consequently, the access control policy of an appending comment will
be the same as the access control policy of the content to which the appending
comment is annotating. If a user wants to explicitly specify a preferred policy,
then the user may introduce a replying comment (she will need to point to a
specific comment to which she is replying). This preferred policy will not affect
the accessibility of the appending comments at a higher level. This prevents the
low-watermark effect of pure appending comments, but also provides flexibility
of protection offered by replying comments. It is easy to add this feature to an
existing social computing system that features appending comments.

5 Relationship Disclosure via Annotations

Annotations create a channel by which user relationships can be inferred. Face-
book (also Google+) discloses the “audience” of a content to its viewers. The
“audience” is essentially the access control policy of the content. Suppose users
u and v prefer to hide their friendship from other users. To that end, they set
the accessibility of their friend lists to “only me”. Suppose further that u shares
a content c with friends, and subsequently v likes c, but v sets the preferred
policy of the like to “everyone”. Suppose now an observer w comes along. User
w is a friend of u, and thus w can view c. When w examines the audience of c,
w becomes aware that only friends of u can view c. User w then notices that v
likes c. Now w can infer that v is a friend of u. What u and v are not aware is
that simply by making c and its annotations visible could lead to the disclosure
of their relationships.

The above inference is possible because w can identify the audience of c. We
believe that Facebook (also Google+) discloses the audience of a content in order
to warn annotators of the visibility of the content. Our solution of protecting an
annotated content and its annotations separately (§3 and §4) removes the need
for disclosing the “audience” of a content. Without knowing the exact access
control policy, the attacker cannot infer relationships with certainty.

Suppose we are paranoid, and we worry that the observer w may be able to
guess that the access control policy of the above content is “friends” (maybe by
observing that other contents of u are usually protected by the “friends” pol-
icy). Then relationship disclosure will still be possible. We propose here another
solution which tackles this paranoia. Suppose pc is the access control policy of
a content c that is created by user u. Suppose pv,a is the preferred policy of an
annotation a of c, where a is contributed by v. Suppose pf is the access control
policy of the friend list of u. Then we set the access control policy pa of annota-
tion a to be pc ∧ pv,a ∧ pf . In general, relationship inference can be prevented if
the access control policy that protects an annotation (pa) is at least as restrictive
as the one protecting the relationship (pf).

6 Implementation Strategy

The two design patterns presented in §3 and §4 refrain from displaying all annota-
tions (as is done in existing social computing systems). Instead, each annotation
is guarded by a separate access control policy, and only the accessible annota-
tions are displayed. This last feature calls for special implementation techniques.

Open Accessibility Queries. A typical Policy Decision Point (PDP) must perform
what we call definite accessibility checks in order to test whether a given
requestor may access a given resource. To list the annotations that are accessible
by a requestor, a naive implementation will make a database query to collect
all annotations, and then procedurally iterate through the annotations, filtering
away the ones that fail the accessibility check. Such an implementation is likely
unacceptable in performance.

Table Columns Indexes

Friends

ID (int) Clustered: ID (Primary Key)
UserID1 (int) Non-Clustered: UserID1 and UserID2
UserID2 (int) Non-Clustered: UserID1 Include UserID2

Non-Clustered: UserID2 Include UserID1

Resources

ResourceID (int) Clustered: ResourceID (Primary Key)
PolicyID (int) Non-Clustered: ParentID and RootID Include ResourceID
OwnerID (int) Non-Clustered: OwnerID and ParentID
ParentID (int) Non-Clustered: ParentID
RootID (int) Non-Clustered: PolicyID and ParentID Include ReaourceID and OwnerID

Non-Clustered: RootID Include ResourceID

Users UserID (int) Clustered: UserID (Primary Key)

Fig. 1. Database tables and their columns and indexes

A more efficient implementation will push the work of accessibility filtering
to the database management system, which is equipped with highly efficient
indexing and query optimization technologies. In essence, we need to be able to
evaluate open accessibility queries: Given a requestor, find all the accessible
resources of a certain kind (e.g., annotations of a given content).

There are two variations to this query: one involving only simple annotations,
and the other involving higher order annotations. We present in the following
the high-level idea of how open accessibility queries can be answered in each
case, using solely standard SQL technologies.

Modelling a Social Network System. Figure 1 shows the relational database
tables that we use as basis for articulating our implementation strategy. Real
implementations will probably contain more details, but we believe our tables
capture the essence of a social network system. The Users table tracks user
identifiers. The Friends table captures friendship among users. The Resources
table captures resources, their preferred policies (enumerated type: only me,
friends, friends of friends, everyone), author, and, in the case of annotations, the
content to which this resource is annotating as well as the root of the annotation
tree.

Open Accessibility Queries via Views. To support open accessibility queries, a
view (V Access) can be created to relate users to resources that the former can
access (Fig. 2). Such a view allows us to query the set of resources that a given
user may access. The view is the union of four different views, one for each of the
four modes of access (i.e., only me, friends, friends of friends, everyone). Each of
the four views relates users to resources with policies granting the corresponding
mode of access.

Fig. 3 shows stored procedures for retrieving those annotations of a given
resource that are accessible to a given user: one procedure for simple annotations,
and another for higher order annotations. The reason for using stored procedures
instead of inline queries is to optimize the execution time.

CREATE VIEW View_Friends AS
SELECT f1.UserID1, f1.UserID2 FROM Friends AS f1
UNION ALL
SELECT f2.UserID2, f2.UserID1 FROM Friends AS f2

CREATE VIEW V_Owner_Acc AS
SELECT RootID, ParentID, ResourceID, OwnerID AS UserID
FROM Resources

CREATE VIEW V_Friends_Acc AS
SELECT r.RootID, r.ParentID, r.ResourceID, v.UserID2 AS UserID
FROM Resources AS r

JOIN View_Friends AS v ON r.OwnerID = v.UserID1
WHERE (r.PolicyID = 1) OR (r.PolicyID = 2)

CREATE VIEW V_FOF_Acc AS
SELECT r.RootID, r.ParentID, r.ResourceID, F2.UserID2 AS UserID
FROM Resources AS r

JOIN View_Friends AS F1 ON r.OwnerID = F1.UserID1
JOIN View_Friends AS F2 ON F1.UserID2 = F2.UserID1

WHERE (r.PolicyID = 2)

CREATE VIEW V_Everyone_Acc AS
SELECT r.RootID, r.ParentID, r.ResourceID, u.UserID
FROM Resources AS r

CROSS JOIN Users AS u
WHERE (r.PolicyID = 3)

CREATE VIEW V_Access AS
SELECT * FROM V_Owner_Acc UNION SELECT * FROM V_Friends_Acc

UNION SELECT * FROM V_FOF_Acc UNION SELECT * FROM V_Everyone_Acc

Fig. 2. View definitions for reverse accessibility check.

7 Performance Evaluation

This section demonstrates that the performance of the implementation strategy
as proposed in the last section has reasonable performance.

7.1 Dataset

Social Network Data. We used an anonymized social network dataset (4,847,571
nodes and 68,993,773 edges) created from LiveJournal [1, 11] and hosted by Stan-
ford Large Network Dataset Collection. LiveJournal is a social network with es-
timated 10 to 100 millions of users. Users can have blogs and add one another as
friends. Friendship in LiveJournal is directed. We therefore created a database
view to represent the symmetric closure of the friendship relation, thereby mak-
ing friendship symmetric as in Facebook.

Resources Data. We generate the resources that are being protected by access
control. Each resource has a privacy policy chosen uniformly at random from
{0, 1, 2, 3}, where 0, 1, 2 and 3 correspond to Only Me, Friends, Friends of
Friends and Everyone respectively. These are the default privacy policies avail-
able in Facebook. Each resource’s owner is selected uniformly at random from
the set of all users in the dataset. Each resource can be either a content or an

CREATE PROCEDURE SP_Can_Access @UserID INT, @ResourceID INT AS
BEGIN
SELECT r.ResourceID FROM
(SELECT va.ResourceID FROM View_Access AS va

WHERE (va.UserID = @UserID) AND (va.ResourceID = @ResourceID))t
JOIN Resources AS r ON r.ParentID = t.ResourceID

JOIN View_Access AS va ON va.ResourceID = r.ResourceID
WHERE va.UserID = @UserID
END

CREATE PROCEDURE SP_Recursive_Can_Access @UserID INT, @ResourceID INT AS
BEGIN
WITH Recursive_Can_Access (ResourceID, Level) AS
(SELECT ResourceID, 0 AS LEVEL
FROM View_Access
WHERE ResourceID = @ResourceID AND UserID = @UserID
UNION ALL
SELECT va.ResourceID, LEVEL + 1
FROM View_Access AS va

JOIN Recursive_Can_Access AS r ON va.ParentID = r.ResourceID
WHERE va.UserID = @UserID AND va.RootID = @ResourceID)

SELECT ResourceID, LEVEL
FROM Recursive_Can_Access
END

Fig. 3. Procedures for retrieving simple and higher order annotations.

annotation. Denote by R the set of all resources, C the set of (non-annotation)
contents, and A the set of annotations. We have: R = C] A. We design two
separate configurations of experiments, one for simple annotations and another
for higher order annotations. As a result, the way we relate annotations to con-
tents differ for each configuration. Below we show how we relate annotations to
contents in each configuration.

The Simple Annotations Configuration. We randomly generate a function f :
A → C to assign annotations to contents. The generation of f is controlled by

a parameter ratio =
⌊
|A|
|C|

⌋
, which is the average number of annotations that

each content has. Function f maps each element in domain A to an element in
codomain C uniformly at random with probability 1

|C| .

The Higher Order Annotations Configuration. We randomly generate a function
f : A → R to map annotations to resources. We generation of f is again con-

trolled by the parameter ratio =
⌊
|A|
|C|

⌋
. The constraint which function f must

satisfy is that annotation assignment must result in a forest (disjoint union of
trees) over R (no circles).

7.2 Setup

The experiments are conducted both on a consumer-scale machine (aka local)
and the Microsoft cloud called Windows Azure (aka Azure). The results from

0	

50	

100	

150	

200	

250	

300	

350	

25	
 50	
 75	
 100	

Ti
m
e	

(m

s)
	

Ra+o	

Simple_Local	

Simple_Azure	

Higher_Local	

Higher_Azure	

Fig. 4. Performance figures for the two experimental configurations, each repeated in
both the local and Azure environment.

both environments are reported. We repeat the experiments in two character-
istically different computing environments to give an idea of the range of per-
formance that one can expect in reality. The consumer-scale machine is but a
notebook computer, and thus it represents the pessimistic lower bound of per-
formance. The Azure environment is likely more representative of the kind of
server-side capability that a social computing vendor possesses.

The local machine is equipped with Microsoft SQL Server (2005 and 2012)
and 64-bit Windows 7 Professional (Service Pack 1), and has the following hard-
ware configuration: 2.4 GHz Intel Core 2 Duo Processor, 4 GB 1067 MHz DDR3
Memory, SATA disk. The database is later migrated to Windows Azure, and
experiments are conducted on the SQL server provided in Windows Azure. The
database is hosted on a Windows Azure server located in north central USA.
Most of the experiments on Azure are run around midnight when we conjecture
there is less load on the server.

7.3 Measurements

For each of the two configurations (simple annotations and higher order annota-
tions), we measure the execution time of submitting the corresponding query in
Fig. 3 to the SQL Server. The measurement is repeated for 1000 times, each with
randomly chosen arguments (repetitive arguments are avoided), and the average
execution time is computed. Each query receives two arguments: (a) a user of
the social network and (b) a content. The users are chosen in such a way that
they have access to the content itself according to that content’s access control
policy. The result set for these queries are the annotations of that content for
which the user is allowed to access.

7.4 Results and Interpretation

Fig. 4 shows the response time for retrieving accessible annotations. Note that,
when a consumer-scale machine (local) is used, the retrieval time is between 100−

−350 milliseconds. When a server-scale machine (Azure) is used, the retrieval
time is no higher than 70 milliseconds.

According to [14, Chapter 5] and [13], the following response time limits
must be considered in interactive applications. (1) 0.1 second is the limit for
the users to feel that system works instantaneously and that they are directly
performing the manipulation (typing in a text box and viewing the text typed
simultaneously). (2) 1.0 second is the limit for the users to keep their flow of
thoughts and they feel they are freely navigating (although they feel the delay,
they also feel the computer is working). (3) 10 seconds is the limit to keep users
attention. Taking into consideration network latency (30 − 300 milliseconds for
web sites such as Facebook [3]), and using server-scale machines like Windows
Azure, response time remains in the acceptable range of 0.1 to 1.0 second.

8 Discussions and Future Work

Of the five classical examples of multiple stakeholders (i.e., tagging, commenting,
sharing, foreign contents, and friendship articulation), the design patterns pro-
posed in this work can address three of them with very simple designs of access
control. The core observation that we depend on is Design Principle 2, which
asserts that components of composite objects should be protected by separate
access control policies when the stakeholders of the components are different.

The above implies that there are two classes of multiple-stakeholder scenarios
that cannot be addressed in the manners suggested in this work.
1. Joint Assertions. Some contents are atomic: they are not made up of sep-

arately identifiable components. An example is the assertion of a relationship
between two parties. Such contents are created under the consent of multiple
parties (e.g., befriending requires the consent of the two friends), and thus
multiple stakeholders are involved.

2. Collaborative Authoring . Some contents, such as wiki pages, are com-
posite, but each must be taken as a whole. These contents are results of
collaboration among multiple authors, and yet authorship is attributed to
the entire product and cannot be attributed to the parts. Thus the finished
product affects the privacy of multiple stakeholders.

In these 2 cases, general-purpose schemes for multiple stakeholders [7–9, 15–17,
21] are absolutely irreplaceable. Future work in the study of protection schemes
for multiple stakeholders should focus on the above two classes of scenarios.

Acknowledgments This work is supported in part by an NSERC Discovery Grant
and a Canada Research Chair.

References

1. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large
social networks: Membership, growth, and evolution. In Proceedings of KDD’06,
pages 44–54, Philadelphia, PA, USA, 2006. ACM.

2. K. J. Biba. Integrity considerations for secure computer systems. Technical Re-
port ESD-TR-76-372, Electronic Systems Division, Air Force Systems Command,
United States Air Force, Apr. 1977.

3. CityCloud. Some interesting bits about latency. https://www.citycloud.com/

city-cloud/some-interesting-bits-about-latency/, Aug. 2012.
4. Facebook Help Center. https://www.facebook.com/help/www/255898821192992,

Aug. 2013.
5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison

Wesley, 1994.
6. G. S. Graham and P. J. Denning. Protection: Principles and practice. In Pro-

ceedings of the 1972 AFIPS Spring Joint Computer Conference, volume 40, pages
417–429, Atlantic City, New Jersey, USA, May 1972.

7. H. Hu and G.-J. Ahn. Multiparty authorization framework for data sharing in
online social networks. In Proceedings of DBSec’11, pages 29–43, Richmond, VA,
USA, 2011.

8. H. Hu, G.-J. Ahn, and J. Jorgensen. Detecting and resolving privacy conflicts for
collaborative data sharing in online social networks. In Proceedings of ACSAC’11,
pages 103–112, Orlando, Florida, USA, 2011.

9. H. Hu, G.-J. Ahn, and J. Jorgensen. Multiparty access control for online social
networks: Model and mechanisms. IEEE Transactions on Knowledge and Data
Engineering, 2013.

10. M. Kumar. How Facebook Ticker Exposing Your Information and Be-
havior Without Your Knowledge. http://thehackernews.com/2011/10/

how-facebook-ticker-exposing-your.html, October 2011.
11. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community struc-

ture in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

12. N. Li and M. V. Tripunitara. On safety in discretionary access control. In Pro-
ceedings of IEEE S&P’05, pages 96–109, Oakland, CA, USA, May 2005.

13. R. B. Miller. Response time in man-computer conversational transactions. In
Proceedings of the 1968 AFIPS Fall Joint Computer Conference, Part I, volume 33,
pages 267–277, San Francisco, CA, USA, Dec. 1968.

14. J. Nielsen. Usability Engineering. Morgan Kaufmann, 1993.
15. A. C. Squicciarini, M. Shehab, and F. Paci. Collective privacy management in

social networks. In Proceedings of WWW’09, pages 521–530, Madrid, Spain, 2009.
16. A. C. Squicciarini, M. Shehab, and J. Wede. Privacy policies for shared content in

social network sites. The VLDB Journal, 19(6):777–796, Dec. 2010.
17. A. C. Squicciarini, H. Xu, and X. L. Zhang. CoPE : Enabling collaborative pri-

vacy management in online social networks. Journal of the American Society for
Information Science, 62(3):521–534, 2011.

18. The Social CMO. New Facebook Ticker Is Invasion
of Privacy. http://www.thesocialcmo.com/blog/2011/09/

new-facebook-ticker-is-invasion-of-privacy/, Sept. 2011.
19. K. Thomas, C. Grier, and D. M. Nicol. Unfriendly: Multi-party privacy risks in

social networks. In Proceedings of PETS’10, pages 236–252, Berlin, Germany, 2010.
20. C. Washbrook. Facebook’s Ticker Privacy Scare, and What You

Should Do About It. http://nakedsecurity.sophos.com/2011/09/26/

facebook-ticker-privacy-scare/, Sept. 2011.
21. R. Wishart, D. Corapi, S. Marinovic, and M. Sloman. Collaborative privacy policy

authoring in a social networking context. In Proceedings of IEEE POLICY’10,
pages 1–8, Fairfax, VA, USA, 2010.

