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Abstract. Database outsourcing has become increasingly popularest-affective
solution to provide database services to clients. Prewear& proposed differ-
ent approaches to ensuring data integrity, one of the magbritant security
concerns in database outsourcing. However, to the bestrokrmwledge, ex-
isting approaches require modification of DBMSs to fadiéitdata authentica-
tion, which greatly hampers their adoption in practice.His paper, we present
the design and implementation of an efficient and practici@grity assurance
schemewithout requiring any modification to the DBMS at the senidesWe
develop novel schemes to serialize Merkle B-tree baseatitiation structures
into a relational database that allows efficient data nedtifor integrity verifica-
tion. We design efficient algorithms to accelerate querg@ssing with integrity
protection. We further build a proof-of-concept prototygred conduct extensive
experiments to evaluate the performance overhead of tipoped schemes. The
experimental results show that our scheme imposes a lovheadrfor queries
and a reasonable overhead for updates while ensuringiiyte§an outsourced
database without special support from server-side DBMSs.

Keywords: Data Integrity, Database Outsourcing, Radix-Path Idemtifi

1 Introduction

Database outsourcing has become increasingly popular ast-@&ftective solution to
provide database services to clients. In this moddhta owner(DO) outsources data
to a third-partydatabase service providéDSP), which maintains the data in a DBMS
and answers queries froalientson behalf of the data owner. However, it introduces
one of the most important security concerns, data inteddgyally, DSPs are not fully
trusted by data owners. Thus, data owners have to proteicttdggity of their own data
when outsourcing data to DSPs. Specifically, when clierttiexe data from a DSP,
they should be able to verify that the returned data is whatilshbe returned for their
requests on behalf of data owners, i.e., no data is malilgionedified by DSPs and
DSPs return all data clients request.

There are many techniques proposed to address integritgsssncluding cor-
rectness, completeness and freshness. These technigqubs divided into two cat-
egories. Approaches belonging to the first category aredoas@uthenticated data
structures(ADSs) such as Merkle hash tree (MHT) [4,9, 12] and Signafiggrega-
tion [9, 14, 16, 18]. Existing ADS-based approaches requindifying a DBMS so that



it can generate aerification objectVO) when executing a query and return the VO
along with the actual result to clients, so that clients canify the integrity of the query
result. Such modification is usually costly and hard to bdalega in a third-party ser-
vice provider, which hampers the adoption of database autsw [24]. The second
category uses a probabilistic approach [20, 24, 25], whigécts some fake data into
outsourced databases. Although the probabilistic apprdaes not require the modifi-
cation of DBMSs, its integrity guarantee is significantlyaker than that of those based
on ADSs.

In this paper, we explore the feasibility of utilizing appahes of the first category
to provide integrity assuranegthout requiring any modification of DBM3# existing
approaches, DBMSs are modified to be ADS-aware. That is, dheyenhanced with
special modules that efficiently manage ADSs and facilithee generation of VOs.
Unfortunately, it is often hard to convince database sergioviders to make such
modifications to their DBMSs. In fact, up to today, to the bafsbur knowledge, no
existing cloud database services support integrity clmgcki9]. Thus, for clients who
care about query integrity, it is desirable to have intggaisurance techniques over
“vanilla” DBMSs (i.e., without any special features for eaurced data integrity). The
general approach is straightforward: the data owner woale lto store authenticated
data structures along with their own data in relations, atidave appropriate integrity
verification data besides issuing queries. And all these ltavbe done through the
generic query interface (usually SQL) of the DBMS. Though blasic idea is simple,
the challenge is to make it practical: we need to design gpjate schemes to convert
ADSs into relations and form efficient queries to retrievel apdate authentication
information,without imposing significant overhead

In this paper, we present an efficient and practical schersecban Merkle B-
tree, which provides strong integrity assurance withoqtinéng special support from
database service providers. Our scheme serializes a Me+kke based ADS into re-
lations in a way, such that the data in the ADS can be retrianeldipdated directly and
efficiently using existing functionality provided by DBMSthat is, SQL statements.
Our major contributions are summarized as follows:

— We propose a novel scheme called Radix-Path Identifier tatifgesach piece of
authentication data in a Merkle B-tree based ADS so that tB& Nan be serial-
ized into and de-serialized from a database, and designfiaielef and practical
mechanism to store all authentication data of a Merkle B-tnea database, where
the authentication data in the MBT can be retrieved and woldzfficiently.

— We explore the efficiency of different methods such as Midin, Single-Join,
Zero-Join and Range-Condition, to retrieve authenticatiata from a serialized
MBT stored in a database, create appropriate indexes tdeaatethe retrieval of
authentication data, and optimize the update process fbeatication data.

— We build a proof-of-concept prototype and conduct extansikperiments to eval-
uate the performance overhead and efficiency of our propsxdezine. The results
show that our scheme imposes a low overhead for queries azabarnable over-
head for updates while providing integrity assurance. Nlo&t although we de-
scribe our scheme based on relational DBMSs, it is not hasdedhat our scheme
can also be applied to Non-SQL databases such as Bigtabldjase [1].



We note that many modern relational databases also haverbsiipport for XML.
One seemingly promising approach is to represent MerkleB-as XML, store the
XML representation into the DBMSs, and utilize their buiitXML support to retrieve
authentication data for integrity verification. Howeves,aan be seen from the perfor-
mance result presented in Section 6, the XML-based sokitilennot provide a good
performance compared with our scheme, which is mainly beethie XML features
are not targeting at providing efficient operations of MHAsbd integrity verification.

The rest of the paper is organized as follows. We discusterklaork in Section
2. In Section 3, we describe the data outsourcing model vgetastate assumptions,
attack models and our goals. Section 4 explains the majegries our scheme in de-
tails, and section 5 illustrate how our scheme providegnitieassurance for different
data operations such aslect, update, insert and deleection 6 discusses the exper-
imental results. Finally, the paper concludes in Section 7.

2 Related Work

Researchers have investigated on data integrity issug®éus in the area of database
outsourcing [5, 8,9,13,16,17, 20, 24, 25]. Pang et. al. ft6posed a signature aggre-
gation based scheme that enables a user to verify the canpkst of a query result
by assuming an order of the records according to one attriReévanbu et. al. [5] uses
Merkle hash tree based methods to verify the completenegsest results. But they
do not consider the freshness aspect of data integrity. baé 4] proposed a proba-
bilistic approach by inserting a small amount of fake resdntio outsourced databases
so that integrity can be effectively audited by analyzingitiserted records in the query
results, which only protects integrity probabilistically

Li et. al. [9] first brought forward the freshness issue assgreat of data integrity. It
verifies if data updates are correctly executed by DSPs sajtieies will be executed
over the up-to-date data instead of old data. Xie et al. [@&lyzed different approaches
to ensuring query freshness. The aggregated signature Bppeoaches [14,16] require
to modify signatures of all the records, which renders it iagtical considering the
number of signatures.

Miklau et. al. [11] designed a scheme based on interval trapiirantee data in-
tegrity when interacting with a vulnerable or untrustechttase server. However, sev-
eral disadvantages are mentioned in Di's work [6], whichltdeé&h a similar issue
based on authenticated skip list [7]. Di Battista's workd®gs not explain clearly how
authentication data is retrieved. It claims that only onergus required for integrity
verification while it also mentions that multiple querie® arecessary to retrieve all
authentication data. Palazzi et. al. [15] proposed appemto support range queries
based on multiple attributes with integrity guarantee, pmentary to our work.

Compared with previous work, our scheme is able to provitkegnity assurance
for database outsourcing, including all three aspectsiectness, completeness and
freshness. More importantly, one significant advantageuofscsheme is that existing
approaches need to modify the implementation of DBMSs iriotol maintain an ap-
propriate authenticated data structure and generate M@s r@quirement often make
these approaches hard to be deployed in real-world apiplicsg{24]. Our work provides



a strong integrity guarantee (instead of probabilisticrgantee [24]) without requiring
DBMSs to be modified to perform any special function beyonerguyrocessing.

3 System Model

3.1 Database Outsourcing Model

Figure 1 shows our database outsourcing model with integribtection. There are
three types of entitieslata ownerdatabase service providéDSP) anctlients A data
owner uploads a database with data and authentication@at®&P, which provides
database functionality on behalf of the data owner. Clieatsl to the DSP queries to
retrieve data and eerification objec(VO).

(" Clients M /" Database Service V' Data Owner N
Provider (DSP) Upload Data and
Authentication Data [io o | [ ]
l‘ J 0 Alice 1000
s k
e Update Data and 10 Ben 2000
“*IJ‘* ‘ Authentication Data
\ wOsIOr / \ S 4 )
\ g \__ ESET N

Fig. 1. Non-Intrusive Database Outsourcing Model.

In our outsourcing model, we assume that the DSP is oblivioustegrity pro-
tection. In fact, the DSP does not even know where and howot@ stuthentication
data and when and how to return authentication data to sligmtintegrity verifica-
tion. Everything related to data integrity verification isng at the client side through
an integrity-aware DBMS driver and is transparent to apiiss running in the client
side, and data and authentication data updates are done bt owner. In this way,
data owners can provide integrity assurance for their outgal databases without any
special support from DSPs. Therefore, the adoption of @dsloutsourcing with in-
tegrity assurance is completely decided by data ownerssblves.

3.2 Assumptions and Attack Models

First, we assume that data owners and clients do not fullt the services provided
by DSPs. Second, since our scheme relies on digital siggetor provide integrity
protection, we assume that the data owner has a pair of erarad public keys for
signature generation and verification. The public key iskmto all clients. Moreover,
like in many existing work [8, 9, 14, 18], we assume that theadawvner is the only
entity who can update its data. In addition, we assume thanmanications between
DSPs and clients are through a secure channel (e.g., thi®8gh Thus, DSPs and
clients can detect any tampered communication.

Regarding attack models, we focus ourselves on the masitiebavior from a DSP
since it is the only untrusted party in our target databassoaucing model. We do not
have any assumption about what kind of attacks or malicietisbior a DSP may take.
A DSP can behave arbitrarily to compromise data integritpidal malicious behaviors



include, but not limited to, modifying a data owner’s datéheut the data owner’s au-
thorization, returning partial data queried to clients agmbrting non-existence of data
even if data does exist. Further, it could return stale datdi¢nts instead of executing
queries over the latest data updated by the data owner [23].

3.3 Security Goals

We aim at providing integrity protection for all three asfseio data integrity: correct-
ness, completeness, and freshness. First, the correctmedss if all records returned
in a query result come from the original data set without geraliciously modified,
which is usually achieved using digital signatures thahanticate the authenticity of
records. Second, the completeness checks if all recordé/gag conditions in a query
are completely returned to clients. Third, the freshnessk#if all records in a query
result are the up-to-date data instead of some stale data.

Regarding freshness, we propose mechanisms for data owenefficiently com-
pute signatures of updated data and guarantee the cossaththe signatures, which
is the key to provide freshness guarantee. The securitygtes we provide is as strong
as Merkle B-tree (MBT) [9]. In the paper, we do not focus on Hbe latest signatures
are propagated to clients for integrity verification pumpass it can be easily achieved
by applying existing techniques [10, 25].

4 System Design

4.1 Running Example

We first present an example that will be referred to througitrmupaper to illustrate our
schemes. Without loss of generality, we assume that a datardvas a database with a
table called “data”, as shown in the left side of Figure 2. Tdi#e has several columns.
Theid column is a unique key or indexed. Besides, therenarelumns{coly, ..., col,, }
containing arbitrary data.

4.2 Authenticated Data Structure

Regarding Authenticated Data Structure (ADS), there aredptions: signature ag-
gregation based ADS and Merkle hash tree based ADS. We abfleat there are
several disadvantages of developing a scheme based onuwsigaagregation based
ADS. First, to minimize communication cost, signature aggtion operation needs to
be done dynamically in DBMSs, which unfortunately is notsonted. Moreover, it is
unknown how to efficiently guarantee freshness using sigaatggregation based ap-
proaches [9]. Additionally, techniques based on signadggregation incur significant
computation cost in client side and much larger storageindbe server side.

Thus, we choose to adapt MHT-based ADS, in particular, MelBktree (MBT) [9].
MHT-based ADS can not only guarantee correctness and coengles, but also provide
efficient freshness protection since only one root hashsiele maintained correctly.
Figure 2 shows a Merkle B-tree created based on the tabledinted in Section 4.1.



The values in thed column are used as keys in the MBT. A hashis associated
with a pointer in an internal node or a record in a leaf node dhaplicity, the hashes
associated with pointers and records in nodes of the MBT atrshown in the figure.
The hash of arecord in a leaf node is the hash value of the eledad in the data table.
The hash associated with a pointer in an internal node isdkh bf concatenating all
hashes in the node pointed by the pointer.

Data Table Merkle B-tree

Fig. 2. Data table to Merkle B-tree Fig. 3. Radix-path identifier

4.3 Identify Authentication Data

The first thing is to identify pointers in internal nodes aedards in leaf nodes of a
MBT since each pointer or record is associated with a piecautfientication data,
that is, a hash. And also we need to capture their parerd-ahd sibling relationships.
Besides, we need to preserve the ordering of pointers ords@o a node of a MBT.

Existing Approaches.There are a few widely-used models such as adjacency list,
path enumeration, nested set and closure table to storikecleierarchical data into
a database [2, 21]. Each of them has its own advantages amlditages. For exam-
ple, with an adjacency list, it is easy to find the parent of anfgo or a record since
it captures the parent-child relationship directly. Buffittd its ancestor, we have to
traverse the parent-child relationship step by step, wbizhid make the process of re-
trieving VO inefficient. The path enumeration model usesiagto store the path of
each pointer or record, which is used to track the parend ciiationship. Unlike the
adjacency list model, it is easy to find an ancestor of a poorteecord in a node. But
same as the adjacency list, path enumeration does not eghtiorder of pointers or
records in a node.

Radix-Path Identifier. To address the disadvantages of existing approaches, we
propose a novel and efficient scheme calRadlix-Path IdentifierThe basic idea is to
use numbers based on a certain radix to identify each paintecord in a MBT. Figure
3 shows all identifiers as bagenumbers for pointers or records in the tree based on a
radix equal tol. Given a MBT, theRadix-Path Identifieof a pointer or record depends
on its level and position in the MBT. To illustrate this schersuppose that the fanout of
a MBT is f. The radix base, could be any number larger than or equaftd denotes
the level where a node resides in the MBT. The level of themodt is0. i denotes the
index of a pointer or record in a node, ranging frorto f. The Radix-Path Identifier



rpid of a pointer or record can be computed using the followingagigu:

) if ]l ==0,
rpid = ! ) ] I (1)
rpidparent ¥y + 14 if I > 0.

() Single Authentication Table (SAT) (b) Level-based Authentication Table (LBAT)

Fig. 4. Authentication Data Organization.

Note thatrpidp.r.n: is the Radix-Path Identifielof its parent pointer in the tree.
Equation 1 captures not only the ordering among pointersoords in one node,
but also the parent-child and sibling relationships amawdes. The identifier of each
pointer or record in the root node is With identifiers in the root node, we can use
the second part of Equation 1 to compute identifiers of pasrderecords in their child
nodes. In this way, all identifiers can be computed startiogfthe root node to the leaf
nodes. The proposdriadix-Path Identifiescheme has several important properties: 1)
Identifiers of pointers or records in a node are continuoussnbt continuous between
that of those in two sibling nodes. For example, the basamber0, 21, 22 are con-
tinuous and00, 210 are not continuous, shown in Figure 3; 2) From an identifiea of
pointer or record in a node, we can easily find the identifigtsoparent pointer based
on the fact thatpidyqrent €quals to|rpid/ry|; 3) From the identifier of a pointer or
record in a node, we can easily calculate the min and maxifaatin the node, which
are(|rpid/ry)) *rp @and(|rpid/ry]) * 5 + (rp — 1); 4) From an identifier of a pointer
or record in a node, we can easily compute the indekthe pointer or record in the
node, which is-pid modr;,. These properties will be utilized for efficient VO retriéva
and authentication data updates.

4.4 Store Authentication Data

Once we identify each pointer or record in nodes of a MBT, tlet step is how we
can store the authentication data associated with thenaid&tabase. In the following,
we propose two different designs - Single Authenticatiobl@4SAT) and Level-based
Authentication Table (LBAT), and discuss their advantagyes disadvantages.

SAT: Single Authentication Table. A straightforward way is to store all authen-
tication data as data records calledthentication Data Recor@ADR) into one table
in a database, where its corresponding data table is stbiguke 4(a) shows all au-
thentication data records in a single table for the dataetdbkcribed in the running
example. The name of the authentication table adds a su#fixti” to the original ta-
ble name “data”. The authentication table Hasolumns:id, rpid, hashandlevel id



column stores values fromd column of the data table, which are keys in the B+ tree
except “-1”. Note that since the number of keys is less thamiimber of pointers in
the internal nodes in a B+ tree node, we use “-1" adgdhfer the left-most pointers in
the internal nodespid records identifiers for pointers or records in the B+ tiegsh
column stores the hash values of pointers or records in thizd®t which is essential
for integrity verificationlevelstores values indicating the level of a pointer or record in
the B+ tree. Thédevelvalue is necessary for searching tp& for a data record given
anid of the data record because thpd values could be the same in different levels.
The level of a leaf node 8, and the level of the root node is the maximum level.

Although SAT is simple and straightforward, it has seveiahdvantages, which
makes it an inefficient scheme. First, updates could be amexffi since one data record
update usually requires updating ADRs in different levélith table level locks, it is
not allowed to concurrently execute ADR updates since alRAllpdates have to be
executed over the only one table. Although concurrent wgsde&n be enabled with
row level locks, it may consume much more database serveuress, which may not
be desired. Second, it may require join queries to findrghe of a data record since
the data table is separated from the authentication dale tahird, updates to a data
record and its ADR in the leaf level cannot be merged into glsiquery to improve
the performance since they go to different tables.

LBAT: Level-based Authentication Table. To resolve the above issues, we pro-
pose a Level-based Authentication Table (LBAT). In thisestk, instead of storing all
ADRs into one table, we store ADRs in different levels to eliféint tables. We create
one table per level for an MBT except the leaf level (for remsgiven below) along
with a mapping table to indicate which table correspondsh@kvlevel. For nodes in
the leaf level of the MBT, since each data record corresptméea ADR in leaf nodes,
we extend the data table by adding two columnsid andhashto store ADRs instead
of creating a new table, which reduces the redundaniyedlues as well as the update
cost to some extent. Figure 4(b) shows all tables createctended to store ADRs
and the mapping table for the data table described in theimgrexample. Tables for
different levels have different number of records. For tat tevel, it may only contain
a few records. Also, the number of records in the mappingtesbtqual to the number
of levels in the MBT. We name those tables by adding a suffih aagc_mapping”,
“_auth0Q”, etc, based on table types and levels.

The proposed LBAT scheme presents several advantages sifice ADRs in dif-
ferent levels are stored in different authentication tapiemakes concurrent updates
possible with table level lock, which also allows to desidficeent concurrent update
mechanisms. Second, since we store ADRs in the leaf levedjalith data, it makes it
straightforward to retrieve thwpid of a data record. Third, due to the same advantage, it
is easy to merge updates for a data records and its ADR indhkeleel for performance
improvement.

4.5 Extract Authentication Data

To extract the ADRs for the record based on LBAT, we make ttst txee of the proper-
ties of ourRadix-Path IdentifierOnce we receive all related ADRs, we can compute the



root hash since we can infer the tree structure fronrpigkvalues, which conveniently
captures the relationship among pointers, records andsrindee MBT.

Since the DSP is only assumed to provide standard DBMS founalities, all the
above operations have to be realized by SQL queries issu#telglient. We explore
four different ways - Multi-Join, Single-Join, Zero-JoindaRange-Condition, to find
the authentication data records based on LBAT. We use spegdimples to show how
they work. All examples are based on the data presented irutireng example. Sup-
pose that we want to verify the integrity of the data recorthwieid 50. The ADRs
needs to be returned shown as the black parts in Figure 3hvidialso highlighted
with a black background in Figure 4(b). Multi-join uses onery joining all related
tables to retrieve authentication data records, whictrmsta lot of redundant data, and
Single-Join uses multiple queries, each of which joins tal@ds to avoid returning re-
dundant data. Due to space limit, we only illustrate Zerim-dmd Range-Condition in
details below. More details about Multi-join and SinglérJcan be found at [22].

Zero-Join. In this scheme, we aim at minimizing the redundant data metdiin
Multi-Join and avoid multiple join queries in Single-Jolin fact, what we actually need
is therpid of the record0. If we know itsrpid, we can eliminate the “join” completely
from the SQL statements. The following shows the SQL statgsn@e use to retrieve
the authentication data without joining any table.

- find the rpid of the data record with the id 50

declare @owpid AS int;

set @ow pid=(select top 1 rpid fromdata where id=50);

- level 2, 1, 0 (fromroot level to |eaf level)

sel ect rpid, hash fromdata where rpid/ 4=@ ow pi d/ (4);

sel ect rpid, hash fromdata_authl where rpid/ 4=@ owr pi d/ (4*4);
sel ect rpid, hash from data_auth2 where rpid/ 4=@ owr pi d/ (4*4+4);

Compared with Single-Join, the major difference is that \eelare a “rowrpid”
variable to store thepid of the record, which is retrieved from the first query. After
that, we use the “rowrpid” for other queries to retrieve théhantication data for nodes
in different levels. Although it needs to execute one morerglit eliminates the “join”
clause completely.

Range-Condition. We observe that the execution of the above queries does not
utilize the indexes created on thd field in the authentication tables. Instead of doing
an index seek, each of them actually does an index scan, wghicéfficient and incurs
a high computation cost in the server side. To utilize indewes propose a new method
called Range-Condition to retrieve authentication datadoords. The following shows
the SQL statements we use to retrieve the authenticati@anfdathe record0 using
Range-Condition.

- find the rpid of the data record with the id 50

declare @owpid AS int;

set @ow pid=(select top 1 rpid fromdata where id=50);

- level 2, 1, 0 (fromleaf level to root |level)

sel ect rpid, hash fromdata

where rpid>=(@ow pid/ (4))*4 and rpi d<( @ ow pi d/ (4)) *x4+4;

sel ect rpid, hash fromdata_authl

where rpid>=(@ow pi d/ (4+4))+4 and rpi d<(@ ow pi d/ (4*4)) *x4+4;

sel ect rpid, hash from data_auth2

where rpid>=(@ow pi d/ (4+4+4))*4 and rpi d<(@ow pi d/ (4*4x4)) «4+4;



As can be seen from the figure, the major difference from Zeio-is thewhere
condition. Instead of using equality, the Range-Conditises a range query selection
based on thepid column. The range query retrieves the same set of ADRs agjtla-e
ity condition used in Zero-Join. Thus, they both return thme set of authentication
data records, and Single-Join does that too. However, Wwithidnge query on thpid
field, it can utilize indexes built on thgpid column, which minimizes the computation
cost in the server side.

5 Data Operations

In this section, we illustrate the details of handling bagieries such aselect update
insert and deletewith integrity protection efficiently based on our designngsthe
running example. Without loss of generality, we assume ¢hants always have the
latest root hash of the table for integrity verification, amel focus on how to retrieve
authentication data from DSPs. Due to space limit, we do issudsinsertanddelete
Please refer to [22] for implementation details and expenital results.
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Fig. 5. Range Query with Integrity Protection. Fig. 6. Update with Integrity Protection.

5.1 Select

As discussed in Section 4.5, we can retrieve authenticatia for aUnique Select
query, which returns only one data record based on a uniguseédection. Thus, we
focus on how to handle Bange Seleajuery with integrity protection, which retrieves
records within a range.

The verification process fdRange Seleagueries is different fronunique Select
queries. First, we need to find the two boundary keys for agapgry. For example,
for a range query with a range froi3 to 45, we need to identify its two boundaries,
which arel0 and50 in this case. Although DBMSs do not provide a function to netu
the boundary records directly, we can use the following twerges to figure out what
the left and right boundaries are for a query range:

select top 1 id fromdata where id < 15 order by id desc
select top 1 id fromdata where id > 45 order by id asc



Then, to retrieve the authentication data for the rangeygues only need to re-
trieve the authentication data for both boundaries, wiscéirilar to the way we use
to retrieve authentication data object for a data recordesihe authentication data for
records within the range are not necessary and they will bgoated by using the re-
turned records. Figure 5 shows the authentication datadsemd the data records that
need to be retrieved for the range query frofrto 45.

To execute the range query with integrity protection, wedneerewrite the range
query by adding SQL statements of retrieving authenticatiata records. Then, we
execute all SQL statements in one database transactioe. tBacesult with authenti-
cation data is returned, we verify the integrity of the quersult using the authentica-
tion data. If the verification succeeds, the data resulttigmed to the client as before;
otherwise, an integrity violation exception could be thmote warn the client of the
integrity verification failure.

The overhead to provide data integrity for range queriesists of both compu-
tation and communication cost. The computation cost in tlemtcside includes two
parts: rewriting range query and verifying data integritiie computation cost in the
server side is the execution of additional queries for anttbation data retrieval. The
communication cost between them includes the text datadifiadal queries and the
authentication data returned along with the data result.

This process can also handlaique Selectjueries. However, it requires to retrieve
authentication data for both left boundary and right boupdahich may not be neces-
sary. If the key does not exist, we have to resort to the peoasandling range queries,
where we can check left boundary and right boundary to maieethe record with the
key does not exist.

5.2 Update

Single Record UpdateWhen a data record is updated, we need to update its authenti-
cation data (mainly hash values) accordingly. For updaingcord, we assume that the
record to be updated already exists in the client side and@#or the updated record
is cached in the client too. Otherwise, we retrieve the datand and its VO first, then
update it and its authentication data.

Figure 6 shows the VO in black for the rec@lin the left side and the hash values
in gray to be updated once the record is updated. Each datdeupztjuires an update
on all authentication data tables. It means if the MBT trée'ght ish, then the total
Number of update queries ts+ 1. In this case, we need to actually updatescords.
One of them is to update the data record and three of them [ate the authentication
data records. The generation of update queries for auttatioth data is simple since
we know therpid of the data record to be updated, and then we can easily certput
parentrpid and generate update queries.

Since the authentication data table for the leaf level of alNEBcombined with the
data table, we can combine two update queries into one tcowephe performance.
Thus, in this case we only ne&dupdate queries instead ¢f All update queries are
executed within one transaction. So, consistency of datards and authentication data
is guaranteed by the ACID properties of DBMSs, and data fittei$ also guaranteed
since the verification and the root hash update are dondlgitscthe data owner.



Batch Update and Optimization Suppose that we want to updateaecords at one

time. As the number of records to be updated increases, takeromber of update

gueries we need to generate to update both data and auiimmtidata increases lin-
early. In this case, the total number of update querias«s.. We observe from those
update queries that several update queries try to updatgathe authentication data
record again and again due to the hierarchical structurdaftace. We also notice that
each update SQL statement only updates the same authiemticatord in one table.

In fact, we just need to get the latest hash of the autheiditdata record, and do one
update. To do that, we need to track all update queries fdr &dite, find the set of

queries to update one authentication data record in an@ithgon table, and remove
all of them except the latest one. In this way, the number ckasary update queries
could be much less than the number of update queries we dgeibefare. The process,
calledMergeUpdateimproves the performance of batch update to a great extent.

6 Experimental Evaluation

System Implementation We have implemented the Merkle B-tree and the query rewrite
algorithms for clients, which is the core of generating sglapdate and insert SQL
statements to operate authentication data. We also butildd create authentication
tables and generate authentication data based on a daartabtiatabase. Data own-
ers can run this tool on all data tables in a database befdseuncing the database
to a DSP. Once the authentication data is created for thbasdathey can upload the
database to the DSP. We have also implemented all four éiffexvays -MultiJoin,
SingleJoin ZeroJoinand RangeCondition to retrieve authentication data for perfor-
mance overhead evaluation. Our implementation is basedBi and SQL Server
2008. In addition, we implemented two XML-based schemes=ERXML and DT-
XML, which utilize built-in XML functionality of SQL Serverfor efficiency analysis
and comparison. In both OPEN-XML and DT-XML schemes, we usgeaarchical
XML structure to represent the authentication data of a NéeBctree and store the
XML string into a database. The OPEN-XML scheme uses OPENXifiction pro-
vided in SQL Server to retrieve VO data from the XML stringdaghe DT-XML uses
XPath and nodes() methods to retrieve VO data from an indékéiddata field, where
the XML string is stored.

Experiment Setup. We use a synthetic database that consists of one table with
100, 000 records. Each record contains multiple columns, a primayyck and is about
1KB long. For simplicity, we assume that an authenticate@xnid built onid column.
We upload the database with authentication data to a tlartsploud service provider,
which deploys the SQL Server 2008 R2 as a database servideuarexperiments
from a client through a home network widMbps download andMbps upload. To
evaluate the performance overhead of integrity verificatiod the efficiency of the
proposed mechanisms, we design a set of experiments usisgrithetic database.

6.1 Performance Analysis

VO Size.Figure 7 shows how the VO size changes as the fanout of a MBfigeisfor
Unique SelecandRange SeleciThe results clearly show that as the fanout increases,
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the VO size increases, and the VO siz&aihge Seleds almost twice of that onique
Selectsince the VO oRange Selednhcludes the VO of two boundaries of the range.
Note that forRange Selecits VO size almost stays the same no matter how many
records are returned inRange Select

VO Retrieval. Figure 8 shows the time to retrieve a VO for our scheme using
RangeCondition and two XML-based schemes when the numbewaf in the data
set changes. As can be seen from the figure, when the data simll, three schemes
show a similar time to retrieve the VO. However, as the data sicreases, two XML-
based schemes show linear increases in terms of the VOvadtiiime. When the data
size goes up t@00, 000 records, the XML-based schemes take more tliageconds
to retrieve a VO for one single record. In this case, our s&ismbout 00 times faster
than the two XML-based schemes. The result indicates thalladesign scheme could
be much more efficient than a scheme using built-in XML funadility in DBMSs.

Unique Select.We conduct experiments to see how different fanouts of a MBT
and different methods of retrieving VO could affect the pemfance ofUnique Select
queries, where we vary the fanout of a MBT and compare theopegnce overhead
caused by different VO retrieval methods, shown in Figuréh results show that the
overhead of SingleJoin and ZeroJoin is much higher tharoffRangeCondition. When
the fanout is32, the overhead of SingJoin or ZeroJoin is ab®ff;, but the overhead
of RangeCondition ig¢.6%. The communication cost for the three different methods is
almost same, and the major performance difference is canstte computation cost
in the server side. As we can see from this figure, when theufanoreases from to
32, the overhead of both SingleJoin and ZeroJoin drops, and wiesfanout is larger
than 32, their overhead increases. It is because in general the ¥®iscreases and
the number of queries to be executed to retrieve autheiaticdata decreases as the
fanout increases, and when the fanout is less #i2athe computation cost dominates
the overhead and when the fanout is larger tsathe communication cost dominates
the overhead. Based on the current experiment environnien32 fantout shows a
better performance compared with other fanouts. In theolig experiments we use
32 as the default fanout unless specified otherwise.

Range SelectWe also run experiments to explore how the overhead chaniges w
the number of records retrieved increases. Figure 10 shogvsesponse time of re-
trieving different number of records in range queries, whBoVeri denotes range
queries without integrity verification support, ZeroJoimdaRangeCondition denote



rang queries with integrity verification but using VO retaé method ZeroJoin and
RangeCondition respectively. The results show two poihfghe RangeCondition is
much better than ZeroJoin when the number of rows to be vetties small, which is
because the computation cost dominates the overhead dayséterent VO retrieval
methods; 2) once the number of records to be retrieved igldh@an a certain num-
ber, the response time of all three is almost the same. Inlgaoritam, the overhead
caused by different VO retrieval methods does not changbeasumber of retrieved
records increases. Thus, as the number of retrieved recan@smses, the overhead be-
comes relatively smaller and smaller. We also conduct éxerts to show how the
overhead changes as the database size increases, whereraage queries to retrieve
512 rows from databases with different number of data recordshown in Figure 11,
the overhead is abo@t even if the number of data records goes up.tmillion.
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Update We evaluate the performance overhead caused by two diffepelate cases
- Direct Update and Cached Update. For Direct Update, werétgeve the data to be
updated and verify its data integrity, and then we genernadgiaie queries for both data
and authentication data and send them to the sever for éxecbkbr Cached Update,
we assume that the data to be updated is already cached iretheny; we just need
to generate update queries and send them to the server fartexe Figure 12 shows
the overhead versus the number of rows to be updated. In tirefip’ denotes Direct
Update, C denotes Cached Update, “RC” denotes RangeGamditid “MU” denotes
MergeUpdate, which indicates if a MergeUpdate processdd usreduce the number
of SQL statements generated for updating authenticatitsrdaords. The results show
that when we directly update only a few records with intggpitotection, the overhead
could go above 00%, but if we update cached records, the overhead is &h6tit. In
this case, the additional round-trip time in Direct Updatenihates the response time
of the whole update process. As the number of updated rowsdses, the overhead
percentage of Direct Update decreases because the regpoass dominated by the
update time in the server side. The major overhead for Cadipeldte comes from the
execution of update statements to update authenticatitanidahe server side. The
results also show that the performance of C-RC-MU is conigara the performance



of NoVeri without integrity protection, but without the MggUpdate optimization, the
overhead of C-RC ranges fro3f to 30% shown in the figure.

7 Conclusion

In the paper, we present an efficient and practical MerkleeB-based scheme that pro-
vides integrity assurance without modifying the implenagioh of existing DBMSs.
We have proposed a novel approach called Radix-Path Identifnich makes it possi-
ble to serializes a Merkle B-tree into a database while émghighly efficient authenti-
cation data retrieval and updates. We have explored théeeffig of different methods
such as MultiJoin, SingleJoin, ZeroJoin and RangeConditio retrieve authentica-
tion data from a serialized MBT stored in a database, impieeatka proof-of-concept
prototype, and conducted extensive experimental evalua@ur experimental results
show that our scheme imposes a small overhea&ébect Updateand Appendand a
reasonable overhead forsertandDelete
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