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Abstract. In this paper the role of Plug-In Electric Vehicles’ (PIEVs) parking 

lot in operating Smart Multi-Energy System (SMES) has been investigated. 

SMES in this paper has been modeled as a multi-input multi-output model 

which consists of some storage and energy converters. In the proposed 

framework, the PIEV’s parking lot behaves like an energy storage with selling 

energy price less than upstream network price and as manageable load when its 

purchase price is more than upstream network. On the other hand, traffic pattern 

of PIEVs in parking lot has an uncertain behavior and is modeled based on 

stochastic approach. In the stochastic model, two branches of scenarios for total 

state of charge and total capacity of parking lot in each hour are produced. The 

considered case studies show the effectiveness of the proposed model and the 

impact of PIEVs’ parking lot in operation of SMES elements. 

Keywords: Energy hub model, PIEVs’ parking lot, stochastic modeling. 

1.   Introduction 

Environmental aspects have been highlighted in development of societies by means of 
sustainable development. In this regard, sustainable energy development is the most 
important matter to take into account the applicable interaction of preserving the 
environment with providing the energy requirements [1]. Nowadays, integrated 
management of energy carriers and other energy related infrastructures (e.g. 
transportation system) is proposed as one of the approaches to achieve this goal [2]. 

Many researches have been oriented to model this new decision making 
environment and to propose management frameworks for Smart Multi-Energy 
Systems (SMES). Two pioneer models in this area are “energy hub system” and 
“matrix modeling”. Both of the approaches consider the SMES as combination of 
operation centers (mostly co-generation or tri-generation units) and their 
interconnectors. Operation centers have been modeled by coupling matrix which 
converts input energy carriers to the output required energy services [3] and [4]; and 
Interconnectors transmit energy between operation centers based on energy carriers’ 
physical constraints [5]. References [6] and [7] have modeled the operation 
framework for operation centers and interconnectors in SMESs. On the other hand, 
mitigating environmental concerns by electrifying demand of carbon-based energy 
carriers are another important approach for sustainable development in energy sector.  

Plug-In Electric Vehicles (PIEVs) are main tools for electrification in 
transportation system [8]. They reduce air pollution inside cities by consuming 
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electricity which is supplied by renewable resources and the power plants located far 
from the cities. Moreover, PIEVs’ batteries prepare bulk storage capacity for power 
system. PIEVs’ parking lots are best opportunity for distribution system operators to 
utilize electric bulk storage facilities in demand side. It should be noted that, if these 
PIEVs’ charge pattern as electric load are not controlled, it can worsen the network 
operation condition.  

Hence, the main goal of this paper is to propose an operation framework for an 
energy hub which is equipped by PIEVs’ parking lot to change the pattern of charging 
and discharging of PIEVs in parking lots to enhance the operation flexibility of 
system. 

In [9] a single Plug-in Hybrid Electric Vehicle (PHEV) has been modeled as 
independent energy hub. Furthermore, [10] investigated the role of PHEVs as 
controllable loads in energy hub system operation and [11] utilized charging of 
PHEVs in SMES as flexible load for employing ancillary services (load frequency 
control) in energy market. However, PIEVs’ parking lot has not been considered as 
the element of energy hub before the present paper. 

In this paper, the PIEVs’ parking lot in a smart energy hub is modeled as stochastic 
energy storage. The energy hub operator receives gas and electricity from upstream 
network and delivers energy services to the customers. Hence, energy hub consists of 
CHP unit, auxiliary boiler, heat storage and a PIEV’s parking lot. In such a system, 
behavior of PIEV’s parking lot follows uncertainties modeled by stochastic method. 
In the mentioned framework, the patterns of State of Charge (SOC) of connected 
PIEVs are included in the parking lot. The intention of the energy hub operator is to 
deliver energy to multi-energy demands in such a way that the benefit of operator 
being maximized. The numerical results show the role of PIEVs’ parking lot for 
altering energy hub operation pattern and utilizing input energy carriers in better way. 

2.   Contribution to Collective Awareness Systems 

Smartness in energy systems facilitates amendment of new resources in demand side. 
These new resources introduce interdependency in time and carrier domain which 
should be considered by integrated models. New highly dependent environment will 
increase the level of uncertainty in SMES which needs huge amount of information 
and non-deterministic models for appropriate decision making. Collective awareness 
system is a brilliant opportunity for SMES managers to openly link these uncertain 
smart energy centers and enhance their collaboration for the benefit of the enterprise. 
Although, participation of demand side players, enhance the system performance, 
imposes system with new human-centered layer. This human layer, authorize main 
portion of resources in the system e.g. PIEVs and small scale co- or tri-generation 
units. Collective awareness system will make new framework for implementing these 
resources and managing the behavior of human layer to act as the SMES managers’ 
desire. In this paper the PIEVs traffic pattern in human layer of SMES system is 
modeled by stochastic models and their effectiveness on operation of other SMES 
elements and enhancement of SMES operation flexibility is discussed. 
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3.   Stochastic Modeling of PIEVs’ Parking Lot  

A stochastic model is developed to quantify behavior patterns of PIEVs at a parking 
lot. The nominal capacity of parking and the sum of SOC of EVs plugged-in at the 
parking lot in each hour are the outputs of the model. Capacity of parking lot relies on 
the number and type of EVs parked at the parking lot. The hourly number of EVs 
connected to the grid at the parking lot is a probabilistic variable that is related to 
behavior of EV owners. In this paper, the pattern of available EVs at the parking lot is 
extracted from the real data that is obtained from number of vehicles parked at 
parking lots [12]. 

The energy storage capacity of each EV represents the total energy capacity and it 
is dependent to the EV class. For example, the energy storage capacity of plug-in 
hybrid electric vehicles (PHEVs) typically is between 6 kWh and 30 kWh; whereas, 
the capacity for BEVs varies from 30 to 50 kWh [13]. In [13], twenty four different 
classes have been considered for EV batteries. The probability distribution of the 
battery capacities in each EV class occurring in a market is illustrated in Fig. 1. 

 
Fig. 1. Distribution of battery capacity. 
 

In order to consider the market share of each EV class, the battery capacity of each 
class is considered. Taking into account the distribution of EV classes and probability 
number of EVs at parking lot, the hourly possibility of parking lot capacity is obtained 
as Fig. 2. 

 
Fig. 2. The hourly nominal capacity of parking lot. 
 

SOC of Parking lot is dependent to number of EVs parked at the parking lot, the 
type of each EV and the daily driven distance of each EV. The probabilistic traveled 
distance is applied as a parameter of calculating the SOC of parking lot. The 
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lognormal distribution function is utilized to generate the probabilistic daily traveled 
distance [14]. The lognormal random variables are generated using standard normal 
random variable, N, and are computed using (1) [15]. 

exp( . )d md mdM Nµ σ= +  (1) 

where Md is the daily driven distance. µm and σm are the lognormal distribution 
parameters and are calculated from mean and standard variation of Md based on the 
historical data, denoted as  µmd and σmd, respectively [12]. µm and σm are calculated 
based on (2) and (3), respectively. 
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Vehicles have been used in [12] made an average of 4.2 trips per day, yielding an 
average daily distance of 39.5 miles. On the other hand, an electric vehicle takes 
approximately 0.35 kWh to recharge for each mile traveling [12]. On this basis and 
according to the mentioned above discussion, the hourly SOC of Parking lot can be 
obtained as illustrated in Fig. 3. 

 

 
Fig. 3. The hourly SOC of parking lot. 

4.   Operation Framework of SMES considering PIEVs’ Parking Lot 

SMES can consist of different elements and distributed energy resources. The focus 
of this paper is on the PIEVs’ parking lot as flexible load in charging mode and large 
scale electric storage in discharge mode. Operator of SMES supply energy from 
Electrical Distribution System (EDS) and Gas Distribution Network (GDN) and 
deliver required service in heat and electricity format to the Multi-Energy Demand 
(MED).  

Fig. 4 shows a typical SMES which consists of Combined Heat and Power (CHP) 
unit, Auxiliary Boiler (AB), Heat Storage (HS), and PIEVs’ Parking Lot (PL). 
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Fig. 4. A typical SMES schematic considering PIEVs’ parking lot. 

4.1.   Matrix Modeling of Smart Multi-Energy System 

In depicted SMES schematic the coupling matrix C , converts input energy vector, 
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t
QW=l  (eq. (4)). 
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PIEVs’ PL is considered as stochastic storage which can be modeled like HS in 
coupling matrix by showing the change of its stored energy. In [3], storage modeling 

in SMES is explained comprehensively. S  is the coupling matrix of the storage, 

representing how changes in the amount of energy stored will affect the system 

output. The e&  vector as indicator of stored energy is added to the input vector and 

new coupling matrix based on C  and S  is constructed (eq. (5)-(7)). 
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Moreover, the detailed matrix model of system is demonstrated in (8): 
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4.2.   Operational Optimization Problem 

The objective of SMES operator is to maximize the benefit from energy trade 
between customers (MED and PIEVs’ owners) and sellers (EDS, GDN and PIEVs’ 
owners ) considering the price of energy in peak hours.  

Therefore, the objective function of optimization problem includes three terms; 
first and second terms are the benefit of operator from electricity and gas trade 
respectively, and the third one is the operator benefit from trading electricity to the 
PIEVs with contract price (which should be considered PIEV and operator cost, e.g. 
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installation and battery degradation costs) and manipulation of PIEV’s SOC in PL for 
demand management actions (eq. (9)). 
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Furthermore, due to physical characteristics of SMES’s elements, the operation 
problem faces some constraints: 

1) Input energy carriers limitation: EDS and GDN have some limitation for 
supplying required energy to the SMES. Moreover, the energy flow from EDS and 
GDN to the SMES is considered unidirectional (eq. (10)). 

Pp0 ≤≤  (10) 

2) CHP operational constraints: CHP unit operates in a predetermined operation 
zone which is based on its manufacturing characteristics. 
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3) AB operational constraints: AB heat output is constrained by upper and lower 
limits. 

AB
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,
 (14) 

4) HS operational constraints: Interaction between HS and SMES is restricted and 
also the stored energy in the HS is limited by upper and lower limits. 
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5) Decision-making variables constraints: Utilizing same service from different 
energy vectors enhances the operator’s degree of freedom. v  is the decision making 

variable which determines this freedom in optimization problem. 
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4.3.   PIEVs’ Parking Lot Model in Operation Problem 

PIEVs’ parking lot behaves as an electrical load in charging mode and as a large scale 
storage when manage its discharge mode. In proposed model the SMES operator can 
manipulate the SOC of PIEVs to maximize its profit during operation period. 
Difference of PL with common storage in modeling is the variation of its capacity 
which is dependent to the arrival and departure time of PIEVs to the PL. Eq.s (19) and 
(20), determines the amount of changing in PL’s SOC based on PL interaction with 
SMES and PIEVs’ traffic in the parking. 
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In this model, it is assumed that, for arriving PIEVs to the PL in each hour the 

added SOC by variable arPL

tsW
soc −

,,
 is based on the increase in SOC scenarios (eq. (21)) 

while for departed PIEVs from the PL, the loss in SOC by variable depPL

tsW
soc −

,,
 is equal 

to portion of prior hour SOC considering the decrease in SOC scenarios (eq. (22)). 
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Furthermore, the interaction amount of PL with SMES is restricted (eq. (23)) and 
the PL’s SOC in each hour is limited by total capacity and minimum required SOC of 
PIEVs (eq. (24)). 
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5.   Numerical Results 

SMES operator behaves like energy retailer to maximize its benefit by buying energy 
from wholesale market and selling it to customers through predetermined tariffs. But 
SMES operator has some physical asset to arbitrage between energy carriers for 
increasing its benefit. For considered SMES in this paper, the electricity prices in 
input and required service in output have been depicted in Fig. 5 and Fig. 6, 
respectively. Moreover, the GDN gas price is considered as 6 mu/p.u. and delivered 
heat price to the MED as 7 mu/p.u. 

 
Fig. 5. MED and EDS price data  Fig. 6. Multi-energy demand data 

 
Two case studies have been produced to demonstrate the role of PIEVs’ PL in the 

SMES operation. The first case is SMES normal operation without PL and the second 
one considers the stochastic model of PL. Furthermore, some results for showing the 
effectiveness of stochastic model and the comparison with deterministic one are 
reported. The case studies results depicted in Fig. 7. 

Figure 7.(a) to 7.(c) show the results of first case study for input gas to SMES and 
multi energy electricity and heat supply mixture. As it can be seen, CHP unit produce 
between 7-12 and 17-22 hours while EDS electricity price is high and also MED has 
the simultaneous heat and electricity consumption. Furthermore, HS has stored 
exceeded energy of CHP in 9, 10, 18, 21, and 22 hours when the EDS’ price is high 
and CHP generation is profitable; however, MED has low heat usage which can be 
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solved by utilizing HS. These stored energy are given back to the SMES during 6, 13, 
15, and 23 hours while the price is high and HS operation is more economical. 

Figures 7.(d) to 7.(f) depict second case results which have considered the PL 
impact in operation of SMES elements. Figure 7.(d) shows less variation in output of 
CHP unit in hours 9-14. In these moments, PL as a stochastic storage enhances 
flexibility of the SMES and compensate the need for CHP variation by storing and 
injecting energy. Figures 7.(e) and 7.(f) demonstrate MED’s electricity and heat 
usage; during low energy price (13-16), PL stores energy for injecting to SMES 
during peak period (18-21).  

The SMES buys electricity from the PL in 12 mu/p.u. and sells it to PL in 
10 mu/p.u. Therefore, it will be profitable for SMES operator to trade electricity with 
PL when the selling price is higher than EDS price and the buying price is lower than 
EDS price. As it can be seen in Fig. 7.(g), PL’s SOC is less than scenarios amount 
between 9-13 and 18-21 and is more than scenarios amount between 14-17. In first 
discussed periods the electricity price is high and PL behave like storage and inject 
the energy to the SMES but in second period (14-27) the electricity price is low and 
PL behave as a manageable load which consume electricity to charge its PIEVs. 
Finally, in Fig. 7.(h) and 7.(i) the difference between stochastic and deterministic 
modeling for stored energy in HS and PL is depicted. The energy have been injected 
to the PL while the energy price is low for two reasons, first charging departed cars 
and secondly storing for consuming in peak hours. For the second reason, as a result 
of uncertain behavior of PIEVs, if operator charges the PIEVs’ batteries and the PIEV 
departed from PL, operator miss part of its stored energy in PIEVs (PIEV’s SOC) as 
loss. Therefore, as it can be seen in the stochastic case, the stored energy in PL is less 
compared to deterministic case because less stored energy means less loss and 
operation cost. However, less utilization of PL leads to more utilization of CHP which 
will result in more stored energy in HS (Fig. 7.(i)). 

 

 

Fig. 7. Result of the proposed framework, (a) input gas without PL, (b) MED electricity 
consumption, (c) MED heat consumption mixture without PL, (d) input gas with PL, (e) MED 
electricity consumption mixture with PL, (f) MED heat consumption mixture with PL, (g) total 
capacity and SOC for PL during operation period, (h) stored electricity in PL for stochastic and 
deterministic case studies, (i) stored electricity in HS for stochastic and deterministic cases . 
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6.   Conclusion 

This paper proposed a framework for modeling PIEVs’ parking lot in SMES 
operation. The model considers the behavior of parking lots as storage and flexible 
loads dependent to the upstream network price. Stochastic approach is employed to 
consider uncertainties around traffic pattern in parking lot. The numerical results have 
showed parking lot change the SMES elements’ operation condition and prepares 
more flexibility for SMES to deliver requiring services. Furthermore, comparing 
stochastic and deterministic results demonstrates more information for the operator to 
utilize SMES elements which resulted in less operation of parking lot and more 
operation of CHP and AB. 
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Appendix: SMES Elements’ Characteristics and Nomenclature 

Table1. Data of SMES elements’ characteristics. 
 

Heat Storage Auxiliary Boiler CHP Unit 

HS

chQ,η ,
HS

disQ,η  
Stored Energy 

(Min/Max) 
HS

Qγ  
AB

Qη  Output Energy 

(Min/Max) 

CHP

h
η  

CHP

e
η  Output Energy 

(Min/Max) 

0.9 0.5/3 pu 3 pu 0.9 0/10 pu 0.45 0.35 0/5 pu 
 

 

Table 2. Definition of subscripts, parameters, and variables. 
 

Subscripts 

W Electricity G Gas Q Heat 

s Scenario t Time Sc Scenario 

Parameters and Variables 

E  Energy stored  η Efficiency G Gas consumption 

Q Heat output W Electrical power Cap Parking lot total capacity 

L
 

Energy demand  λ Heat to power ratio π energy carrier price 

γ 
Maximum charge and 

discharge rate of heat storage e&
 

(column vector) changes 

in stored energy  h&
 

Heat storage level difference in 

two consecutive time intervals 

An underlined (overlined) variable is used to represent the minimum (maximum) value of that variable. 

Capital letters denote parameters and small ones denote variables. 

 


