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Abstract. Over the last decades a large variety of dataflow solutions emerged 

along with the proposed models of computation (MoC), namely the 

Synchronous Dataflows (SDF).  These MoCs are widely used in streaming 

based systems such as data and video dominated systems. The scope of our 

work will be on consistent dataflow properties that can be easily demystified 

and efficiently determined with the outlined mapping approach between 

Dataflows and Petri nets. Along with this strategy, it is also highlighted that it's 

of a major relevance knowing in advance the proper initial conditions to start up 

any SDF avoiding buffer space over dimensioning. The methodology discussed 

in this paper improves the outcomes produced so far (in Petri net domain) at 

design stage aiming at knowing the amount of storage resource required, as well 

as has a substantial impact in the foreseen allocated memory resources by any 

signal processing system at the starting point and also points out new directions 

to minimize the buffer requirements at design stage. 

Keywords: Dataflows, Petri nets, Synchronous Dataflows, Place and Transition 

Invariants, Models of Computation 

1 Introduction 

Over the last decades a multitude of dataflow solutions emerged along with 

requirement always supported by the needs of each new Model of Computation 

subtleties and peculiarities. Researchers have developed a few number of dataflow 

variants, trying to model the different constraints presented in the firing rules. These 

constraints about the firings rules are what differentiate several developed MoCs. For 

example in Cycle-static Dataflow [1], tokens rates can be scheduled in a periodic way, 

while in Dynamic Dataflow [2] token rates can be changed after each schedule. 

Another variant called Parameterized Synchronous Dataflow [3] allows the tokens 

rates to be defined by a parameter, which can be changed only between schedules.  
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Synchronous Dataflow (SDF) is a Model of Computation where the number of 

tokens consumed or produced by an actor is known in advance at compile time, i.e. 

without executing the model. This way, a SDF can be viewed as a statically 

schedulable model [4]. Every SDF model is composed by nodes and arcs (also usually 

called edges or channels). The nodes (graphically correspond to circles or ellipses) 

represent the functional or activity elements, while the edges (symbolized by arrows) 

represent communication channels between them. These channels are conceptually 

first-in-first-out queues. Edges are tagged with weights appended on both ends by 

non-negative integers. Due to their activity nodes consume and produce an establish 

amount of tokens on each firing based on tagged weights in the arcs. Tokens 

(represent by black dots) can also be seen as delays; therefore edges may contain 

initial markings which correspond to an initial number of delays.  

SDF model have demonstrate their adequacy in many signal processing and 

multimedia domains, in which there is no data-dependency in each schedule, i.e. the 

tokens rates remains constant after each actor firing, therefore the rates of tokens are 

fixed by nature. But this weakness (lack of expressiveness) can be viewed as its 

strength, since it’s possible to analyze all models for deadlock or bounded buffers. 

Several advantages can be outlined to SDFs models, namely the easiness in modeling 

signal processing multi-rate systems, the ability to generate static schedule at compile 

time (allowing to know the required resources in advance), and the sequential static 

schedules can be optimized for buffer memory minimization, as well as allowing 

efficient simulation and efficient code generation. In a nutshell, SDF are well-

matched to signal processing and communications systems. In [5] and [6] the 

researchers aimed at unveiling the effective and potential maximum number of tokens 

for each arc in every Synchronous Dataflow to foresee at compile time the necessary 

amount of storage resources, i.e. at design stage, as well as the study of dataflow 

models under a cyclic and continuous flow of data, whereas in this paper new 

developments are highlighted in the scheduling analysis and on reducing the allocated 

buffer memory by buffer sharing. 

The paper is organized in seven topics. After a short introduction and motivation 

about dataflows, a brief discussion about the issue under investigation in the present 

paper to the relationship to collective awareness systems is outlined. In a nutshell, the 

state of the art provides an overview upon the matter under research. Section 4. (“The 

proposed methodology”) presents and depicts the basic ideas behind the mappings 

outlined between dataflow and Petri net domains. Experimental work and results are 

shown in section 5. In section 6 it is presented in a summarized way the tools and 

computational environments used to work out the conclusions. The paper ends up 

with some guidelines that will rule the further research work on the key area of 

interest.   

2 Relationship to the Collective Awareness Systems 

Collective awareness is an issue that is nowadays being addressed in existing 

literature by several researchers due to the need to improve the knowledge of the 

impact of the different scenarios that are growing mainly on the side of the 

technological “footprint”. The need to seek for understanding at what surround us, 
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which make us above all a social creature, is demanding a worldwide coordination 

and awareness to gather in a more fruitful way all these new collaborative emerging 

realities.  

The proposed approach in this document maintains a close regarding to collective 

awareness and aims its future research to a subject which is a topic being conveyed as 

a worldwide awareness (a wide collective awareness) in terms of earth’s 

sustainability, the optimization energy consumption in order to fulfill very tight power 

requirements demanded by a target application or an embedded system. It is a vital 

subject since our society is founded on energy and due to increasing demanding on 

portable electronic devices and massive utilization, optimization of power (energy) 

consumption has become a critical design point. The industry of low power consumer 

electronics is currently submitted to a huge growth, while the power dissipation of 

digital systems experiences an increase in device density, complexity and speed, and 

the last but not the least the growing interest in lower power chips and systems are 

driven by business and demanding technical needs. Researchers and system 

developers are aware of the tradeoff between power and performance [7]. Moreover, 

tools and strategies can be developed or improved to go on even further to pursue the 

goal of devising optimized applications and embedded systems on different platforms.  

Memory resources are scarce in every signal processing system, therefore the 

contribution of tools to ameliorate this topic are of great significance nowadays when 

used together with the lowest sleep and active power draws hardware techniques. Our 

approach intends to be a contribution aiming at knowing the minimal allocated 

resource memory even at and during a system’s startup period. 

3   Summarized Overview of the Supporting Formalisms 

Actually Embedded Systems have a multitude of constraints and non-functional 

requirements, as a result to perform the synthesis or code generation efficiently of 

models the practitioner must deal with several issues, ranging from energy 

constraints, buffer requirements, memory efficiency and performance. To deal with 

these matters, two modeling formalisms are used in this work: Dataflows and Petri 

nets. In order to present Dataflows and Petri nets a summarized overview is provided, 

for a more complete and formal descriptions of Petri nets see for example [8, 9 and 

10] and for Dataflows see [11, 12 and 13]. 
 

3.1 Dataflows 
 

The basic idea of the principles of a language for parallel processing outlined by 

Gilles Kahn [11] in his seminal paper was to represent programs using nodes and arcs.  

Later on, Dennis [12] established the dataflow principles aiming at exploitation of 

parallelism in programs. In a dataflow, nodes are associated to computational program 

activity, and arcs connecting nodes convey the flow of information. Arcs are First-In-

First-Out queue channels with blocking read operations and non-blocking write 

operations. Lee et al. [13] presented in 1987 a special kind of dataflow known as 

Synchronous Dataflow (SDF) where the token rates (incoming and outgoing) are 

fixed and established by nodes on each arc, thus improving the runtime overhead of 
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the modeled system.  Nowadays SDFs are a mature approach and are well disseminate 

among stream based system, namely parallel and distributed signal processing 

systems, since one can detect deadlocks at compile time, as well as have demonstrate 

their adequacy in specifying multirate systems that can be statically scheduled. Figure 

1 (a) illustrate a SDF model where some arcs contain black dots representing initial 

markings (which can also be known as tokens or delays). 

 

3.2 Petri Nets 
 

A Place-Transition Petri net is a special bipartite directed graph (consisting of two 

kind of nodes, places and transitions), and can be viewed as a graphical and 

mathematical modeling tool. As a graphical tool, Petri nets are a valuable tool since 

they can be used as a visual aid to simulate the concurrent and dynamic activities of 

the systems. As a mathematical tool, it is possible to address algebraic equations, state 

equations and other mathematical formalisms that govern the system’s behavior and 

structure. The origin theory of Petri nets is based on the work of Carl Adam Petri 

dissertation’s published in 1962. Graphically, places are drawn as circles or ellipses, 

and transitions as bars or rectangles. Arcs are tagged with positive integers 

representing weights, and are either from a place (/transition) to a transition (/place). 

Places may hold tokens defining the state of the system.  In the graphical environment 

tokens assigned to places correspond to black dots or positive integer numbers. The 

activity of Petri nets is ruled by enabling and firing transitions. In a word, a transition 

is enabled if each input place is marked with a minimum number of tokens fixed by 

the arc weight, and whenever enabled the transition will eventually fire. In figure 1. 

(b) one can see an example of a Petri net model. 

4 The Proposed Methodology 

The fundamental idea of our methodology is to make use of an inter-relation between 

a Synchronous Dataflow (SDF) and a transformed equivalent Petri net (PN). The idea 

was first presented in [14]. This way one can encompasses and take benefit from the 

well known properties verification capabilities of Petri nets, namely invariants and 

reachability analysis. Based on this inter-relation between SDF and PN, valuable 

information is added to the scheduler allowing one to gain insight knowledge about 

the storage resource in each arc, as well as the resource allocation of the whole SDF 

by realizing an inverse mapping into dataflow domain. 
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Fig. 1. An example of a Dataflow model, where some arcs contain initial tokens (a) and Petri 

net model (b). 
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The complete mapping strategy is depicted in figure 2. In a summarized way, one 

tries to find a relationship between every element in each domain, keeping in mind 

that each of these environments due to its nature has passive and active elements.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Proposed mapping between dataflow and Petri net domain  

This way, a process/function (represented by a circle) in a dataflow corresponds to 

a transition in Petri net domain (depicted by a bar). Since arcs in dataflows represent 

paths that conveys the oriented stream of information, arrows are used between the 

processes. The matching element on the Petri net side for the oriented path is a circle, 

embodying normally conditions, states, resources or objects.  Arcs in a dataflow also 

include weights and initial markings denoted by non negative integer tagged at both 

ends of the arrow and black dots, respectively. The previous two characteristics find 

their matching elements in the lower part of figure 1, on the side of Petri net domain. 

To illustrate our approach, a dataflow is presented in figure 1 (a) and the 

corresponding equivalent Petri net model is shown in figure 1 (b). 

A Petri net with m places and n transitions is represented by a matrix (mxn) called 

the incidence matrix C. The entries of the incidence matrix are integers representing 

the token balance associated to the firing of every transition in the Petri net. If there is 

token gain the numbers are positive, for a loss and no change on the associated 

transitions, negative and zero entries in C are used respectively. This matrix is the key 

element to establish the transition or fundamental equation which governs the new 

markings on the Petri net given an initial marking set. Based on a qualitative analysis 

of PN two properties support our analysis: (1) Place Invariant (P-Invariant); and (2) 

Transition Invariant (T-Invariant). Based on the incidence matrix one creates a set of 

homogeneous linear equations which allows finding the so called P and T-Invariants.  

The structural domain analysis is aimed at designing systems without any kind of 

inconsistencies coping with properties which stay constant during model’s execution. 

Maximum potential number of tokens is computed with P-Invariants, as presented in 

[15], whereas the maximum effective number of tokens on each arc in a dataflow is 

achieved summing all values presented in the reachability tree. More over with T-

Invariants one can foresee the potential initial markings (M0) for each place. Using the 

reachability tree one can keep track of the maximum number of tokens present on 

each arc during a schedule. This way the buffer size for each individual arc is foreseen 
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on the dataflow. Gathering all these values the total buffer requirements for the arcs 

present in a dataflow is estimated. 

  

a) b) 

Fig. 3. An implementation of a multi-rate SDF Dataflow model in Ptolemy environment (a) and 

Petri net equivalent model supported by the translation rules presented in Fig. 2. 

The spectrum actor in figure 3 requires multiple input tokens to fire. This input 

multiplicity is established by a parameter called order, which is always a number 

dependent of power 2. The icon “SDF Director” governs the proposed dataflow model 

by defining the number of iteration to be performed and additionally determines the 

number of times each actor fires in one iteration using the balance equations. The 

multi-rate SDF model presented in figure 3. (a) is called well ordered chain structured 

SDF, and for these cases it is necessary to add an extra place (p3) to make the whole 

Petri net reversible and live (for further reading see [9]), because at the end of each 

periodic schedule the digital signal processing system exhibits cyclic behavior since 

there is always an imbalance in the number of tokens. Besides this condition is central 

to evolve our methodology which is based on the P/T-Invariants in Petri net domain 

(see [6]). 

5 Experimental Work and Results 

One may argue that the reachability tree is a bottleneck due to the state space 

explosion problem; however, it is possible to distribute the state space in a set of 

computing machines [9] limiting this drawback. The experimental work was carried 

on two kinds of (well-known) problems, the dining philosophers and distributed 

database, besides the process is still dependent on the choice of having a good hash 

function to guarantee also a good state's distribution among the processors.   

 

5.1 Scheduling Analysis of Synchronous Dataflow 
 

Analysis of ill-specified SDF at the design time or even the misbehaved ones is an 

issue of major relevance. In a SDF our concern is related to attain a static schedule (if 

one exists), where a finite periodic list of actors is schedule in a sequential way. A 

SDF can evidence either rate-inconsistency (motivated by unbounded memory 

problems), or inability to run, or even deadlock caused by lack of initial buffering. As 

stated in Lee et al. [4] “a periodic admissible sequential schedule (PASS) is a periodic 

and infinite admissible sequential schedule”, one concludes that after a period has 
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been executed, the size of each buffer returns to its initial state, i.e. or to its home state 

(as it is known in Petri net domain).  

To illustrate our idea considers the following flowchart depicted in figure 4. Taking 

the equivalent Petri net model one can identify easily if either a SDF model is 

consistent or inconsistent, or has deadlocks, using the P-T Invariants (structural 

analysis) and the reachability tree (behavioral analysis). Therefore, it is possible to 

draw a methodology (on the side of Petri net domain) for each and every SDF to find 

out their runnability feature. Figure 5 presents all those cases of runnability in SDFs 

models. 

 
 

Fig. 4. Flowchart to identify the runnability (or rate consistency) of SDFs 

 

As another example consider the simplified spectrum analyzer dataflow presented in 

figure 6 (a) and based on the translation rules outlined in section 4. one can get the 

Petri net model shown in figure 6 (b). Using the Petri net structural analysis, it is 

possible to know the maximum potential and effective amount of storage space for the 

static schedule identified, as stated before. The amount of storage space for each arc 

(M(pi) stands for the number of tokens in place pi) are shown in figure 7 (a) and the 

associated static schedule in figure 7 (b). The total buffer requirement for the 

spectrum analyzer is 17 units, where each arc in dataflow domain maps to a place in 

Petri net domain. In the reachability tree achieved under Petri net domain one must 

find the home state in order to know the execution time of the periodic static schedule 

and at the same time can observe the execution pattern of each process in a single 

schedule as shown in figure 7 (b).  If every process (transition) takes 2 time units, the 

entire schedule execution time will take place in 18 time units. From figure 7 (b), one 

can observe that in every periodic static schedule the Adaptive LPF (ALPF) process 

executes 4 times, FFT Zoom (FFT Z), Peak Detector (PD), Interpolator (INT) and 

Zoom Control (ZC) executes one time and that Decision (DECI) executes 2 times.   

The use of the reachability tree can be seen as a bottleneck by some researchers  due 

to the state space explosion problem; however it is possible to distribute the state 

space in a set of computing machines [16] limiting this drawback. Additionally to 

know the real impact of the initial conditions in the spectrum analyzer multiple 

simulations were performed using the computational environments to estimate the 

number of states generated, as well as the number of fired transitions in the foreseen 

static schedule. 
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a) b) c) 

  

  
d) e) 

 

Fig. 5. Synchronous Dataflows and their equivalent Petri net models for different runnability 

cases; (a) rate consistent with bounded memory; (b) rate-inconsistent with unbounded memory; 

(c) rate-inconsistent – cannot run; (d) rate consistent with deadlock; (e) rate-consistent without 

deadlock. 

a)   
 
 

b)   

 

Fig. 6. SDF of spectrum analyzer (a) and Petri net equivalent model (b) 
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Observing Table 1 among the various cases identified one (case 1) conducts the 

system to a minimum in the number of states and fired transitions. Therefore from the 

other cases in Table 1 one can conclude that initial conditions (in place p1 and p4) will 

make the modeled system progress to some extra states that are not relevant for the 

periodic static schedule, thus augmenting the state space and at the same time 

unnecessarily over dimensioning the system. Thus it is important to develop an 

algorithm to find out the initial conditions that conduct the modeled system to a 

minimal state space and also reduces the required storage space. 

 

5.2 Reducing Buffer Memory by Buffer Sharing  

 
In order to reduce even further the allocated buffer space among the arcs it is 

important to unveil those that don’t overlap their live ranges stressing that each arc is 

committed to a First-In-First-Out (FIFO) buffer. The strategy to follow is to observe 

the way each place in each state behaves traversing the state space of the schedule and 

then, decide what are the places that don’t overlap at each state by grouping those that 

are disjoint in state space schedule.  
 

Table 1.  State space and fired transitions for several cases for different initial marking on 

places p1 and p4 (M0(p1) and M0(p4)), for figure 6 (b).  

Case M0(p1) M0(p4) # states # fired transitions 

1 4 1 20 32 

2 4 2 31 56 

3 8 1 68 144 

4 8 2 114 276 

5 5 1 28 50 

6 7 1 52 106 
 

 

 

Amount of storage space per arc 
Total 

M(p0) M(p1) M(p2) M(p3) M(p4) M(p5) M(p6) 

4 4 1 2 4 1 1 17 
 

 

a) 

Schedule 
Time stamp  

1 2 3 4 5 6 7 8 9 10 

1 ALPF,

ZC 

ALPF ALPF ALPF FFTZ PD INT DECI DECI  

2          ALPF

,ZC 
 

 

b) 
 

Fig. 7. Buffer requirement for a periodic static schedule of spectrum analyzer dataflow (a), and 

the corresponding static schedule (b). 

After this identification one is able to state which buffers can be fully shared. To 

illustrate our methodology, an example is used, the spectrum analyzer. The 

corresponding SDF is shown in figure 6. (a). The equivalent Petri net model of the 

spectrum analyzer (in figure 6. (b)) is used as an example to illustrate the issue of the 

buffer sharing. This way the following buffer sharing is possible: places p0, p1, p2 and 

p3 can share the same buffer and requires a buffer size of 4 units, which is the 
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maximum amount of storage in this subset of places; places p4 and p5 can also share 

the same buffer and require a buffer with unitary dimension; and finally place p6 

needs a buffer of 4 units. Summing the contributions of each group of shared places 

one attains the total amount of buffer space of 9 units, representing a space memory 

saving of 47 percent in comparison to the initial solution. 

6 Tools and Computational Environments 

The development of the equivalent transformed Petri nets was performed by two non 

commercial tools that are freely available in the web: (1) Integrated Net Analyzer INA 

[17], a non graphical Petri net editor, that requires a previous knowledge of the INA 

syntax language to perform a net description; (2) Still TINA - TIme Petri Net 

Analyzer [18], a graphical editor with a stepper simulator to perform a step by step 

animation in a Petri net.  The invariant analysis (used in section 5) was performed in 

both environments. 

7 Conclusions and Further Work 

The proposed methodology allows one start from a dataflow model, a Synchronous 

Dataflow, and based on a set of mapping rules achieve an equivalent Place –

Transition Petri net model exploring the well-known verification properties: 

Behavioral (Structural) properties which are dependend (independent) on the initial 

marking. In this paper the focus is on the behavioral properties: reachability, 

boundedness, deadlocks, liveness, reversibility and home state. Using reachability tree 

one can identify if from a initial marking it is always possible to reach that initial state 

(referred in this case as home state), or know the firing sequence that brings the 

equivalent Petri net to the home state. Boundedness was useful to get the required 

buffer space for each Synchronous Dataflow arc and reveal if no design errors were 

committed at design stage. Liveness is a major property for the stream based SDF 

models since data flows sequentially, continuously and iteratively since ones tries to 

find a schedule, i.e., guarantee the absence of deadlocks. 

On the side of structural properties the analysis is focused on the invariants (P and 

T) to achieve the buffer (token) capacity concerning each arc in SDF models. Initial 

conditions in dataflow models play an important role since with the proper initial 

conditions the system will not be over dimensioned, which are not desirable and 

should be avoided. Moreover, choosing different initial conditions one can state and 

conclude that the modeled system will evolve to some states that are not relevant for 

the periodic static schedule, thus augmenting the state space will jeopardize (more 

time consuming task) the search for specific states, such as for example the home 

state. In resume, the goal is to look for initial markings that make system runnable to 

complete periodic static schedules. As future work, one should find an algorithm to 

identify amongst all firing conditions those that lead the system to a minimal state 

space encompassing a finite periodic static schedule using the modeling formalism of 

PN. Also outline an algorithm (or an optimization algorithm) to find regions (or sub-
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regions) in the state space where a buffer sharing may be possible. This strategy will 

allow reducing to a great extent the buffer requirements. 
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