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Abstract. In the ever-increasing availability of massive data sets describing 

complex systems, i.e. systems composed of a plethora of elements interacting in 

a non-linear way, complex networks have emerged as powerful tools for 

characterizing these structures of interactions in a mathematical way. In this 

contribution, we explore how different Data Mining techniques can be adapted 

to improve such characterization. Specifically, we here describe novel 

techniques for optimizing network representations of different data sets; 

automatize the extraction of relevant topological metrics, and using such 

metrics toward the synthesis of high-level knowledge. The validity and 

usefulness of such approach is demonstrated through the analysis of medical 

data sets describing groups of control subjects and patients. Finally, the 

application of these techniques to other social and technological problems is 

discussed.  
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1   Introduction 

Networks are all around us: from a social point of view, when we are ourselves, as 

individuals, the units of a network of social relationships of different kinds [1]; but we 

are also the result of networks of biochemical reactions, and of electro-chemical 

interactions between neurons [2]. Furthermore, our world around us is organized in 

networks, from physical transportation networks [3] up to virtual information webs 

[4]. While the mathematical formulation of networks as mathematical objects started 

in 1736 when the Swiss mathematician Leonhard Euler published the solution of the 

Königsberg bridge problem, graph representations can be found back in 980 AD [5]. 

Only in recent years, thanks to the increasing capacity of computation centers on the 

one side, and availability of public data sets on the other, complex network analysis 
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has witnessed a revolution, which has yielded a vast theoretical and applied body of 

research. Interested readers may refer to Refs. [6], [7], [8], [9] for further information. 

In spite of this evolution, several research questions have still to be tackled, and 

new ones appear when novel applications of network theory are proposed. Among 

these, the PhD Thesis “Complex Networks and Data Mining: Toward a new 

perspective for the understanding of Complex Systems” [10] proposes the use of data 

mining techniques to solve the following four research questions: (i) how to pre-select 

relevant features for minimizing the cost of network reconstruction, (ii) how to design 

new network reconstruction techniques, (iii) how to use network representations to 

improve data mining tasks, and (iv) how to assess and optimize the significance of a 

network representation. 

As will be elaborated in Section 2, the problem posed in the fourth research 

question is of utmost relevance when the system under analysis is a Collective 

Awareness System (CAS). In this contribution, we review the methodology developed 

inside [10] to deal with this problem, which allows automatizing the process of 

obtaining the best network representation of a given system. This guarantees that the 

highest quantity of information is extracted from the system, thus maximizing the 

knowledge gained from it. 

2   Relationship to Collective Awareness Systems 

Under the umbrella of the ‘FuturICT’ FET Flagship Pilot Project, the European 

research community has already analyzed the implications and requirements of a 

collective awareness system, called Planetary Nervous System (PNS) [11]. Among 

the expected benefits of such world-scale sensory system, the PNS would be able to 

record and mine the digital footsteps created by human activity, as well as to unveil 

the knowledge hidden in such social big data, thus allowing addressing some 

fundamental questions about social dynamics. Nevertheless, implementing such 

system will require overcoming several challenges: some of them of a technical 

nature and expected to be solved in the next years, as for instance increased 

computational capabilities, others requiring a change in the data processing paradigm. 

Specifically, new algorithms for finding patterns in large sets of data will be required, 

with two specific targets: i) handle fragmented, low-level and incomplete data, and ii) 

adapt to the specific characteristics of these data sets, including their networked multi-

dimensional nature and semantic richness [11]. 

Within this context, a natural solution has been already identified in the complex 

network theory, as it provides a rigorous framework for the study of structures created 

by relationships between the elements of a complex system [12]. Potential 

applications include the analysis of the dynamics of social systems, e.g. the diffusion 

of opinions [13] or of diseases [14]; the analysis of mobility patterns, by modeling 

pairs of origin – destination locations as links; or semantic text analysis, for creating 

structured taxonomies over texts [15]. 

If one is to apply complex network analysis to data coming from CAS like the 

PNS, whose size is expected to exceed the capacity of human analysts, principles and 

methods should be found to ensure a way for an automated knowledge extraction. The 
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methodology presented in this contribution aims at providing an automatic procedure 

for obtaining the best network representation of a given system. Traditionally such 

optimization step has mainly been performed by means of the expert judgment of the 

researcher: yet, it is unfeasible to manually optimize the network representation of a 

CAS, due to the quantity of information it encodes. Thus, we expect an important 

added value when the methodology here presented is positioned between the data 

gathering, and the human-based network analysis phases of CAS management. 

3   Proposed Methodology 

As previously introduced, this Section proposes a novel way of optimizing the 

network representation of a complex system, e.g. a CAS, by means of data mining 

techniques, as developed in [10]. Such methodology will be presented in Section 3.2: 

before that, Section 3.1 will introduce the reader to the different ways of constructing 

a network representation starting from a raw data set. 

3.1   Network Reconstruction Frameworks 

As a first step in the analysis of a complex system, it is necessary to create a network 

representation of it; this, in turn, requires two steps: map each element of the system 

into a node of the network, and assess the existence of a relationship between pairs of 

nodes. 

When relationships between the system elements are defined upon a physical 

support, their identification is a straightforward task, and the researcher only needs to 

map them into the network representation. For instance, one may consider the air 

transportation network: when airports are represented by nodes, links are naturally 

established between pairs of them if at least one direct flight is connecting these two 

airports [3]. 

In the absence of such relationships, links can still be built, provided a vector of 

observables, i.e. of measurements representing some properties of the system, can be 

associated to each node. In this case, each link represents the presence of a functional 

relationship between the data corresponding to that pair of nodes, and the resulting 

networks are called functional networks. For instance, if one is to analyze the 

structure of a stock market, each stock may be represented by a node, with pairs of 

them connected whenever there is a significant correlation in their price evolution 

through time [16]. Fig. 1 reports a simple example, in which a network is created by 

calculating Person’s linear correlation between the evolutions of four U.S. stock 

prices. 

It is important to notice that the requirement of having a vector of observable for 

each node precludes the use of functional representations for systems whose elements 

are characterized by a single value. Examples include tissues and organic sample 

analysis, like spectrography; genetic expression levels of individuals, without 

evolution through time [17]; biomedical analyses, e.g. the study of brain oxygen 

consumption by means of neuroimaging techniques [18]; or social network analyses, 

when just a snapshot of users characteristics is available [13]. To overcome this 
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limitation, a novel method was recently proposed, which allows treating collections of 

isolated, possibly heterogeneous, scalars, e.g. sets of biomedical tests, as networked 

systems. The method yields a network where each node represents an observable, and 

links codify the distance between a pair of observables and a model of their typical 

relationship within the studied population [19], [20].  

3.2   Network Optimization and Analysis 

Whether the network representation is assembled by mapping physical connections, 

by constructing a functional representation, or by using the technique proposed in 

Refs. [19], [20], two further steps are required: i) transform the fully-connected 

weighted network (as the one depicted in Fig. 1) into a structured unweighted 

network, and ii) extract a set of metrics describing some topological characteristics. It 

is worth noticing that both steps are characterized by some level of arbitrariness. 

While binarizing the network, it is necessary to define a threshold, such that links 

with a weight lower than this reference value are deleted. Also, among the large group 

of available topological metrics, the researcher has to choose the one he / she 

considers being relevant for describing the system under study. 

A new methodology has been proposed for addressing these two issues, based on 

the application of data mining techniques [21]. By starting from an external 

classification as ground truth, e.g. control subjects and patients suffering from some 

disease, it is possible to use the output of a data mining classification task as a proxy 

for the relevance of the network representation under study. This yields criteria for an 

optimal network representation with respect to a given problem. 

Following the approach proposed in Ref. [21], instead of applying a single pre-

determined threshold τ, such that links whose weight is lower than τ are deleted, a set 

of thresholds T = {τ1, τ2, …} is applied, covering the whole range of applicable 

thresholds. Furthermore, a large set of measures M is extracted from each network, 

 

 

Fig. 1. Example of a functional network reconstruction. (Left) Time evolution of four stocks 

composing the Dow Jones Industrial Average index; each time series corresponds the 

evolution of prices from 1st January to 31st December 2012, and values are normalized to 1.0 

in the first day. (Right) Resulting network, where each node is a stock, and links are weighted 

according to the Pearson’s linear correlation between the corresponding time series; green 

(red) shades indicate positive (negative) correlations. 
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including the most relevant macro-, meso- and micro-scale topological features of a 

complex network (see Ref. [8] for a review of applicable metrics). At the end of the 

process, the initial raw data are therefore converted into a large set of measures, 

representing a wide sample of the possible analyses that may be performed from a 

complex network perspective. 

Once the raw data have been transformed into a large set of topological metrics, 

the problem faced by the researcher is the identification of the optimal subset of 

metrics for describing the system. Here we propose the use of a data mining 

classification task for automatizing this process. Specifically, for each threshold τi, 

and for each pair (or triplet) of metrics, subjects are classified; the percentage of 

subjects correctly classified is then used as a proxy of the relevance of such set of 

parameters. Indeed, if a good classification is achieved, the considered parameters and 

network metrics correctly represent the structural differences between the two classes 

of subjects. Thus, the best classification corresponds to both the best set of metrics 

and to the corresponding best threshold. Fig. 2 proposes a graphical representation of 

this process, where information flows from the left (raw data and weighted fully-

connected networks) to the right (final classification).  

4   An Application to Mild Cognitive Impairment 

To demonstrate the validity of the proposed approach, we here consider a set of 

magneto-encephalographic data (MEG), and identify the features that better 

differentiate healthy subjects from patients suffering from Mild Cognitive Impairment 

 

Fig. 2. Optimizing network reconstruction. Following the creation of weighted cliques (step 

i), these are transformed into a set of unweighted adjacency matrices by dint of different 

thresholds (step ii); a set of features is extracted for each network (step iii), and this is used as 

input for a data mining task (step iv). Finally, the best classification is used to choose the most 

relevant threshold and topological metrics. Adapted from Ref. [21]. 
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(MCI). MCI is a disease, considered a prodromal stage of Alzheimer’s, characterized 

by cognitive impairments beyond those expected based on the age of the patient, but 

which are not significant enough to interfere with their daily activities. The data set 

comprises recordings from nineteen patients and nineteen healthy volunteers during a 

modified Sternberg’s letter-probe task, which requires participants to firstly memorize 

a set of five letters presented on a computer screen, for then pressing a button when a 

member of the previous set is detected. 

Following the methodology proposed in Section 3.2, 178 networks have been 

created for each subject, corresponding to the number of different thresholds 

considered. From each one of these networks, 72 different topological metrics have 

been calculated. A classification task was ultimately performed for each pair and 

triplet of considered features, using a Support Vector Machine algorithm [22]. Fig. 3 

(Left) reports the precision (percentage of correctly classified subjects) corresponding 

to the most representative pair (triplet, in red) of features, as a function of the link 

density obtained by applying different thresholds. Classification was also attempted 

with other algorithms, including Naive Bayes and neural networks [23], producing 

qualitatively comparable results. 

Several relevant conclusions can be derived from Fig. 3. Firstly, the best 

classification rate (95%) is obtained for sufficiently low threshold values, i.e. 

including a great quantity of links inside the analysis. Specifically, the maximum 

score corresponds to including about 40% of the links. Remarkably, the functional 

brain network literature typically considers networks with a 5% link density [24]. The 

increase in the number of links, as suggested by the proposed methodology, has a 

major consequence: allowing a better consideration of meso-scale structures, e.g. of 

motifs, that is specific connectivity patterns formed by 3 nodes [17]. Furthermore, 

results corresponding to low link densities are much more unstable, as demonstrated 

by the leftmost part of the plot in Fig. 3. Clearly, the addition, or deletion, of a few 

links has a major effect in the topology, changing the meaning of all metrics 

calculated on the top of it. Therefore, these results invite to reconsider many studies 

made in the Literature about functional brain network reconstruction, and validate the 

  
 

Fig. 3. (Left) Classification score as a function of link density; black (red) points indicate the 

best classification score obtained using pairs (triplets) of features. (Right) Classification of 

MCI and healthy subjects; green (red) points represent the position in the space of features of 

healthy (MCI) patients. Adapted from Ref. [20]. 
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hypothesis that a data mining approach can improve the understanding of complex 

systems. 

5   Conclusion and Discussion 

In conclusion, in this contribution we have described and reviewed how the 

application of data mining techniques can be used to improve and optimize the 

reconstruction of complex networks, representing for instance Collective Awareness 

Systems. In turn, the resulting networks can be used to extract knowledge about the 

topological properties of the corresponding systems, in a way that goes beyond the 

capacity of classical data mining. Such advantages come at a cost: due to the high 

number of analyses required, e.g. the extraction of several topological metrics for 

different threshold values, there is an important increase in the computational cost, 

especially when compared with standard data mining algorithms. 

Beyond the proposed biomedical example, such methodology can be applied in any 

scenario in which a complex network representation is expected to be relevant. Thus, 

this includes the analysis of any system whose dynamics is defined by the 

relationships between its elements: from social networks created by interacting 

individuals, up to technological networks, as communication or transportation 

systems. Furthermore, such elements may not be homogeneous, or interactions may 

develop through different channels – what is known as a multi-layer (of multiplex) 

network [25], [26]. For all of this, the approach here presented is expected to be of 

relevance for future applications of complex network techniques to the field of 

Collective Awareness System. 
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