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Abstract. Distinguishing Sequence (DS) and Homing Sequences (HS) are used 
for state identification purposes in Finite State Machine (FSM) based testing. 
For deterministic FSMs, DS and HS related problems are well studied, for both 
preset and adaptive cases. There are also recent algorithms for checking the ex-
istence and constructing Adaptive DS and Adaptive HS for nondeterministic 
FSMs. However, most of the related problems are proven to be PSPACE-
complete, while the worst case height of Adaptive DS and HS is known to be 
exponential. Therefore, novel heuristics and FSM classes where they can be ap-
plied need to be provided for effective derivation of such sequences. In this pa-
per, we present a work in progress on the minimization of Adaptive DS and 
Adaptive HS for nondeterministic FSMs. 

Keywords. Nondeterministic Finite State Machines, Adaptive Homing Se-
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1 Introduction 

Distinguishing Sequences (DS) and Homing Sequences (HS) are used for state 
identification purposes in Finite State Machine (FSM) based testing [1-3]. A DS iden-
tifies the initial state of the FSM under investigation, while an HS is used to identify 
the final state after the sequence has been applied. A sequence is adaptive if the next 
input to be applied to an FSM under investigation is chosen based on the previously 
observed outputs, and the sequence is preset if the outputs need to be observed only 
after the entire sequence applied.  The methods to derive preset/adaptive HS/DS are 
well elaborated for complete and deterministic FSMs [3-5]. Even though the length of 
most of these sequences is polynomial w.r.t. the number of FSM states, the current 
complexity of digital systems and software makes it almost impossible to derive a 
complete deterministic behavior of the system integrated into the overall software 
and/or hardware environment. Moreover, current specifications of telecommunication 
protocols and other digital systems include an optionality of output responses under 



the same queries. That is the reason why researchers turn their attention towards spe-
cial FSM types, and in particular, nondeterministic FSMs.  

A method for deriving a DS for two states of an observable nondeterministic FSM 
has been proposed in [6], where the length of this sequence is shown to be exponen-
tial for nondeterministic FSMs. The upper bound on the length of an HS for an ob-
servable nondeterministic FSM is shown to be exponential as well, and this upper 
bound is reachable [7]. As for adaptive experiments for nondeterministic FSMs, it has 
been shown that the length of a shortest adaptive DS for two states of an observable 
nondeterministic FSM with n states is at most n(n – 1)/2 [8]. Whenever such an adap-
tive sequence is derived to distinguish m > 2 states of an observable nondeterministic 
FSM, the length of this sequence grows exponentially [9]. The problem of checking 
the existence of a preset DS is known to be PSPACE-complete even for complete 
deterministic FSMs [3]. The latter means one cannot directly apply these techniques 
to effectively derive test sequences against FSM specifications. That is the reason 
why a number of heuristics to decrease such complexity have been proposed. In par-
ticular, various heuristic methods to construct reduced adaptive DS for complete de-
terministic FSMs have been proposed in [10]. However, it has been also proven that 
constructing a minimal adaptive DS for complete deterministic FSMs is an NP-hard 
problem [11]. Therefore, novel heuristics need to be provided for effective derivation 
of adaptive HS and adaptive DS for nondeterministic FSMs.  

In this paper, we focus on two techniques for deriving adaptive DS and adaptive 
HS for nondeterministic FSMs. In particular, we present a class of nondeterministic 
FSMs for which it is possible to construct an adaptive DS without using any nonde-
terministic transitions. We also argue how existing adaptive DS minimization ap-
proaches can be used for such nondeterministic FSMs. As for adaptive HS, we ad-
dress a method proposed in [9] that constructs an adaptive HS for an observable non-
deterministic FSM when each state pair is adaptively homing. We discuss how this 
method can be improved so that the resulting adaptive HS can be shorter. Therefore, 
the main contributions of this work in progress are two novel heuristics for effective 
derivation of adaptive DSs for nondeterministic FSMs and adaptive HSs for observa-
ble nondeterministic FSMs. 

The paper is organized as follows. Section 2 contains preliminaries. A heuristic 
method for effective adaptive DS derivation for nondeterministic FSMs is given in 
Section 3 while Section 4 presents an approach for minimizing adaptive HS for ob-
servable nondeterministic FSMs. Section 5 concludes the paper. 

2 Preliminaries 

In this paper, we focus on minimizing adaptive HS and DS for nondeterministic 
FSMs. As usual, an FSM S is a 4-tuple (S, I, O, hS), where S is a finite set of states; I 
and O are finite non-empty disjoint sets of inputs and outputs, respectively; hS ⊆ S × I 
× O × S is a transition relation, where a 4-tuple (s, i, o, sʹ′ ) ∈  hS is a transition. An 
FSM is complete if for each pair (s, i) ∈  S  ×  I  there exists (o, sʹ′ ) ∈  O  ×  S  such that 
(s, i, o, sʹ′ ) ∈  hS. Otherwise it is called partially specified. If for some pair (s, i) ∈  
S  ×  I , there exist two transitions (s, i, o1, s1), (s, i, o2, s2) ∈  hS, such that o1 ≠  o2 or s1 
≠  s2 then S is called nondeterministic. For a nondeterministic FSM the nondetermin-



ism is observable if each input/output pair i/o uniquely identifies the successor of each 
FSM state (if it exists). Given a state s of S and an input/output sequence α/β, the α/β-
successor of state s is the set of all states that are reached from s via an application of 
α when an output reaction β is produced. Note that for an observable FSM S, the car-
dinality of the α/β-successor of state s is at most one for any input/output sequence 
α/β.  

A sequence α is a distinguishing (homing) sequence (DS/HS) for the FSM S if after 
applying α and observing output reaction β one can uniquely conclude about the ini-
tial (final/current) state of S. The length of preset DS and HS is exponential for non-
deterministic FSMs, however sometimes this length can be shorter when adaptivity is 
used. An adaptive DS/HS can be represented as a tree or as a specific acyclic single-
input output-complete FSM that are called test cases [3, 12].  

A number of methods for deriving adaptive DS and HS for nondeterministic FSMs 
have been proposed (see, for example [9]). However, the length of the corresponding 
sequence in general case remains exponential and thus, novel heuristics need to be 
provided for minimizing the length of such sequences.  

3  Nondeterministic FSMs with a Deterministic Adaptive DS 

For a complete deterministic FSM with n states, it is known that n(n – 1)/2 is the 
tight upper bound for the height of an adaptive DS [3]. However, for nondeterministic 
FSMs, the height of an adaptive DS is exponential in general. In this section, we pre-
sent a class of nondeterministic FSMs for which the height of an adaptive DS is at 
most 2n2 – n – 1 and existing algorithms of adaptive DS minimization can be readily 
applied. 

A transition (s, i, oʹ′ , sʹ′ ) ∈  hS is a deterministic transition if for any transition (s, i, 
oʹ′ ʹ′ , sʹ′ ʹ′ ) ∈  hS we have oʹ′ ʹ′= oʹ′  and sʹ′ ʹ′= sʹ′ . For a given FSM S = (S, I, O, hS), we 
define the deterministic projection Sd = (S, Id, Od, hd

S) of S as follows. Sd and S  have 
the same set S of states. For a transition (s, i, oʹ′ , sʹ′ ) ∈  hS, (s, i, oʹ′ , sʹ′ ) ∈  hd

S, if and 
only if (s, i, oʹ′ , sʹ′ ) is a deterministic transition in S. Id and Od consist of the inputs and 
outputs used in the transitions in hd

S. Intuitively, Sd is the same FSM as S where the 
deterministic transitions are preserved but all other transitions are removed. Hence, Sd 

is a deterministic FSM by definition. It is easy to see that an adaptive DS for Sd can be 
directly used as an adaptive DS for S as well, and it will be a deterministic adaptive 
DS in the sense that only the deterministic transitions are used throughout the applica-
tion of the adaptive DS in S. In the lucky case that Sd is a complete deterministic 
FSM, the existence check and the adaptive DS construction algorithms given in [3] 
can be directly applied. However, in general, Sd is a partially specified deterministic 
FSM. Moreover, in the worst case the transition relation of Sd can be empty, and in 
this case, the question of existence of an ADS for S remains open.  

Although there usually is a complexity jump for the algorithms when one considers 
partially specified FSMs, this is not the case for the problems related to adaptive DS. 
In [13] a polynomial time algorithm is provided to check if a partially specified FSM 
has an adaptive DS or not. In this paper, we adapt this algorithm for efficient deriva-
tion of an ADS for a nondeterministic FSM that requires a partial deterministic pro-
jection. We also improve the upper bound on the length of such ADS compared to the 



one given in [13]. In fact, the approach given in [13] is based on constructing a com-
plete deterministic FSM C(Sd) from a given partially specified deterministic FSM Sd 
such that there exists an adaptive DS with the height H for C(Sd) iff there exists an 
adaptive DS with height H – 1 for Sd. The number of states in C(Sd) is 2n, where n is 
the number of states in Sd. Therefore, it is possible to check if there exists an adaptive 
DS for Sd (and hence a deterministic ADS for S) in O(pnlgn) time [3], where p is the 
cardinality of Id. 

If there exists an adaptive DS for C(Sd), one can then use the LY algorithm (the 
adaptive DS construction algorithm given in [3]) to construct an adaptive DS. Alt-
hough [13] provides an upper bound of π2n2/3 for the height H of the adaptive DS 
constructed for C(Sd), using the result in [14], the LY algorithm actually constructs an 
adaptive DS with the height at most H = 2n2 – n for C(Sd). Therefore, the height of the 
adaptive DS for Sd is at most H – 1 = 2n2 – n – 1. 

Note that the LY algorithm does not aim for the minimization of the adaptive DS it 
constructs. However, there exist heuristics for the minimization of adaptive DSs with 
respect to different metrics (e.g. height, total external path length, etc.) for complete 
deterministic FSMs [10]. Since C(Sd) is a complete deterministic FSM, one can di-
rectly use these heuristics in order to construct minimized adaptive DSs for C(Sd), and 
hence for the nondeterministic FSM S. Note that S can be nonobservable as well.  

4 Minimizing adaptive HS for Nondeterministic FSMs 

In this section, we discuss how to optimize the procedure for deriving an adaptive 
HS for an observable FSM S. The procedure is taken from [9] while the complexity 
of the related problem is given in [15]. The homing test case derivation strategy is 
based on the condition that each state pair of S is adaptively homing. In other words, 
there exists a homing test case for S if there exists an adaptive homing sequence for 
each subset {si, sj} ⊆ S of states of the observable nondeterministic FSM S. A test 
case Pi,j is a homing test case for the subset {si, sj} ⊆ S of states if for every in-
put/output sequence α/β defined in Pi,j, the α/β-successor of the subset {si, sj} ⊆ S has 
at most one state.  

If there exists a homing test case for the FSM S then the set S is a homing set and 
the test case P is a homing test case for the set S or the test case P homes states of the 
set S. Otherwise, the set S is not homing. The homing test case for the set S = {s1, .., 
sn} is derived iteratively. As mentioned above, Pi,j is a homing test case for the subset 
(pair) {si, sj} ⊆ S of FSM states. The procedure starts with a homing test case P1,2 for 
the set {s1, s2}, then state s3 is added to the subset {s1, s2} ⊆ S. Each input/output se-
quence α/β that is defined in the test case P1,2 is applied at state s3. If the sequence α/β 
is defined at state s3, then the deadlock state q in the test case P1,2 is replaced with a 
test case Pq,z, where q is the α/β-successor of state pair {s1, s2}, while z is the α/β-
successor of state s3. All the input/output sequences α/β′ that are defined at state s3 but 
not defined in the test case P1,2 are also included into the test case P1,2,3. Proceeding in 
this way by iteratively adding the remaining states s4, s5, ..., sn, the test case P1,2,…,n is 
derived.  

We note that there exist various homing test cases Pi,j for the same state pair 
{si, sj} ⊆ S. Therefore, the first optimization step can be to consider a somehow opti-



mal test case Pi,j that is chosen for the first state pair and for those test cases Pq,z that 
are appended iteratively, when P1,2,…,n is being derived. On the other hand, the length 
of the resulting test case can significantly depend on the choice of state sj that is added 
to the test case P1,2,…,j - 1. Thus, the second optimization criterion can be on an optimal 
choice of the next state sj when the test case P1,2,…,j - 1 is already constructed. We fur-
ther discuss how these two ideas can be taken into account to effectively derive a test 
case P1,2,…,n. We mention that when optimizing the length of the corresponding adap-
tive HS, represented as a test case, we focus on optimizing not only the height of the 
corresponding tree but also the number of transitions in the acyclic FSM. 

The first type of heuristics is related to making an optimal choice between possible 
initial state pairs {si, sj} ⊆ S, i < j, as well as defining the best homing test case Pi,j for 
this pair. As it is shown in [9], the length of the overall homing test case P1,2,…,n sig-
nificantly depends even on the first input to be included into the test case P1,2. As the 
test case P1,2,…,j is defined based on the test case P1,2,…,j - 1, the height / the number of 
transitions of it significantly depends on the number of sequences that are defined in 
the test case P1,2,…,j - 1 and in state sj that will be added to the root of the corresponding 
successor tree. That is the reason why we suggest to choose a pair {si, sj} ⊆ S to start 
with in such a way that its homing test case Pi,j is a homing test case for some other 
state pairs. It is naturally to assume that the more state pairs are ‘covered’ by a hom-
ing test case Pi,j, the better is the resulting test case P1,2,…,n. Therefore, we suggest to 
choose the first state pair {si, sj} ⊆ S, i < j, such that there exists a homing test case Pi,j 
for this pair that homes as much state pairs in S as possible.    

 The idea behind the second optimization step is the same as in the previous case. 
In particular, we suggest choosing the next state sj to be added to a test case P1,2,…,j - 1 
in such a way that the number of input/output sequences that are defined in P1,2,…,j - 1 
and are not defined at state sj would be minimal. This fact can help to reduce the 
number of homing test cases Pq,z that have to be appended at each state z, where z is 
the α/β-successor of state sj, and q is the α/β-successor of the set {s1, …, sj - 1}. More-
over, as for each pair of states {q, z} there can exist various adaptive homing test 
cases, the best choice of the test case Pq,z can affect the overall height / transition 
number of the test case P1,2,…,n. Therefore, it is also necessary to consider which test 
case Pq,z should be chosen for an intermediate state pair {q, z} ⊆ S.     

We mention that both optimization steps for deriving an adaptive homing test case 
P1,2,…,n need to be thoroughly estimated. On one hand, theoretical investigation on 
FSM classes that have shorter adaptive HS need to be elaborated, and on the other, 
experimental evaluation on the efficiency of proposed heuristics needs to be per-
formed.    

5 Conclusion 

In this paper, we proposed two heuristic methods for optimizing the size of adap-
tive DS and adaptive HS for nondeterministic FSMs. The topic of such optimization 
is always motivated by the fact that the length of such sequences is exponential for 
nondeterministic FSMs. Moreover, related decision problems on the existence of such 
sequences even for the preset case are known to be PSPACE-complete. We note that 
this current work in progress only presents the ideas behind optimization criteria and 



optimization techniques to achieve shorter resulting trees for adaptive DS or HS. As a 
future work, we plan to perform experimental evaluation over machines of various 
types (random, protocol specifications, etc.) to estimate the efficiency of the proposed 
techniques. 
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