
HAL Id: hal-01220919
https://inria.hal.science/hal-01220919

Submitted on 27 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Taxonomy of Source Code Security Defects Based on
Three-Dimension-Tree

Zhang Yan, Dong Guowei, Guo Tao, Yang Jianyu

To cite this version:
Zhang Yan, Dong Guowei, Guo Tao, Yang Jianyu. Taxonomy of Source Code Security Defects Based
on Three-Dimension-Tree. 7th International Conference on Computer and Computing Technologies
in Agriculture (CCTA), Sep 2013, Beijing, China. pp.232-241, �10.1007/978-3-642-54344-9_29�. �hal-
01220919�

https://inria.hal.science/hal-01220919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Taxonomy of Source Code Security Defects Based on

Three-Dimension-Tree*

ZHANG Yan1,2, a, DONG Guowei 2,b , GUO Tao 2,c YANG Jianyu3,d
1
School of Computer Science and Engineering, Beihang University, Beijing, China

2
China Information Technology Security Evaluation Center, Beijing, China

3
 China Agricultural University, College of Information and Electrical Engineering, Beijing, China

a
zhangy@cse.buaa.edu.cn

+
,

b
donggw@itsec.gov.cn,

c
guotao@itsec.gov.cn,

d
ycjyyang@126.com

Keywords: three-dimension-tree; source code; security defect; taxonomy

Abstract. The authors present a new taxonomy for source code security defects based on

three-dimension-tree, which considers the information of defect’s cause, impact and representation

synthetically. Case studies show that a sound system for classifying source code defects could be

established with this taxonomy, and it is also good for the prevention and fixing of software

vulnerabilities.

Introduction

Most security attacks are caused by the vulnerabilities of application system, and the defects that

generated during software design and coding are the main source of them. Source code static analysis

is an effective method for vulnerability reduction, because this method could consider the information

of path widely and detect program’s security defects automatically [1]. Generally, source code defects

analysis includes lexical and syntax analysis, intermediate code generation and defect detection, as

shown in Fig.1. First, source code is compiled to Abstract Syntax Tree (AST) by lexical and syntax

analyzer. Second, AST is transformed into Intermediate Representation (IR), such as Control Flow

Graph (CFG), Call Graph (CF), and so on. Finally, IR is checked with defect detection rules and all

kinds of analysis techniques, and the results are reported.

The construction of defect detection rule is an important step in above process, because the rule’s

description for detect affects analysis result directly. Classification of source code defects is helpful

*
 This work was supported in part by the National Natural Science Foundation of China (90818021, 41171309).

+
 Corresponding Author.

Source Code

Lexical and

Syntax Analyzer
IR Generator

Defect

Detector
Defect Detection

Rules

Detection Report

AST

IR

Fig.1 Flow Graph of Source Code Defect Detection

for the refinement of detection rules and the accuracy of analysis. Also, it is better for learning

defects’ nature and cause. Generally speaking, classification of source code defects is good for the

prevention and fixing of new kinds of defects.

At present, there is little taxonomy for source code defects, but the ones for software vulnerabilities

are discussed by many researchers. In these works, vulnerabilities are sorted by cause [2-7], threat

level [8], impact [4, 9-11], attack mode [5, 6, 11-15], fixing mode [10, 16], location [4, 5, 17], and so

on. Although they involve most aspects of vulnerabilities, they are not suitable for source code defects.

The main reason is that most of these methods only focus on one attribute of vulnerability.

In this article, we first introduce existing taxonomies of software vulnerabilities, and then present a

kind of taxonomy for source code defects based on three-dimension-tree, which considers the

information of defect’s generation cause, impact and representation synthetically. At last, we sort the

defects that are listed in CWE [18] and Fortify [19] with this taxonomy. Case studies show that a

sound system for sorting source code defects could be established with this taxonomy, and it is also a

guide for the prevention and fixing of software vulnerabilities.

This paper is organized as follow: in section 2, existing taxonomies of software vulnerabilities are

introduced; in section 3, the taxonomy of source code defects based on three-dimension-tree is

presented; in section 4, two case studies are given; in section 5, this paper is concluded.

Overview of Software Vulnerability Taxonomy

There are different definitions for software vulnerability as to different aspect, such as access control,

state space, security strategy, etc [20]. Because of different requirement, existing taxonomies mostly

focus on cause, impact, threat level, exploit mode, platform, and so on.

Introduction of Existing Taxonomies. As for Unix system, T. Aslam provided a taxonomy of

functional errors based on cause [3]. He divided Unix errors into 4 kinds: design error, environment

error, coding error, and configuration error. Design errors are issues that are generated during

requirement analysis and software design; Environment errors are caused by the limitation of

operation environment, such as errors that are result from compiler or OS defects; Coding errors

mainly include synchronization errors, condition verification errors, etc; Configuration errors mainly

include install location errors, install parameter errors and install permission errors.

F.B. Cohen presented an attack-mode-oriented taxonomy [12]. He analyzed more than 100 attack

sets, and sort vulnerabilities into 18 categories: error and missing, unused value, implicit trustable

attack, data spoofing, process bypass, distributed coordination attack, input overflow, Trojan horse,

error after data integration, incomplete daemon, unreleased function use, misuse by attack, prohibit

audit, failure lead by increasing system load, using network services and protocols, inter-process

communication attack, race condition, improper default value.

I. Krsul provided impact-oriented taxonomy [9]. He pointed out that the impact of vulnerability

could be divided into direct impact and indirect impact, and he sorted software vulnerabilities into

data access, command execution, code execution and denial of service.

As to multi-factor taxonomy, C.E. Landwehr presented a vulnerability taxonomy based on source,

time and location, in which source indicates Trojan horse, back door, logic bomb, etc; time refers to

the parse that vulnerability takes place in software development life cycle, such as design, coding,

maintenance; location means OS level, support software level or hardware level [5]. Upon this work,

K. Jiwnani provided a taxonomy based on cause, location and impact for abstracting issues in

software development [4]. In his method, cause indicates validation error, domain error, sequence or

alias error, etc; Location refers to system initialization, memory management, process management or

scheduling; Impact means unauthorized access, root or system access, denial of service, and so on.

D. Wenliang presented a vulnerability-life-cycle-based taxonomy [10]. He defined vulnerability

life cycle as the process of “Import-Damage-Fixing”, and sorted vulnerabilities by cause, direct

impact and fixing mode. Specifically, cause indicates input validation error, permission certificate

error, sequence or alias error, etc; Direct impact refers to illegal code execution, illegal target change,

illegal target resource access, denial of service, and so on; Fixing mode means entity false, entity

missing, entity misplacing, entity error, etc.

CWE (Common Weakness Enumeration) is a defect dictionary provided by Mitre [18], which is

used to provide a general criterion for identifying, reducing and preventing software defects. The last

CWE version is 1.11, and it includes more than 800 kinds of defects. In CWE, defects are sorted into

3 classes, which are code defects environment defects and configuration defects, and the code defects

includes executable code defects, source code defects and the defects that violates security design

principle. Further, source code defects are divided into 14 subclasses: data handling, API abuse,

security features, time and state, error handling, indicator of poor code quality, channel and path

errors, handler errors, web problems, user interface errors, initialization and cleanup errors, pointer

issues, insufficient encapsulation. It’s easy to see that the taxonomy for CWE’s source code defects is

based on cause.

Disadvantages of Existing Taxonomies. Based on the discussion above, we can see that there is

little taxonomy for source code defects, and the ones for software vulnerability are not suitable for

source code defects. The reasons are as follow:

(1) There is little taxonomy special for source code defects. Source code defects (or coding errors)

are often defined as an independent category of software vulnerability, but are not divided deeply [3-5,

10]. In CWE, source code defects are only sorted into 14 simple classes [18];

(2) Some taxonomies could not be used for source code defects classification. For example, the

ones based on attack mode or impact mostly consider the factors such as exploiting results [9, 12],

which could not directly reflect the information of source code defects;

(3) Existing works could not reflect various aspects of defects. Most of them only consider one

attribute of defect, such as cause, impact, which could only represent one aspect of defect. In addition,

there are many overlaps between the categories that are generated by these methods. All of these are

disbenefit for source code defect analysis.

Taxonomy of Source Code Defects with Three-Dimension-Tree

Classification Attributions of Source Code Defect. In order to regularize the process of source code

defect analysis and provide wonderful defect detection rules, we research the taxonomy of source

code defects. Based on the analysis above, vulnerabilities are sorted upon different attributes.

Similarly, when classifying defects, we could also consider their attributes. After widely studying, we

find that programmers often describe defects with their 6 attributes:

(1) Internal cause. This means the issues in source code that are generated during coding, such as

the use of dangerous functions;

(2) Intended or unintended subjective cause. Intended defects are imported by developer

deliberately, such as logic bomb and undeclared channel, and unintended defects are imported

because of programmer’s lack of the knowledge of secure coding;

(3) External cause. This attribute mainly focus on the issues generated by the call of external

library, for which special environment should be considered;

(4) Impact of defects. This means the direct impact that is caused by source code defect, for

example, buffer overflow;

(5) Issues arose in testing or execution. These are the error features that are shown in testing or

running, such as I/O errors, calculation errors, logic errors, data handling errors, configuration errors,

OS errors, interface errors, global variable errors, system crash, etc;

(6) Developing language. Some defects arise in special language. For example, J2EE configuration

errors are special for Java.

We consider the complexity of defects, the extension of taxonomy and the 6 attributes above

synthetically, and then provide 3 classification attributes for source code defects, which are cause,

impact and representation:

 Cause. This attribute includes the internal, external and subjective causes of defect generation.

We have concluded 9 classes of defects in this aspect, which are input issues and validation, API

errors, access control and password fail, share and race, exception handle, unsafe code, boundary

treatment, configuration errors, malicious code. Details are shown in Tab.1.

 Impact. This attribute is the direct impact that defect produces. We have collected 9 classes and

more than 30 subclasses of defects in this aspect, such as overflow, injection, manipulation, web

attack, access control, leak, file system, deadlock, and denial of service. Details are shown in

Tab.2.

 Representation. This means the form that defect presents in source code, which could also be

seen as the form of code with issue, and secure issues may arise when running this code. Of

course, some representations are related with special language. We have summarized 13 classes

and more than 150 subclasses of defects in this aspect, such as pretreatment, declaration and

initialization, expression, integer, float, array, string, memory management, input and output,

object oriented, concurrency, as shown in Tab.3.

Cause

Intended Malicious code

Unintended
Environment independent

Input issues and validation
API errors
Access control and password fail
Share and race
Exception handle
Unsafe code
Boundary treatment

Environment dependent Configuration errors

Tab.1 Causes of Defects

Im
p
ac

t

Injection

SQL injection

Command

injection

XML injection

……

Overflow
Buffer overflow

Integer overflow

……

Manipula
tion

Path manipulation

Configuration

manipulation

……

Access
Control

Password crack

Poor lock

Race condition

……

Leak

Resource leak

Memory leak

Information leak

……

File
system

File upload

File include

……

…………

Tab. 2 Impacts of Defects

R
ep

re
se

n
ta

ti
o
n

String
Manipula

tion

Misjudgement of length

of string

Format string

String iteration

……

Semapho
re

Single member field

Semaphore handle

……

Expressi
on

Expression is always true

Expression is always

false

……

Exceptio
n

handle

Empty Catch block

Unhandled exception

Overly broad throws

……

Math

Confusion of math

operators

Mix of mathematical type

Divided by 0

……

Constant

Unreasonable definition

of constant

Out of bounds

……

…………

Tab. 3 Representation of Defects

Taxonomy Based on Three- Dimension-Tree.We consider 3 attributes when sorting source code

defects. That is, the category of a defect is decided by its cause, impact and representation. From

Tab.1, 2, 3, we can see that all of the 3 classification attributes satisfy multi-level containment, which

could be described with tree structure. So we represent each attribute with a tree, and the set that

includes all leaf nodes of one tree is also the set of corresponding attribute’s final categories. Details

are shown in Fig.2.

 Definition (Three-Dimension-Tree Taxonomy) Let Treere, Treert,and Treerp be the trees that

represent defect’s cause, impact and representation, and child(n) the child node of node n in tree, if

Re={re|(re∈Treere)  (child(re)== Null)}, Rt={rt|(rt∈Treert)  (child(rt)==Null)}, and Rp={rp|

(rp∈Treerp)  (child(rp)==Null)}, then {(a, b, c) | (a∈Re)  (b∈Rt) (c∈Rp)} is the set of defect

categories that are generated by the Three-Dimension-Tree Taxonomy, and each (a, b, c) represents a

category of defects.

As we see, this taxonomy could reflect the information and feature of defect in multi-aspects,

which is good for the construction of defect detection rules. Besides, it is easy to extend categories in

this method. When new defects come out, we should only insert 3 new nodes into 3 trees at suitable

positions.

Nomenclature of Defect Categories. In this taxonomy, we name a kind of defects with a triple that

includes the names of its corresponding cause, impact and representation, which is intuitive and

applied. Defect’s features can be reflected by its name, which is good for defects’ modification and

statistics. For example, we name the kind of defect that is described in code

#include <stdio.h>

int main(){

char fixed_buf[10];

sprintf(fixed_buf,"Very long format string\n");

return 0;

}

with (Input issues and validation, Buffer overflow, Array out of bounds in Sprintf()).

Case Study

Classification of CWE Defects. We classify about 110 items of source code defects listed in CWE

with new taxonomy, and acquire 146 categories. Tab. 4 illuminates 12 of them. The second column

indicates the item of defects that corresponding CWE ID denotes.

Following conclusions can be drawn from Tab.4:

Cause Impact Representation

(Cause x,

Impact y,

Representation z）

YX Z

Fig.2 Three-Dimension-Tree

(1) Defects’ detail information can be presented with new taxonomy. For example, the 1st category

of defects is caused by input, and may import the impact of HTTP response truncation. It’s

representation in code is one HTTP Cookie with incredible data. In addition, the 3rd and 4th

categories are described as one item of defects in CWE (Code style and quality, ID is 563), but they

are greatly different in impacts and representations, and these differences are embodied in new

classification;

(2) The information about platform and language can be presented in new method. For example,

the 5th and 6th categories are special for Mac OS and Unix respectively, while the 12th for C/C++;

(3) The attribute of representation in new taxonomy increases the intuition of defect. The 9th, 10th

id CWEID
Three-Dimension-Tree Taxonomy

Cause Impact Representation

1 113
Input issues and

validation

HTTP response

truncation
HTTP Cookie with incredible data

2 79
Input issues and

validation
Cross-site scripting

3 563 Unsafe code Dead code Unused variable

4 563 Unsafe code Unsafe style Coverage of independent increment

5 242, 676 API errors Dangerous Function Mac OS function

6 242, 676 API errors Dangerous Function Unix function

7 404 Unsafe code False release

8 404, 772
Boundary

treatment
Unreleased Resource File unclosed

9 103
Input issues and

validation
Struts errors validate() error

10 104
Input issues and

validation
Struts errors No inheritance of Validation

11 105
Input issues and

validation
Struts errors Missing Validator

12 590
Input issues and

validation
Misuse of memory

Memory for free() isn’t provided by

malloc()

Tab.4 12 categories of CWE Defects

id Fortify Defects
Three-Dimension-Tree Taxonomy

Cause Impact Representation

1 Cross-site scripting
Input issues and

validation
Cross-site scripting Poor Validation

2 Buffer overflow
Input issues and

validation
Buffer overflow

Format

String(%f/%F)

3 Dead code Unsafe code Dead code Unused variable

4 SQL injection
Input issues and

validation
SQL injection Hibernate

5 Access control
Access control and password

fail
Access control

Anonymous LDAP

Bind

6 Race condition Share and race Race condition File system access

7 Memory leak Unsafe code Memory leak
Memory

redistribution

8
System information

leak
Boundary treatment

System information

leak
Missing Catch Block

9
J2EE

misconfiguration
configuration errors

J2EE

misconfiguration

Missing Error

Handling

10
Object model

violation
API errors

Object model

violation

Just one of equals()
and
hashCode() Defined

Tab.5 10 categories of Fortify Defects

and 11th categories are all caused by input issues and validation, and all import Struts errors, but their

representations are different, which are validate() error, no inheritance of Validation, and missing

Validator. It’s more intuitionistic.

Classification of Fortify Defects. Fortify is a famous tool for source code security analysis [19]. It

could analyze programs in 19 languages. There are more than 300 items of defects in Fortify, and

most of them are defined based on the description of defects in CWE and OWASP. We classify 86

items of them with new taxonomy, and get 194 categories. Tab.5 lists 10 of them, and the set of

defects that are described with 3 attributes in each line is only a subclass of Fortify defects in the same

line. That is to say, classes derived from three-dimension-tree taxonomy are more refined.

Conclusion

In this paper, a new taxonomy for source code security defects based on three-dimension-tree is

present, which considers the information of defect’s cause, impact and representation synthetically.

Case studies show that a sound system for classifying source code defects can be established with this

taxonomy, and it is also good for the prevention and fixing of software vulnerabilities.

Upon existing works, we will continue refining classification attributes. The taxonomy in this

paper is based on 9 kinds of causes, more than 30 kinds of impacts and more than 150 kinds of

representations, but some defects could not be accurately defined, for example, the representations of

the 2nd and 4th categories in Tab.4 are blanks. Thus, our next goal is attributes refinement.

References

[1] H. Mei, Q.X. Wang, L. Zhang, and J. Wang: Software Analysis: A Road Map. Chinese Journal of

Computers.Vol 32(9)(2009), p.1697-1710

[2] F. Piessens: A Taxonomy of Causes of Software Vulnerabilities in Internet Software. In

Proceedings of the 13th International Symposium on Software Reliability Engineering

(ISSR’02)(2002)

[3] T. Aslam: A Taxonomy of Security Faults in the Unix Operating System. Technique report

TR-95-09, Department of Computer Science, Purdue University, West Lafayette, USA, (1995)

[4] K. Jiwnani, and M. Zelkowitz: Susceptibility Matrix: A New Aid to Software Auditing. IEEE

Security and Privacy. Vol.2(2) (2004), p.16-21

[5] C.E. Landwehr, Bull A R, and J.P. McDermott: A Taxonomy of Computer Program Security

Flaws with Examples. ACM Computing Surveys. Vol.26(3) (1994), p.211-254

[6] S. Weber, P.A. Karger, and A. Paradkar: A Software Flaw Taxonomy: Aiming Tools at Security.

In Proceedings of the 2005 Software Engineering for Secure Systems (SESS’05)(2005)

[7] K. Tsipenyuk, B. Chess, and G. McGraw: Seven Pernicious Kingdoms: A Taxonomy of Software

Security Errors. IEEE Security & Privacy. Vol.3(6) (2005), p.81-84

[8] R. Power: Current and Future Danger: A CSI Primer on Computer Crime and Information

Warfare. San Francisco, USA: Computer Security Institute(1996)

[9] I. Krsul, E. Spafford, and M. Tripunitara: Computer Vulnerability Analysis. Technique report

TR- 47909-1398, Department of Computer Science, Purdue University, West Lafayette,

USA(1998)

[10] D. Wenliang, and A.P. Mathur: Categorization of Software Errors that Lead to Security Breaches.

In Proceedings of the 21st National Information Systems Security Conference(1998)

[11] M. Bishop: A Taxonomy of Unix System and Network Vulnerabilities. Technical Report

CSE-95-8, Dept. of Computer Science, University of California at Davis, Davis(1995)

[12] F.B. Cohen: Information System Attacks: A Preliminary Classification Scheme. Computers and

Security. Vol. 16(1) (1997), p.26-49

[13] J.D. Howared: An Analysis of Security Incidents on the Internet 1989-1995. Pittsburgh, USA:

Carnegie Mellon University(1997)

[14] K.S. Killourhy, R.A. Maxion, K.M. Tan: A Defense-centric Taxonomy Based on Attack

Manifestations. In Proceedings of the 34
th

 IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN’04)(2004)

[15] S. Hansman, R. Hunt: A Taxonomy of Network and Computer Attack. Computers and Security.

Vol. 24(1)(2005),p.31-43

[16] R.A. DeMillo, and A.P. Mathur: A Grammar-based Fault Classification Scheme and Its

Application to the Classification of the Errors of Tex. Technique report, Department of Computer

Science, Purdue University, West Lafayette, USA(1995)

[17] A. Bazaz A, J.D. Arthur: Towards a Taxonomy of Vulnerabilities. In Proceedings of the 40th

Annual Hawaii International Conference on System Science(2007)

[18] Information on http://cwe.mitre.org/

[19] Information on http://www.fortify.com/

[20] M. Huang, and Q.K. Zeng: Research on Classification Attributes of Software Vulnerability.

Computer Engineering. Vol. 36(1)(2010), p.184-186

