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Abstract. We provide the first formal foundation of SAND attack trees
which are a popular extension of the well-known attack trees. The SAND at-
tack tree formalism increases the expressivity of attack trees by intro-
ducing the sequential conjunctive operator SAND. This operator enables
the modeling of ordered events.
We give a semantics to SAND attack trees by interpreting them as sets
of series-parallel graphs and propose a complete axiomatization of this
semantics. We define normal forms for SAND attack trees and a term
rewriting system which allows identification of semantically equivalent
trees. Finally, we formalize how to quantitatively analyze SAND attack
trees using attributes.
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1 Introduction

Attack trees allow for an effective security analysis by systematically organizing
the different ways in which a system can be attacked into a tree. The root node
of an attack tree represents the attacker’s goal and the children of a given node
represent its refinement into sub-goals. A refinement is typically either disjunctive
(denoted by OR) or conjunctive (denoted by AND). The leaves of an attack tree
represent the attacker’s actions and are called basic actions.

Since their inception by Schneier [19], attack trees have quickly become a
popular modeling tool for security analysts. However, the limitations of this for-
malism, in particular with respect to expressing the order in which the various
attack steps are executed, have been recognized by many authors (see e.g., [10]).
In practice, modeling of security scenarios often requires constructs where con-
ditions on the execution order of the attack components can be clearly specified.
This is for instance the case when the time or (conditional) probability of an
attack is considered, as in [2,21]. Consequently, several studies have extended
attack trees informally with sequential conjunctive refinements. Such extensions
have resulted in improved modeling and analyses (e.g., [21,15,22]) and software
tools, e.g., ATSyRA [16].

Even though the sequential conjunctive refinement, that we denote by SAND,
is well understood at a conceptual level and even applied to real world scenar-
ios [16], none of the existing solutions have provided a rigorous mathematical



formalization of attack trees with SAND. Indeed, the extensions found in the lit-
erature are rather diverse in terms of application domain, interpretation, and
formality. Thereby, it is infeasible to answer fundamental questions such as:
What is the precise expressibility of SAND attack trees? When do two such trees
represent the same security scenario? Or what type of attributes can be syn-
thesized on SAND attack trees in the standard bottom-up way? These questions
can only be precisely answered if SAND attack trees are provided with a formal,
general, and explicit interpretation, i.e., if they are given a formal foundation.
Contributions: In this article we formalize the meaning of a SAND attack tree
by defining its semantics. Our semantics is based on series-parallel (SP) graphs,
which is a well-studied branch of graph theory. We provide a complete axioma-
tization for the SP semantics and show that the SP semantics for SAND attack
trees are a conservative extension of the multiset semantics for standard attack
trees [13] (i.e., our extension does not introduce unexpected equivalences w.r.t.
the multiset semantics). To do so, we define a term rewriting system that is
terminating and confluent and obtain normal forms for SAND attack trees. As a
consequence, we achieve the rather surprising result that the domains of SAND
attack trees and sets of SP graphs are isomorphic. We also extend the notion of
attributes for SAND attack trees which enable the quantitative analysis of attack
scenarios using the standard bottom-up evaluation algorithm.
Organization: Section 2 summarizes the related work and puts our work in con-
text. Section 3 provides a formal definition of SAND attack trees and its seman-
tics using series-parallel graphs. Section 4 defines a complete set of axioms for
SAND attack trees and presents a term rewriting system which allows identifica-
tion of semantically equivalent SAND attack trees. Section 5 outlines an approach
to quantitatively analyze SAND attack trees using attributes. Finally, Section 6
concludes with an outlook on future work.

2 Related Work and Motivation

One of the goals of our work is to provide a level of abstraction that encompasses
most of the existing approaches from literature. Several extensions of attack trees
with temporal or causal dependencies between attack steps have been proposed.
We observe that there are three different approaches to achieve this goal. The
first approach is to use standard attack trees with the added assumption that the
children of an AND node are sequentially ordered from left to right. The second
approach is to introduce a mechanism for ordering events in an attack tree, for
instance by adding a new type of edge to express causality or conditionality. In
its most general case, any partial order on the events in an attack tree can be
specified. The third approach consists of the introduction of a new type of node
for sequencing. Most extensions fall in this category. This approach is used by
authors who require their formalism to be backward compatible, or who need
standard, as well as ordered conjunction. We discuss for each of these approaches
the most relevant papers with respect to the present article.
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Approaches with a sequential interpretation of AND. In their work on
Bayesian networks for security, Qin and Lee define a transformation from attack
trees to Bayesian networks [17]. They state that “there always exists an implicit
dependent and sequential relationship between AND nodes in an attack tree.”
Most literature on attack trees seem to contradict this statement, implying that
there is a need to explicitly identify such sequential relationships.

Jürgenson and Willemson developed an algorithm to calculate the expected
outcome of an attack tree [22]. The goal of the algorithm is to determine a
permutation of leaves for which the optimal expected outcome for an attacker can
be achieved. In essence, their input is an attack tree where an AND node represents
all possible sequences of its children. A peculiarity of their interpretation is that
multiple occurrences of the same node are considered only once, implying that
the execution of the same action twice cannot be expressed.
Approaches introducing a general order. Peine et al. introduce security goal
indicator trees [14] in which nodes can be related by a notion of conditional de-
pendency and Boolean connectors. The authors, however, do not formally specify
the syntax and semantics of the model. A more general approach is proposed by
Piètre-Cambacédès and Bouissou [15], who apply Boolean logic driven Markov
processes to security modeling. Their formalism does not introduce new gates,
but a (trigger-)relation on the nodes of the attack tree. Although triggers can
express a more general sequential relation than the SAND operator, they lack the
readability of standard attack tree operators.

Vulnerability cause graphs [1,3] combine properties of attack trees (AND and
OR nodes) and attack graphs (edges express order rather than refinement). The
interaction between the AND nodes and the order relation is defined through a
graph transformation called conversion of conjunctions, which ignores the or-
der between nodes. This discrepancy could be solved by considering distinct
conjunctive and sequential conjunctive nodes, as we do in this paper.
Approaches introducing sequential AND. As noted by Arnold et al. [2], the
analysis of time-dependent attacks requires attack trees to be extended with a
sequential operator. This is accomplished by defining sequential nodes as con-
junctive nodes with a notion of progress of time. The authors define a formal
semantics for this extension based on cumulative distribution functions (CDFs),
where a CDF denotes the probability that a successful attack occurs within time
t. The main difference with our work is that their approach is based on an ex-
plicit notion of time, while we have a more abstract approach based on causality.
In their semantics, the meaning of an extended attack tree is a CDF, in which
the relation to the individual basic attacks is not explicit anymore. In contrast,
in our semantics the individual basic attacks and their causal ordering remain
visible. As such, our semantics can be considered more abstract, and indeed, we
can formulate their semantics as an attribute in our approach.

Enhanced attack trees [4] (EATs) distinguish between OR, AND and OAND (Or-
dered AND). Similarly to the approach of Arnold et al. [2], ordered AND nodes are
used to express temporal dependencies between attack components. The authors
evaluate EATs by transforming them into tree automata. Intermediate states in
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the automaton support the task of reporting partial attacks. However, because
every intermediate node of the tree corresponds to a state in the tree automaton,
their approach does not scale well. This problem can be addressed by considering
the normal form of attack trees, as proposed in this article.

Not every extension of attack trees with SAND refinements concerns time-
dependent attack scenarios; some aim at supporting risk analyses with condi-
tional probabilities. For that purpose, Wen-Ping and Wei-Min introduce im-
proved attack trees [21]. The concepts, however, are described at an intuitive
level only.

Unified parameterizable attack trees [20] unify different extensions of attack
trees (structural, computational, and hybrid). The authors consider two types
of ordered AND connectors: priority-based connectors and time-based connectors.
The children of the former are ordered from highest to lowest priority, whereas
the children of the latter are ordered temporally. Our formalism gives a single
interpretation to the SAND operator, yet it can capture both connectors.

Khand [7] extends attack trees with a set of gates from dynamic fault tree
modeling, which includes the priority AND gate. Khand assigns truth values to
his attack trees by giving truth tables for all gates. When restricted to AND, OR,
and priority AND, the truth tables constitute an attribute which is compatible
(in the sense of [9]) with our SP semantics for SAND attack trees.

We observe that the extensions of attack trees with sequential conjunction
are rather diverse in terms of application domain, interpretation, and formality.
In order to give a clear and unambiguous interpretation of the SAND operator and
capture different application domains, it is necessary to give a formal semantics
as a translation to a well-understood domain. Note that, neither the multiset [13]
nor the propositional semantics [11] can express ordering of attack components.
Therefore, a richer semantical domain needs to be defined. The purpose of this
article is to address this problem.

3 Attack Trees with Sequential Conjunction

We extend the attack tree formalism so that a refinement of a (sub-)goal of an
attacker can be a sequential conjunct (denoted by SAND) in addition to disjuncts
and conjuncts. We first give a definition of attack trees with the new sequential
operator and then define series-parallel graphs on which the semantics for the
new attack trees is based.

3.1 SAND Attack Trees

Let B denote the set of all possible basic actions of an attacker. We formalize
standard attack trees introduced in [19] and call them simply attack trees in the
rest of this paper. Attack trees are closed terms over the signature B∪{OR, AND},
generated by the following grammar, where b ∈ B is a terminal symbol.

t ::= b | OR(t, . . . , t) | AND(t, . . . , t) (1)
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become root

no-auth

gain user privileges

ftp rsh

lobf

auth

ssh rsa

OR AND SAND

Fig. 1. An attack tree with sequential and parallel conjunctions

The universe of attack trees is denoted by T. SAND attack trees are closed terms
over the signature B∪{OR, AND, SAND}, where SAND is a non-commutative operator
called sequential conjunction, and are generated by the grammar

t ::= b | OR(t, . . . , t) | AND(t, . . . , t) | SAND(t, . . . , t). (2)

The universe of SAND attack trees is denoted by TSAND. The purpose of OR and AND

refinements in SAND attack trees is the same as in attack trees. The sequential
conjunctive refinement SAND allows us to model that a certain goal is reached if
and only if all its subgoals are reached in a precise order.

The following attack scenario motivates the need for extending attack trees
with sequential conjunctive refinement.

Example 1. Consider a file server S, offering ftp, ssh, and rsh services. The
attack tree in Figure 1 shows how an attacker can gain root privileges on
S (become root), in two ways: either without providing any user credentials
(no-auth) or by breaching the authentication mechanism (auth). In the first case,
the attacker must first gain user privileges on S (gain user privileges) and then
perform a local buffer overflow attack (lobf). Since the attack steps must be exe-
cuted in this particular order, the use of SAND refinement is substantial. To gain
user privileges, the attacker must exploit an ftp vulnerability to anonymously
upload a list of trusted hosts to S (ftp).4 Finally, she can use the new trust condi-
tion to remotely execute shell commands on S (rsh). The second way is to abuse
a buffer overflow in both the ssh daemon (ssh) and the RSAREF2 library (rsa)
used for authentication. These attacks can be executed in any order, which is
modeled with the standard AND refinement. Using the term notation introduced
in this section, we can represent the SAND attack tree from Figure 1 as

t = OR
(
SAND

(
SAND(ftp, rsh), lobf

)
, AND(ssh, rsa)

)
,

where ftp, rsh, lobf, ssh, rsa ∈ B are basic actions.

4 For readability, attack actions are named after the services that are exploited.
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3.2 Series-Parallel Graphs

A series-parallel graph (SP graph) is an edge-labeled directed graph that has
two unique, distinct vertices, called source and sink, and that can be constructed
with the two operators for sequential and parallel composition of graphs that we
formally define below. A source is a vertex which has no incoming edges and a
sink is a vertex without outgoing edges.

Our formal definition of SP graphs is based on multisets, i.e., sets in which
members are allowed to occur more than once. We use {| · |} to denote multisets
and P(·) to denote the powerset of a set or multiset. The support M? of a
multiset M is the set of distinct elements in M . For instance, the support of the
multiset M = {|b1, b2, b2|} is M? = {b1, b2}. In order to define SP graphs, we first
introduce the notion of source-sink graphs labeled by the elements of B.
Definition 1. A source-sink graph over B is a tuple G = (V,E, s, z), where V is
the set of vertices, E is a multiset of labeled edges with support E? ⊆ V ×B×V ,
s ∈ V is the unique source, z ∈ V is the unique sink, and s 6= z.

The sequential composition of a source-sink graph G = (V,E, s, z) with a source-
sink graph G′ = (V ′, E′, s′, z′), denoted by G · G′, is the graph resulting from
taking the disjoint union of G and G′ and identifying the sink of G with the
source of G′. More precisely, let ∪̇ denote the disjoint union operator and E[s/z]

denote the multiset of edges in E, where all occurrences of vertex z are replaced
by vertex s. Then we define

G ·G′ = (V \ {z}∪̇V ′, E[s′/z]∪̇E′, s, z′).

The parallel composition, denoted by G ‖ G′, is defined similarly, except that
the two sources are identified and the two sinks are identified. Formally, we have

G ‖ G′ = (V \ {s, z}∪̇V ′, E[s′/s,z′/z]∪̇E′, s′, z′).

It follows directly from the definitions that the sequential composition is asso-
ciative and that the parallel composition is associative and commutative.

We write b−→ for the graph with a single edge labeled with b and define SP
graphs as follows.
Definition 2. The set GSP of series-parallel graphs (SP graphs) over B is de-
fined inductively by the following two rules

– For b ∈ B, b−→ is an SP graph.
– If G and G′ are SP graphs, then so are G ·G′ and G ‖ G′.

It follows directly from Definition 2 that SP graphs are connected and acyclic.
Moreover, every vertex of an SP graph lies on a path from the source to the sink.
We consider two SP graphs to be equal if there is a bijection between their sets
of vertices that preserves the edges and edge labels.
Example 2. Figure 2 shows an example of an SP graph with the source s and
the sink z. This graph corresponds to the construction( a−→‖ b−→‖ b−→

)
· c−→ ·

(( d−→ ·( e−→‖ f−→)
)
‖ g−→

)
.
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Fig. 2. A series-parallel graph

3.3 SP Semantics for SAND Attack Trees

Numerous semantics have been proposed to interpret attack trees, including
propositional logic [12], multisets [13], De Morgan lattices [11], tree automata [4],
and Markov processes [15,2]. The choice of a semantics allows us to accurately
represent the assumptions made in a security scenario, e.g., whether actions
can be repeated or resources reused, and to decide which trees represent the
same security scenario. The advantages of formalizing attack trees and the need
for various semantics have been discussed in [9]. Since attack trees are AND/OR
trees, the most natural interpretation is based on propositional logic. However,
because the logical operators are idempotent, this interpretation assumes that
the multiplicity of an action is irrelevant. As a consequence, the propositional
semantics is not well suited to reason about scenarios with multiple occurrences
of the same action. Due to this lack of expressivity a semantics was proposed [13]
in which the multiplicity of actions is taken into account. This was achieved by
interpreting an attack tree as a set of multisets that represent different ways of
reaching the root goal. This multiset semantics is compatible with computations
that depend on the number of occurrences of an action in the tree, such as the
minimal time to carry out the attack represented by the root goal.

We now extend the multiset semantics to SAND attack trees. Since SP graphs
naturally extend multisets with a partial order, they supply a formalism in which
we can interpret trees using both commutative and sequential conjunctive refine-
ments. SP graphs therefore provide a canonical semantics for SAND trees in which
multiplicity and ordering of goals and actions are significant. The idea is to inter-
pret an attack tree t as a set of SP graphs. The semantics [[t]]SP = {G1, . . . , Gk}
of a tree t corresponds to the set of possible attacks Gi, where each attack is
described by an SP graph labeled by the basic actions of t.

Definition 3. The SP semantics for SAND attack trees is given by the function
[[·]]SP : TSAND → P(GSP), which is defined recursively as follows: for b ∈ B,
ti ∈ TSAND, 1 ≤ i ≤ k,

[[b]]SP = { b−→}
[[OR(t1, . . . , tk)]]SP =

⋃k
i=1 [[ti]]SP

[[AND(t1, . . . , tk)]]SP = {G1 ‖ . . . ‖ Gk | (G1, ..., Gk) ∈ [[t1]]SP × ...× [[tk]]SP}
[[SAND(t1, . . . , tk)]]SP = {G1 · . . . ·Gk | (G1, ..., Gk) ∈ [[t1]]SP × ...× [[tk]]SP}.
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In the SP semantics, the basic actions of a SAND attack tree are the edges of
series-parallel graphs. The semantics of a disjunctive, conjunctive, and sequen-
tial conjunctive node are the union, parallel composition, and sequential compo-
sition, respectively, of all combinations of SP graphs in the sets that represent
the semantics of the node’s children.

Example 3. The SP semantics of the attack tree t depicted in Figure 1 is

[[t]]SP = { ftp−−→ rsh−−→ lobf−−→ ,
ssh−−→‖ rsa−−→}.

As shown in Example 3, the SP semantics provides an alternative graph rep-
resentation for attack trees and therefore contributes a different perspective on
an attack scenario. The SAND attack tree emphasizes the refinement of goals,
whereas SP graphs highlight the sequential aspect of attacks.

The SP semantics provides a natural partition of TSAND into equivalence
classes.

Definition 4. Two SAND attack trees t1 and t2 are equivalent with respect to
the SP semantics if and only if they are interpreted by the same set of SP graphs,
i.e., [[t1]]SP = [[t2]]SP .

By Definition 4, if the SP semantics provides accurate assumptions for an attack
scenario, then two SAND attack trees represent the same attack scenario if and
only if they are equivalent with respect to the SP semantics.

4 Axiomatization of the SP Semantics

In this section we introduce a complete axiomatization of SAND attack trees with
respect to the SP semantics. Such an axiomatization provides us with syntactic
transformation rules for SAND attack trees that preserve the trees’ SP semantics.
In other words, it allows us to manipulate SAND attack trees without the need to
convert them to SP graphs. Moreover, we derive a term rewriting system from
the axiomatization as a means to effectively decide whether two SAND attack trees
are equivalent with respect to the SP semantics. As a consequence, we obtain a
canonical representation of SAND attack trees which we prove to be isomorphic
to sets of SP graphs.

4.1 A complete set of axioms for the SP semantics

Let V be a set of variables denoted by capital letters. Following the approach
developed in [9], we axiomatize SAND attack trees with equations l = r, where l
and r are terms over variables in V, constants in B, and the operators AND, OR,
and SAND. The equations formalize the intended properties of refinements and
provide semantics-preserving transformations of SAND attack trees.
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Example 4. Let Sym` denote the set of all bijections from {1, . . . , `} to itself. The
axiom AND(Y1, . . . , Y`) = AND(Yσ(1), . . . , Yσ(`)), where σ ∈ Sym`, expresses that
the order between children refining a parallel conjunctive node is not relevant. In
other words, the operator AND is commutative. This implies that any two trees
of the form AND(t1, . . . , tl) and AND(tσ(1), . . . , tσ(l)) represent the same scenario.

Our goal is to define a complete set of axioms, denoted by ESP , for the SP
semantics for SAND attack trees. Intuitively, ESP is a set of equations that can
be applied to transform a SAND attack tree into any equivalent SAND attack tree
with respect to the SP semantics. Before defining the set ESP , we formalize the
notion of a complete set of axioms for a given semantics for (SAND) attack trees,
following [9].

Let T (V, Σ) be the free term algebra over the set of variables V and signature
Σ, and let E be a set of equations over T (V, Σ). The equation t = t′, where
t, t′ ∈ T (V, Σ), is a syntactic consequence of E (denoted by E ` t = t′) if it can
be derived from E by application of the following rules. For all t, t′, t′′ ∈ T (V, Σ),
ρ : V→ T (V, Σ), and X ∈ V:
– E ` t = t,
– if t = t′ ∈ E, then E ` t = t′,
– if E ` t = t′, then E ` t′ = t,
– if E ` t = t′ and E ` t′ = t′′, then E ` t = t′′.
– if E ` t = t′, then E ` ρ(t) = ρ(t′),
– if E ` t = t′, then E ` t′′[t/X] = t′′[t′/X], where t′′[t/X] is the term

obtained from t′′ by replacing all occurrences of the variable X with t.

Let TV
SAND denote the set of terms constructed from the set of variables V, the

set of basic actions B (treated as constants), and operators OR, AND and SAND. Let
TV be the set of terms constructed from the same parts, except for the operator
SAND. Using the notion of syntactic consequence, we define a complete set of
axioms for a semantics for attack trees.

Definition 5. Let [[·]] be a semantics for attack trees (resp. SAND attack trees)
and let E be a set of equations over TV (resp. TV

SAND). The set E is a complete
set of axioms for [[·]] if and only if, for all t, t′ ∈ T (resp. TSAND)

[[t]] = [[t′]] ⇐⇒ E ` t = t′.

We are now ready to give a complete set of axioms for the SP semantics for SAND
attack trees. These axioms allow us to determine whether two visually distinct
trees represent the same security scenario according to the SP semantics.

Theorem 1. Given k,m ≥ 0, and ` ≥ 1, let X = X1, . . . , Xk, Y = Y1, . . . , Y`,
and Z = Z1, . . . , Zm be sequences of variables. Let Sym` be the set of all bijections
from {1, . . . , `} to itself. The following set of equations over TV

SAND, denoted by
ESP , is a complete set of axioms5 for the SP semantics for SAND attack trees.

OR(Y1, . . . , Y`) = OR(Yσ(1), . . . , Yσ(`)), ∀σ ∈ Sym` (E1)
5 Note that the axioms are in fact axiom schemes. The operators OR, AND and SAND

are unranked, representing infinitely many k-ary function symbols (k ≥ 1).
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AND(Y1, . . . , Y`) = AND(Yσ(1), . . . , Yσ(`)), ∀σ ∈ Sym` (E2)

OR
(
X, OR(Y )

)
= OR(X,Y ) (E3)

AND
(
X, AND(Y )

)
= AND(X,Y ) (E4)

SAND
(
X, SAND(Y ), Z

)
= SAND(X,Y , Z) (E4′)

OR(A) = A (E5)
AND(A) = A (E6)
SAND(A) = A (E6′)

AND
(
X, OR(Y )

)
= OR

(
AND(X,Y1), . . . , AND(X,Y`)

)
(E10)

SAND
(
X, OR(Y ), Z

)
= OR

(
SAND(X,Y1, Z), . . . , SAND(X,Y`, Z)

)
(E10′)

OR(A,A,X) = OR(A,X) (E11)

The numbering of the axioms in ESP corresponds to the numbering of the axioms
for the multiset semantics for standard attack trees, as presented in [9], while
new axioms (involving SAND) are marked with primes.

Proof. The proof of this theorem follows the same line of reasoning as the proofs
of Theorems 4.2 and 4.3 of Gischer [5], where series–parallel pomsets are axiom-
atized. The details can be found in the extended version of this work [6]. ut

4.2 SAND Attack Trees in Canonical Form

Let [[·]] be a semantics for (SAND) attack trees. A complete axiomatization of
[[·]] can be used to derive a canonical form of trees interpreted with [[·]]. Such
canonical forms provide the most concise representation for equivalent trees and
are the natural representatives of equivalence classes defined by [[·]].

When SAND attack trees are interpreted using the SP semantics, their canon-
ical forms consist of either a single basic action, or of a root node labeled with
OR and subtrees with nested, alternating occurrences of AND and SAND nodes.
Canonical forms correspond exactly to the sets of SP graphs labeled by B and
they depict all attack alternatives in a straightforward way.

In the full version of this work [6], we show how to obtain canonical forms of
SAND attack trees using the complete set of axioms ESP for the SP semantics. By
orienting the equations (E3), (E4), (E4′), (E5), (E6), (E6′), (E10), (E10′), and
(E11) from left to right, we obtain a term rewriting system, denoted by RSP .
We show that RSP is terminating and confluent. The canonical representations
of SAND attack trees correspond to normal forms with respect to RSP . They are
unique modulo commutativity of OR and AND.

Example 5. The canonical form of the SAND attack tree t in Figure 1 is the tree

t′ = OR
(
SAND(ftp, rsh, lobf), AND(ssh, rsa)

)
shown in Figure 3. It is easily seen to be in normal form with respect to RSP .
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become root

no-auth

ftp rsh lobf

auth

ssh rsa

Fig. 3. SAND attack tree t′ equivalent to SAND attack tree t from Figure 1

4.3 SP Semantics as a Generalization of the Multiset Semantics

Having a complete set of axioms for the SP semantics allows us to formalize
the relation between SAND attack trees under the SP semantics and attack trees
under the multiset semantics, denoted by [[·]]M. This is achieved by extracting a
complete set of axioms for the multiset semantics for attack trees from the set
ESP . Let EM be the subset of axioms from ESP that do not contain the SAND

operator, i.e., EM = {(E1), (E2), (E3), (E4), (E5), (E6), (E10), (E11)}.

Theorem 2. The axiom system EM is a complete set of axioms for the multiset
semantics for attack trees.

The proof can be found in a full version of this paper [6].
By comparing the complete sets of axioms ESP and EM we obtain that two

attack trees are equivalent under the multiset semantics if and only if they are
equivalent under the SP semantics. This is formalized in the following theorem.

Theorem 3. SAND attack trees under the SP semantics are a conservative ex-
tension of attack trees under the multiset semantics.

Proof. We need to prove that, for all standard attack trees t and t′, we have
[[t]]M = [[t′]]M if and only if [[t]]SP = [[t′]]SP . From EM ⊂ ESP , we conclude that
[[t]]M = [[t′]]M implies [[t]]SP = [[t′]]SP . Conversely, we remark that the equations
belonging to ESP \EM do not introduce new equalities on standard attack trees.
A complete proof of this fact is given in the full version of this work [6]. ut

5 Attributes

Attack trees do not only serve to represent security scenarios in a graphical way.
They can also be used to quantify such scenarios with respect to a given param-
eter, called an attribute. Typical examples of attributes include the likelihood
that the attacker’s goal will be met and the minimal time or cost of an attack.
Schneier described [19] an intuitive bottom-up algorithm for calculating attribute
values of attack trees: attribute values are assigned to the leaf nodes and two
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functions6 (one for the OR and one for the AND refinement) are used to propagate
the attribute value up to the root node. Mauw and Oostdijk showed [13] that
if the binary operations induced by the two functions define a semiring, then
the evaluation of the attribute on two attack trees equivalent with respect to
the multiset semantics yields the same value. This result has been generalized
to any semantics and attribute that satisfy a notion of compatibility [9] and we
briefly discuss it for SAND attack trees at the end of this section. We start with
a demonstration of how the bottom-up evaluation algorithm can naturally be
extended to SAND attack trees.

An attribute domain for an attribute Aα on SAND attack trees is a tuple
Dα = (Vα,Oα,Mα,♦α), where Vα is a set of values and Oα,Mα,♦α are families
of k-ary functions of the form Vα × · · · × Vα → Vα, associated to OR, AND,
and SAND refinements, respectively. An attribute for SAND attack trees is a pair
Aα = (Dα, βα) formed by an attribute domain Dα and a function βα : B→ Vα,
called basic assignment for Aα, which associates a value from Vα with each b ∈ B.

Definition 6. Let Aα =
(
(Vα,Oα,Mα,♦α), βα

)
be an attribute. The attribute

evaluation function α : TSAND → Vα, which calculates the value of attribute Aα
for every SAND attack tree t ∈ TSAND, is defined recursively as follows.

α(t) =


βα(t) if t = b, b ∈ B
Oα
(
α(t1), . . . , α(tk)

)
if t = OR(t1, . . . , tk)

Mα
(
α(t1), . . . , α(tk)

)
if t = AND(t1, . . . , tk)

♦α
(
α(t1), . . . , α(tk)

)
if t = SAND(t1, . . . , tk)

The following example illustrates the bottom-up evaluation of the attribute
minimal attack time on the SAND attack tree given in Example 1.

Example 6. Let α denote the minimal time that the attacker needs to achieve
her goal in the scenario of Example 1. We make the following assignments to
the basic actions: ftp 7→ 3, rsh 7→ 5, lobf 7→ 7, ssh 7→ 8, rsa 7→ 9. Since we
are interested in the minimal attack time, the function for an OR node is de-
fined by Oα(x1, . . . , xk) = min{x1, . . . , xk}. The function for an AND node is
Mα (x1, . . . , xk) = max{x1, . . . , xk}, which models that the children of a conjunc-
tively refined node are executed in parallel. Finally, in order to model that the
children of a SAND node need to be executed sequentially, we let ♦α(x1, . . . , xk) =∑k
i=1 xi. According to Definition 6, the minimal attack time is

Oα
(
♦α
(
♦α(3, 5), 7

)
,Mα (8, 9)

)
= min

(
Σ
(
Σ(3, 5), 7

)
,max(8, 9)

)
= 9.

In the case of standard attack trees, the bottom-up procedure uses only two
functions to propagate the attribute values to the root – one for conjunctive
and one for disjunctive nodes. This means that the same function is employed to
6 These are actually families of functions representing infinitely many k-ary function
symbols, for all k ≥ 2.
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calculate the value of every conjunctively refined node, independently of whether
its children need to be executed sequentially or can be executed simultaneously.
Evidently, with SAND attack trees, we can apply different propagation functions
for AND and SAND nodes, as in Example 6. Therefore, SAND attack trees can be
evaluated over a larger set of attributes, and hence may provide more accurate
evaluations of attack scenarios, than standard attack trees.

To guarantee that the evaluation of an attribute on equivalent attack trees
yields the same value, the attribute domain must be compatible with a considered
semantics [9]. Our complete set of axioms is a useful tool to check for compatibil-
ity with the SP semantics. Consider an attribute domain Dα = (Vα,Oα,Mα,♦α),
and let σ be a mapping σ = {OR 7→ Oα, AND 7→Mα, SAND 7→ ♦α}. Guaranteeing
that Dα is compatible with a semantics axiomatized by E amounts to verifying
that the equality σ(l) = σ(r) holds in Vα, for every axiom l = r ∈ E. It is an easy
exercise to show that the attribute domain for minimal attack time, considered
in Example 6, is compatible with the SP semantics for SAND attack trees.

6 Conclusions

We have formalized the extension of attack trees with sequential conjunctive
refinement, called SAND, and given a semantics to SAND attack trees in terms of
sets of series-parallel graphs. This SP semantics naturally extends the multiset
semantics for attack trees from [13]. We have shown that the notion of a complete
set of axioms for a semantics and the bottom-up evaluation procedure can be
generalized from attack trees to SAND attack trees, and have proposed a complete
axiomatization of the SP semantics.

A number of recently proposed solutions focus on extending attack trees with
defensive measures [18,9]. These extensions support reasoning about security
scenarios involving two players – an attacker and a defender – and the interaction
between them. In future work, we intend to add the SAND refinement to such
trees. Afterwards, we plan to investigate sequential disjunctive refinement, as
used for instance in [2]. Our goal is to propose a complete formalization of trees
with attack and defense nodes, that have parallel and sequential, conjunctive and
disjunctive refinements. Finally, our results will be used to extend the software
application ADTool [8]. In particular, the axiomatization proposed in this paper
and its term rewriting system RSP will be implemented and used to decide on
the equivalence of SAND attack trees.
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