
HAL Id: hal-01183508
https://inria.hal.science/hal-01183508

Submitted on 23 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Practical and Privacy-Preserving TEE Migration
Ghada Arfaoui, Jean-François Lalande, Saïd Gharout, Jacques Traoré

To cite this version:
Ghada Arfaoui, Jean-François Lalande, Saïd Gharout, Jacques Traoré. Practical and Privacy-
Preserving TEE Migration. 9th Workshop on Information Security Theory and Practice (WISTP),
Aug 2015, Heraklion, Greece. pp.153-168, �10.1007/978-3-319-24018-3_10�. �hal-01183508�

https://inria.hal.science/hal-01183508
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Practical and Privacy-Preserving TEE Migration

Ghada Arfaoui1,3, Säıd Gharout2, Jean-François Lalande3,4, and
Jacques Traoré1

1 Orange Labs, F-14000 Caen, France
2 Orange Labs, F-92130 Issy-Les-Moulineaux, France

3 INSA Centre Val de Loire, LIFO, F-18022 Bourges, France
4 Inria, CentraleSupélec, IRISA, F-35576 Cesson-Sévigné, France

Abstract. Trusted Execution Environments (TEE) are becoming widely
deployed in new smartphone generation. Running within the TEE, the
Trusted Applications (TA) belong to diverse service providers. Each TA
manipulates a profile, constituted of secret credentials and user’s private
data. Normally, a user should be able to transfer his TEE profiles from a
TEE to another compliant TEE. However, TEE profile migration implies
security and privacy issues in particular for TEE profiles that require ex-
plicit agreement of the service provider. In this paper, we first present
our perception of the deployment and implementation of a TEE: we or-
ganize the TEE into security domains with different roles and privileges.
Based on this new model, we build a migration protocol of TEE profiles
ensuring its confidentiality and integrity. To this end, we use a reencryp-
tion key and an authorization token per couple of devices, per service
provider and per transfer. The proposed protocol has been successfully
validated by AVISPA, an automated security protocol validation tool.

Keywords: TEE, credential transfer, privacy

1 Introduction

In the last years, a secure mobile operating system running alongside the stan-
dard Rich Execution Environment (REE for short), has emerged: the Trusted
Execution Environment (TEE for short). A TEE could have its own CPU and
memory, and hosts isolated Trusted Applications (TA for short) that provide
secure services to the applications running within the REE. These TAs belong
to diverse service providers. Each TA manipulates a profile, constituted of secret
credentials and user’s private data.

The TEE has been standardized by GlobalPlatform, however, to the best of
our knowledge, there is no specification or research work that models the TEE
internal architecture or ecosystem. For instance, comparing to smart cards, the
GlobalPlatform Card Specifications [12] have worked on such a model and it is
now widely deployed and accepted by all the stakeholders. This is why we propose
to study in which extent we can apply it for the TEE context: we identified the
limitations of the GlobalPlatform Card model, in the TEE context, when the
user wants to migrate its profile from one TEE to another one.



A user, who has many devices or gets a new one, shall be able to securely
migrate his TEE profiles from a TEE to another compliant TEE. This problem
of migration is currently poorly addressed by TEE implementations, standard-
ization and only few papers have worked on designing TEE migration proto-
cols [16,19]. Two main solutions can be considered: the straightforward solution,
which consists in encrypting the profile (by TEE source), transferring it and de-
crypting it (by target TEE), or a Trusted Server based solution. These solutions
present privacy weaknesses, as discussed in the next sections.

In this paper, we propose a new approach to transfer the TEE profiles from
a TEE to another compliant TEE while preserving its privacy. For this purpose,
we propose to organize the TEE into security domains (SD) with different roles
and privileges.

This paper is organized as follows. In Section 2, we present the TEE tech-
nology and describe the problem of profile migration. Then, in Section 3, we
describe the previous works and discuss how different are our objectives. We de-
fine our assumptions and requirements in Section 4. Then, in Section 5, we give
a detailed description of our transfer protocol. Finally, in Section 7, we present
the validation of our protocol and we conclude in Section 8.

2 Backgrounds and problem statement

A Trusted Execution Environment (TEE) is completely separated from the Rich
Execution Environment (REE). It offers a way to isolate Trusted Applications
(TAs) and provide secure functionalities such as cryptographic operations or
secure PIN input. As defined by GlobalPlatform [14], three main TEE software
components are involved: the trusted OS, the TAs and the hardware secure
resources, e.g., trusted peripherals. The TAs can access the trusted resources
and exchange with Secure Elements using a private API. From the REE, mobile
applications can interact with TAs using public APIs. Additional details about
TEEs can be found in [3, 5].

Before using a service of the TEE, which is provided by a service provider,
several steps should occur, as shown in Figure 1. (1) User enrollment: the user
registers to the service provided by the SP, using a secure channel. This step
allows to associate the user identity to a dedicated TA inside the device. (2) The
TA is personalized inside the TEE by the SP. The necessary application in the
REE is also installed. After this step, the service is active. (3) The user could
acquire a new device and wish to securely transfer its TEE profiles from the first
device to the new one. (4) The user may want to destroy its profile, also defined
as disabling credentials [17].

In this article we focus on step 3, the migration of a TEE profile. Like step
1, step 3 can be threatened by an external attacker. If we suppose that an
attacker may have compromised the rich OS or control the network connection
of the smartphone, then the enrollment or migration steps become challenging
tasks. Indeed, as shown in Figure 1, as the interactions with a TEE crosses the
REE, the attacker may succeed to migrate the user’s profile from a victim to the



REE

TEE

Device

TA
REE

TEE

New device

TA

Service provider

Trusted
App

Trusted
App

provisionning

Identity binding

User

migration:
new enrollment

attack vectors

Fig. 1: The life cycle of a TEE service

attacker’s smartphone. This attack may succeed because the service provider has
no insurance about the TEE security and the user-to-TEE binding. In the next
section, we describe the solutions already proposed in the literature in order to
show their limitations and motivate a new way of migrating TEE profiles.

3 Related work

The first papers that studied the security of TEE credentials tried to guarantee
its local (within the TEE) confidentiality and integrity. For instance in [2], au-
thors proposed to protect TEE data using a unique PUF (Physical Unclonable
Functions) AES encryption key for each device. In [18], authors proposed a TEE
key attestation protocol proving that a TEE key has been generated inside the
TEE and never left this TEE.

Later, scientists have been interested in the enrollment problem (mainly user-
device binding) while assuming that there is no operator responsible for the
management of the TEE. For instance, Marforio et al. [19] explained that the
user’s identity can be bound to the device using a password or a SMS or by
collecting the device’s IMEI. Unfortunately, an attacker that controls the Rich
OS can intercept the protocol exchanges. Thus, Marforio et al. proposed some
hardware and software modifications in order to secure the enrollment process.
Others, like in [16], assumed that the smartphone is safe at the first use. This
would enable to store a secret password in the TEE.

The problem of credential migration first appears for Trusted Platform Mod-
ule (TPM), which is in some way the TEE ancestor. The commands of key mi-
gration have been specified in TPM specifications [21] and have undergone many
improvements. Later, Sadeghi et al. [20] proposed a property based TPM virtual-
ization in order to have a solution that supports software update and migration.
The shortcoming of this solution consists in omitting the service provider during
the virtual TPM migration. However, some credential migration requires service
provider fresh and explicit agreement.

In the specific context of TEE, Kari et al. have proposed a credential mi-
gration protocol in open credential platforms [16]. They proposed to make the
credential migration user-friendly based on delegated-automatic re-provisioning.



The credentials are backup in clear in a trusted server. Then, the migration pro-
cess is a re-provisioning from the backup, protected by a secret password only
known by the user. The main weakness of this solution lies in the fact that its
security, including to user’s privacy, is entirely based on a the trustworthy of the
trusted server (TS). This latter, as third party, has full access to TEE credentials
and user’s private data while it is not its owner or provisioner. This proposal
implies privacy issues that we propose to solve with our protocol.

GlobalPlatform specifications related to smartcards have been interested in
credential management in secure elements (smart cards). However, it seems that
the credential privacy in some cases has been overlooked. In GlobalPlatform
card specifications [12], the smart card is organized into fully isolated areas
called Security Domains (SD). There are a root security domain called ISD for
Issuer Security Domain and many Supplementary Security Domains (SSDs) for
the different Service Providers. Let us call SPSD the security domain for a given
SP. For instance, the ISD could be owned by the Mobile Network Operator
(MNO) and the SPSD could be owned by a bank. Once, the SPSD created,
there are two modes to manage the content of this SPSD: either directly from
SP to SPSD, or through ISD. In the first case, the credential migration process
would be naturally implemented in the application of the SP within the smart
card: encryption with the target public key, transfer and decryption, provided
that the MNO initiates the SP space in the target smart card. In the second
case, the MNO plays the role of firewall and proxy for the SPSD without having
access to the content between SP and its SSD (SPSD). SPSDs do not have any
code enabling to perform a credential transfer.

If we adopt the first model for the TEE, the TEE profile migration would
be processed like in the smart card: the TEE profile migration process would be
naturally implemented in the TA of the SP: encryption with the target public
TEE key, transfer and decryption, provided that the TEE admin - MNO initiates
the SP space in the target TEE. As a consequence, each service provider would
have to implement a migration process for its service.

If we adopt the second model for the TEE, TEE admin will serve as the single
entry point to transfer point-to-point credentials: implementing the migration
process would imply privacy issues similarly to the Kari et al. [16] solution. TEE
admin would have full access to the SP credentials and user’s data in order to
encrypt and transfer it. In this paper, we propose a new migration protocol,
while adopting the second model, where the TEE Admin plays the role of proxy
without having access to SP credentials. We consider the following properties:

– As trusted application profile contains credentials and also personal data
(statistics, usage data of the service), during the migration, the profile shall
be accessible only by legitimate entities: the SP and the user;

– A special third party, the TEE admin should be responsible of the role of
installation, deletion and migration of trusted profiles;

– The trusted application of the SP should not contain any code dedicated
to the migration protocol. All the migration software components should be
handled by the TEE admin.



4 Attacker model and requirements

We assume that the enrollment, provisioning and personalization processes are
already achieved: the trusted application is provisioned to the TEE and has
access to its credentials and the user’s personal data. By the profile, we mean
the credentials (allowing the access to the service) and private data (related to
personalization and the use of application/service).

We consider three different actors: the user (the devices’ owner), the Service
Provider (e.g. the bank) and a TEE admin (e.g., Mobile Network Operator or
smartphone manufacturer). We consider the following attacker model:

A1: Communication control. We consider that we have a Dolev-Yao [11]
attacker model: an attacker has full control over communication channels.

A2: TEE control. We consider that TEEs are enough resistant to physical
attacks according the Protection Profile proposed by GlobalPlatform [13]
which is EAL2+ certified.

A3: REE control. Given the possible vulnerabilities of the rich OS, we assume
that an attacker can compromise the REE of a user’s device.

A4: Entities control and trustworthy. We assume that (i) an attacker can-
not spoof the SP, cannot compromise its dedicated spaces within the TEE
and the SP is honest, (ii) an attacker cannot spoof the TEE Admin and
cannot compromise its dedicated spaces within the TEE, however the TEE
Admin can be honest-but-curious and, (iii) the user is honest.

While keeping in view the above discussions, we define the security require-
ments that a migration protocol shall meet as follow:

R1: Integrity. During the migration process, the integrity of the TEE profile
should be ensured. For a given profile, only the user and the relevant service
provider should be able to eventually modify the profile content.

R2: Confidentiality. During the migration process, the confidentiality of the
TEE profile should be ensured. For a given profile, only the user and the
relevant service provider should be able to eventually read the profile content.

5 TEE migration protocol

Considering the previous requirements, attacker model, and the GlobalPlatform
Card Specifications [12], we introduce a new approach for deploying services in a
TEE where: TAs of a service provider are hosted in a Security Domain (SD) and
a new actor, called TEE admin, has a special SD and implements the migration
functionalities. With such a new software architecture, we build a protocol that
allows to securely transfer a TEE profile from one device to another one.

5.1 Architecture overview

We organize the TEE into Security Domains (SD) [12]. Every SD can contain
one or many Trusted Applications (TA) from the same Service Provider. A SD



REE

TEE

Device

Migrate-SD

TA

TA

ROOT-SD SP-SD

sk
r
, pk

r
 

cert
r

Create-SD

Destroy-SD

sk
sd

, pk
sd

 
cert

sd

TA

(a) Device architecture

Device 2:
Destination

Device 1:
Source

Service provider
TEE 

Administrator

(1) AKA

(2
) 

A
u
th

o
ri

za
ti

o
n
 

R
e
q
u
e
st

(5) Transfer

(3) Groundw
ork

(4
) 

A
u
th

o
ri

za
ti

o
n
 

(b) Protocol overview

Fig. 2: Architecture and protocol overview

is a fully isolated zone. This functionality could be ensured by memory protec-
tion mechanisms, firewall functionalities, data isolation techniques implemented
at OS level of the TEE, such as the ones used for Linux systems (SELinux,
AppArmor,...). For example, in the commercialized TEE solution of Trustsonic,
such an architecture can be implemented using containers. A SD manipulates
cryptographic keys which are completely separated from any other SD. These
keys enable code execution integrity, credentials and user’s private data integrity
and confidentiality when using a service. Consequently, a SD must not cipher
his credentials or user’s private data using any external keys whatever is the
case, e.g., transfer. We define two types of SD, represented in Figure 2a: (1) SD
without management rights (many per TEE): SP-SD (in green). They contain
the trusted applications of a service provider. (2) SD with management rights
(only one per TEE): ROOT-SD (in orange). It is responsible of creating and
deleting SDs, downloading and installing packages in SDs, and also migrating
SDs from a TEE to another compliant TEE.

5.2 Protocol overview

In order to migrate a TEE profile from a source device to a target one, the
user gets the two devices nearby each other in order to establish a wireless
communication, such as NFC or bluetooth. Then, the user starts the migration
application, noted Migrate-SD in Figure 2a, within the ROOT-SD of the TEE
source. In order to do this, the user must be authenticated in both source and
target TEEs. Owing to the authentication procedure, the TEEs check that only
the user enrolled by the TEE admin can start the migration process. This au-
thentication can be done through the “Trusted User Interface” [15], or by using
the password or the pin code setup at the enrollment phase, or by using a biom-



etry peripheral if available. The next steps of the protocol that involve the two
TEEs are presented in Figure 2b and described in the following.

Step 1. An authenticated key agreement takes place between the ROOT-SD
of TEE source and the ROOT-SD of target TEE. This prevents the TEE source
from disclosing critical information to a malicious environment and prevents the
target TEE from accepting malicious data.

Step 2. The TEE source requires a migration authorization from all service
providers that have a SD within the TEE source. If a service provider does not
agree with the migration of his relevant SD, the migration cannot take place.
The migration authorization is temporary and unique per pair of devices, per
transfer and per service provider. Indeed, the authorization is related to the date
and time of the request that has been initiated. Thus, it is valid only for a given
period of time.

Step 3. At that time starts the groundwork for the authorization. First, the
service provider checks with the TEE admin whether the target TEE is stated
compromised. Then, the service provider checks that the target TEE is not
already a client containing a service provider SD. Finally, the service provider
asks the TEE admin to set up a specific SD within target TEE, and updates the
SD credentials in order to be the unique master of this SD.

Step 4. Finally, the service provider replies to the TEE source with the
authorization and necessary migration credentials. The authorization consists of
a service provider signature proving his agreement regarding the migration of his
SD. The credentials consist of a re-encryption key [8,9]. Using this re-encryption
key, the Migrate-SD application will be able to perform the transfer without
having access to SD profile. In order to send source profile to the target SD, the
source SD provides its profile, encrypted with its public key, to the TA, Migrate-
SD, that should re-encrypt it with the re-encryption key. In such a case, even if
the TEE Admin is honest-but-curious, it cannot eavesdrop the SD profile.

Step 5. The target TEE must check the validity of the received authoriza-
tion. At this time, the migration can start.

5.3 TEE profile migration protocol

In the following, we introduce the notations and cryptographic keys used in
our protocol. Later, we detail the phases of our protocol: Authenticated key
agreement, Service Provider authorization and TEE Profile migration.

Cryptographic keys and notations. We denote (sksrc, pksrc, certsrc)
(resp. (sktgt, pktgt, certtgt)) the TEE private root key and the certified TEE
public root key of the source (resp. target) ROOT-SD. These keys are used to
authenticate the TEE and set up a key session with an authenticated TEE. A
TEE admin is characterized by a private and public key pair (skAdmin, pkAdmin).
It controls the ROOT-SD and certifies TEE root keys. A Security Domain SP-
SD is characterized by a root keys set (sksd, pksd, certsd). This is an encryption
keys set that enables to securely store SD profile. We denote SP − SDsrc (resp.
SP − SDtgt) the service provider SD within TEE source (resp. target TEE).



Enc(pk, M) : The encryption of the message M using the public key pk.
MAC(sk, M) : The Message Authenticated Code (MAC) of the message M using the key sk.
SignatureA : The signature on the message sent with the signature using the private key of A.
Verify(pk, σ) : The verification of the signature σ using the public key pk corresponding to private

key sk used during the signature generation.

Fig. 3: Cryptographic notations

Consequently, the tuple (skSP−SDsrc , pkSP−SDsrc , certSP−SDsrc) (resp. the tu-
ple (skSP−SDtgt , pkSP−SDtgt , certSP−SDtgt)) is the root keys set of SP −SDsrc

(resp. SP − SDtgt). A service provider is characterized by (sksp, pksp) and a
unique identifier IDSP . It provides the security domains root keys and is re-
sponsible of the re-encryption key and transfer authorization generation. The
notations for the different cryptographic primitives are defined in Figure 3.

Authenticated Key Agreement. The authenticated key agreement (AKA,
step 1 in Figure 2b) occurs in order to establish a secure session between two
TEEs after a mutual authentication. The AKA can be a password based key
agreement [1] or a public key authenticated Key agreement [10] and must be
a two ways authentication. In the first case, we can use the password or PIN
or biometric data introduced by the user during the authentication phase and
in the second case, we can use the TEEs root keys. At the end of this phase,
the source and target TEEs will share a couple of ephemeral keys (eKt, eKm)
to secure the migration. eKt is the private session key, whereas eKm is used for
MAC computations.

Service Provider Authorization. The TEE source requires a migration
authorization from all service providers having trusted applications within the
TEE source (step 2 in Figure 2b). This protocol is described in Figure 4. For
the sake of simplicity, we consider only one service provider.

(1) The migration application within ROOT − SDsrc sends the request
INIT RQ with its signature noted SignatureROOT−SDsrc

to the service provider
through the TEE admin. The request includes the identity of the service provider
(IDSP ), the public key of SP −SDsrc (pkSP−SDsrc

) and the certified TEE pub-
lic root keys of source and target TEE (certsrc, certtgt). (2) When receiving the
request, TEE admin checks the certificates (certsrc, certtgt), the signature and
freshness of the request and a timestamp (SignatureROOT−SDsrc

)5. It should
also check whether source or target TEE are compromised6 for example using
the remote attestation protocols of Baiardi et al. [6]. (3) If checks are successful,
the TEE admin transmits the request (INIT ) to the relevant service provider
based on the IDSP received within the request.

(4) With the received request, the service provider checks if the TEE source
(resp. target TEE) has (resp. has not) an associated SP-SD by checking if certsrc
(resp. certtgt) is registered in its database. Then, (5) the service provider in-
quires TEE admin to create a SP-SD within the recipient TEE via the SD −
Create RQ(certtgt) command. (6) The TEE admin signs the command (the

5 TEE implementations like TrustZone offer access to trusted clocks for this usage.
6 This is already the case for SIM card where MNOs checks if a SIM has been revoked.



signature SignatureTEEAdmin
is performed on the command and a timestamp)

and forwards it to the trusted application Create − SDtgt in order to create
SP −SDtgt. (7, 8, 9, 10). The creation is acknowledged by Ack and Param that
are returned to the service provider (through the TEE Admin) in order to let
him be able to personalize SP − SDtgt, as done classically when personalizing
TEE security domains. (11) Once the SP −SDtgt installed, the service provider
proceeds to the update of SP − SDtgt credentials in order to have the exclusive
control over SP − SDtgt [12].

Finally, the service provider generates the migration authorization. It consists
of a re-encryption key Kproxy and a signature PERM . The signature PERM
is computed on the SP identifier IDSP , source and target TEE public keys
as well as a timestamp: PERM = {IDSP , certsrc, certtgt, T imeStamp}skSP

.
The re-encryption key Kproxy is used to re-encrypt the SD − SPsrc content
such that the result will be understandable only by SP − SDtgt: Kproxy =
rekeygen(pkSP−SDtgt

, skSP−SDsrc
). In the literature [8, 9], Kproxy is called a

proxy key. (12, 13) The authorization is sent to the TEE Admin who signs it
and transmits it (with its signature) to ROOT − SDsrc.

TEE Profile Migration. Using the re-encryption key, the confidentiality
and integrity of the migration phase is guaranteed. Any outsider cannot eaves-
drop the SP − SDsrc profile and a honest-but-curious TEE Admin has no visi-
bility about the SP − SDsrc profile. The migration occurs as follows.

As described in Figure 5, Migrate− SDsrc re-encrypts the protected profile
of SP − SDsrc (P ) using the proxy key Kproxy to obtain the cipher A. Only
SP − SDtgt is able to decrypt A. Afterwards, Migrate − SDsrc computes B
and C. B is the encryption of A and the identifier of the service provider owning
SP−SDsrc (IDSP ) using the transfer key eKt. Regarding C, it is the MAC of A
and IDSP using eKm. At the end of these computations, Migrate−SDsrc sends
A, B, C and PERM to Migrate− SDtgt. that proceeds to the verifications of
PERM and C. The verification of PERM corresponds to the verification of
a signature, its freshness and that its parameters contain the right certsrc and
certtgt. Next, Migrate − SDtgt decrypts B in order to retrieve A and IDSP .
Based on the retrieved IDSP , Migrate− SDtgt transmits A to SP − SDtgt.

When the migration finishes, we have two possibilities. On the one hand,
the security policy of the service admits to conserve the TEE profile in the
source. In such a case, Migrate − SDtgt simply acknowledges that the TEE
profile migration is completed successfully (Signed Ack). On the other hand,
the security policy of the service admits to conserve only one profile. The TEE
profile in the source should be destroyed. In order to ensure a fair exchange,
exchanges between Migrate− SDsrc and Migrate− SDtgt must be performed
via the service provider. Migrate − SDtgt acknowledges that the TEE profile
migration is completed successfully (Signed Ack). At this time, Migrate−SDsrc

asks the trusted application Destroy − SDsrc to destroy the SD corresponding
to IDSP . When the operation finishes, Migrate − SDsrc informs the service
provider that the transfer is accomplished. Hence, the service provider will not
consider any more TEE source as a client and revoke its corresponding keys.



ROOT − SDsrc TEEAdmin SP ROOT − SDtgt

(sksrc, pksrc, certsrc) (skAdmin, pkAdmin) (sksp, pksp) (sktgt, pktgt, certtgt)

(1) INIT RQ(IDSP ,pkSP−SDsrc
,

certsrc,certtgt),

SignatureROOT−SDsrc−−−−−−−−−−−−−−−−−−−−−−−−−−→

(2) Verify(pkAdmin, certsrc)
Verify(pkAdmin, certtgt)

Verify(pksrc, SignatureROOT−SDsrc )
certsrc, certtgt /∈ {CompromisedTEE}

3) INIT (pkSP−SDsrc
,certsrc,

certtgt)−−−−−−−−−−−−−−−−−−−−−−−→

(4) certsrc ∈ {Clients}
certtgt /∈ {Clients}

(5) SD−Create RQ(certtgt)←−−−−−−−−−−−−−−−−−−−−−−−−

(6) SD−Create()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SignatureTEEAdmin

(7) Verify(pkAdmin,
SignatureTEEAdmin

)
Execute the command

(8) Ack and Param←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SignatureROOT−SDtgt

(9)Verify(pktgt, SignatureROOT−SDtgt )

(10) Param−−−−−−−−−−−−−−−−−−−−−−−−→

(11)Personalize the root keys of SP − SDtgt

Compute the proxy key Kproxy

and the SP authorization PERM

(13) Kproxy,PERM
←−−−−−−−−−−−−−−−−−−−−−−−−−−

SignatureTEEAdmin

(12) Kproxy,PERM
←−−−−−−−−−−−−−−−−−−−−−−−−

(14)Verify(pkAdmin, SignatureTEEAdmin
)

Fig. 4: Service Provider authorization protocol

SP − SDsrc ROOT − SDsrc ROOT − SDtgt SP − SDtgt

P = Enc(pkSP−SDsrc
,profilesrc)

−−−−−−−−−−−−−−−−−−−−−−−−−−→
Compute:

A= Enc(Kproxy, P )
B= Enc(eKt, A and IDSP )

C= MAC(eKm, A and IDSP )
A, B, C and PERM−−−−−−−−−−−−−−−−−−−−−−−−→

Decrypt(eKt, B)
Retrieve IDSP

Verify(pkSP , PERM)
Verify(eKm, C)

A−−−−−−−−−−−−−−−−−−−−→
Signed Ack←−−−−−−−−−−−−−−−−−−−−−−−−

Destroy SP − SDsrc

Inform the SP of the
achievement of the migration

Fig. 5: Profile migration protocol



5.4 Performance remarks

As current TEE implementation does not give access to low level cryptographic
primitives we cannot implement the whole protocol. To give an idea of perfor-
mances, the reader should note that TEEs exploit the CPU of the smartphone
with an amount of RAM of some MBs. Thus performance are comparable with
what can be obtained in the Rich OS. For example, a RSA computation is
achieved in 20 ms on a Galaxy SIII smartphone. Our reencryption scheme needs
lower than a RSA computation: we measured, on a Galaxy SIII a reencryption
time of about 4 ms.

6 Security analysis

User identification. During a TEE profile migration, it is important to en-
sure that the target TEE (target device) belongs to the owner of the source TEE
(source device). In our model, this is guaranteed by the concept of demonstra-
tive identification [7]. Indeed, we proposed to run the migration protocol over a
wireless proximity technology (NFC).

Requirements analysis. During the migration, an outsider or a curious
TEE Admin must not be able to read or modify the transferred TEE profile
(R1, R2). This is ensured by using the cryptographic re-encryption method.
Indeed, the migration authorization, delivered by the service provider, consists
of two components: Kproxy and PERM . PERM is a signature computed by
the service provider on (IDSP , certsrc, certtgt, timeStamp). An attacker would
not be able to replay this authorization because of the timestamp. Moreover,
the transfer process would fail if certsrc (resp. certtgt) does not correspond to
the certified root public key used by source TEE (resp. target) during the AKA
phase. Regarding the re-encryption key Kproxy, it is computed based on the
private key of the source SD and the public key of the target SD. This means
that a cipher text of source SD, if encrypted using Kproxy, will be converted
to a cipher text of target SD. Thus, only source SD, target SD and the service
provider have access (read / modify) to the TEE profile. If the re-encryption
key Kproxy is improperly computed, the attacker cannot get the TEE profile
content.

TEE Admin trustworthy. Besides the cryptographic solution, our ap-
proach relies on the trustworthy of the TEE Admin. We assume that a TEE Ad-
min can only be honest-but-curious and not malicious (compromised). Indeed, a
malicious TEE Admin can get access to service provider credentials and user’s
private data. However, we estimate that the assumption of a honest-but-curious
TEE Admin is reasonable. This is because a malicious TEE Admin (when de-
tected) risks not only huge financial damages but also his reputation. Knowing
that this role should be played by the device manufacturer or the mobile network
operator. In our opinion, this risk is far from being taken.



7 Protocol validation

We validated our protocol using the AVISPA [4] tool web interface. AVISPA
is an automated tool for the validation of security protocols. It takes as input
a protocol modelled in High-Level Protocol Specification Language (HLPSL).
This latter is translated into Intermediate Format (IF) and forwarded to the
back-end analyser tools.

In Appendix A, we show (the core subset of) our migration protocol model
written in HLPSL. In this validation model, we mainly focused on Service
Provider authorization protocol (Figure 4) and Profile transfer protocol (Fig-
ure 5). Therefore, we assumed that the user authentication and AKA steps have
been successfully achieved. Moreover, for the sake of simplicity, we did not con-
sider the SP − SDtgt root key personalization.

We modeled our transfer protocol into six roles in addition to two standard
roles (i.e. “session” and “environment”). First, the role “sdSrc” (resp. “sdTgt”)
refers to the SP − SDsrc (resp. SP − SDtgt). Then, the role “src” (resp. “tgt”)
represents the Migration TA within TEE source (resp. target TEE). At last,
“teeAdmin” and “sp” respectively correspond to the entities TEE admin and
Service Provider. Every role is modelled into a state transition system. A state
represents the reception and/or the transmission of a message from our protocol.
For instance, “State = 0” in the role “teeAdmin” corresponds to the reception
of INIT RQ by the TEE administrator in Figure 4. Regarding the role called
“session”, it represents a single session of our protocol where all the other roles
are instantiated.

All the roles communicate over Dolev-Yao [11] channels (channel(dy)), i.e.,
an adversary can fully control the communication channels (A1). The attacker
knowledge is defined by the set of constants or variables of the intruder knowledge

set in the main role (environment) (A2, A3). Then, the intruder actions are mod-
eled by the combination of several sessions where the intruder may take part of
the sessions running. On the subject of our protocol, besides the initialization of
intruder knowledge, we modeled our attacker by the variable i (i for intruder)
such that he can play the role of a honest-but-curious TEE Admin (Line 125)
or a honest-but-curious Migration TA in the source (Line 123) or target TEEs
(Line 124) (A4-ii). Finally, we note that the attacker i did not compromise the
SP nor its SDs (A4-i) because the roles “sdsrc”, “sdtgt” and “spagent” are not
played by the attacker in the initialized sessions (Lines 122, 123, 124, 125).

The migration authorization, delivered by the service provider, consists of
two components: Kproxy and PERM . PERM is a signature computed by the SP
on (IDSP , certsrc, certtgt, timeStamp). Regarding Kproxy, it is not a standard cryp-
tographic tool. Thus, AVISPA does not have its predefined predicate. Our model
must manually put up all its features. We designed the proxy re-encryption con-
cept owing to the predicate ∧equal({EncSD} KProxy, {SDCred} PKSDtgt) at the end
of the role “sdSrc”. This predicate models the equality between “the encryption
of EncSD (the encryption of SDCred using the public key of the source SD) using
the proxy key” and “the encryption of SDCred using the public key of the target



SD”. If this equality does not hold, it means that Kproxy is a fake key from an
attacker which should be assimilated to a denied authorization of the SP.

The HLPSL language provides four predicates to model security require-
ments. The predicate secret(E, id, S) declares the information E as secret shared
by the agents of set S. This security goal will be identified by id in the goal
section. In addition, witness, request and wreuqest are used to model authenti-
cation goals. Regarding the security requirements R1 (integrity) and R2 (confi-
dentiality with respect to outsiders and a curious TEE Admin), we defined them
in one goal owing to the predicate secret(SDCred, transfer, {SDsrc, SP, SDtgt}) at
the end of the role “sdSrc”. This predicate expresses that the content of an SD
should remain secret between the SD of TEE source, the service provider and
the SD of the target TEE.

We successfully validated our protocol with two AVISPA back-ends (AtSe and
SATMC). The AtSe back-end extracts attacks that defeat the security proper-
ties by translating the model in constraints on the adversary’s knowledge. Using
a unification algorithm it integrates at each step of the protocol the new con-
straints. As our protocol is loop free, the search of possible attacks is complete.
Regarding the SATMC back-end, it translates the protocol in propositional for-
mulas that can feed an off-the-shelf SAT solver.

8 Conclusion

In this paper, we have introduced a TEE architecture based on security do-
mains. The root security domain is controlled by the TEE admin and the other
security domains isolate the service providers trusted applications. With such an
architecture, we have proposed a practical and privacy-preserving TEE profile
migration protocol. This protocol requires the dynamic interaction of the service
provider and the TEE admin. Owing to the security and functional characteris-
tics of the used re-encryption method, the integrity and the confidentiality of the
TEE profile, with respect to external attackers and TEE Admin, are guaranteed.
Finally, we successfully validated our protocol using the AVISPA tool.

References

1. Supplemental access control (PACEv2): Security analysis of PACE integrated map-
ping. In D. Naccache, editor, Cryptography and Security: From Theory to Appli-
cations, volume 6805 of LNCS, 2012.

2. M. Areno and J. Plusquellic. Securing trusted execution environments with PUF
generated secret keys. In 11th International Conference on Trust, Security and
Privacy in Computing and Communications, pages 1188–1193, Liverpool, England,
UK, June 2012. IEEE Computer Society.

3. G. Arfaoui, S. Gharout, and J. Traoré. Trusted execution environments: A look
under the hood. In 2nd IEEE International Conference on Mobile Cloud Comput-
ing, Services, and Engineering (MobileCloud), pages 259–266, Oxford, UK, April
2014. IEEE Computer Society.



4. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,
P. Drielsma, P. Heam, O. Kouchnarenko, J. Mantovani, S. Modersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vigano, and L. Vigneron.
The AVISPA tool for the automated validation of internet security protocols and
applications. In K. Etessami and S. Rajamani, editors, 17th International Con-
ference on Computer Aided Verification, volume 3576 of LNCS, pages 281–285.
Springer, Edinburgh, Scotland, UK, 2005. http://www.avispa-project.org.

5. N. Asokan, J. E. Ekberg, and K. Kostiainen. The untapped potential of trusted
execution environments on mobile devices. IEEE Security And Privacy, 12(4):293–
294, Aug. 2013.

6. F. Baiardi, D. Cilea, D. Sgandurra, and F. Ceccarelli. Measuring semantic integrity
for remote attestation. In L. Chen, C. Mitchell, and A. Martin, editors, 2nd Inter-
national Conference on Trusted Computing, volume 5471 of LNCS, pages 81–100.
Springer, Oxford, UK, 2009.

7. D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong. Talking to strangers:
Authentication in ad-hoc wireless networks. In Network and Distributed System
Security Symposium, San Diego, California, USA, 2002. The Internet Society.

8. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryp-
tography. In EUROCRYPT’98, volume 1403 of LNCS, pages 127–144, Helsinki,
Finland, may 1998. Springer.

9. S. Canard, J. Devigne, and F. Laguillaumie. Improving the security of an effi-
cient unidirectional proxy re-encryption scheme. Journal of Internet Services and
Information Security (JISIS), 1(2/3):140–160, Aug. 2011.

10. J.-S. Coron, A. Gouget, P. Paillier, and K. Villegas. SPAKE: A single-party public-
key authenticated key exchange protocol for contact-less applications. In R. Sion,
R. Curtmola, S. Dietrich, A. Kiayias, J. Miret, K. Sako, and F. Seb, editors, Fi-
nancial Cryptography and Data Security, volume 6054 of LNCS, pages 107–122,
Tenerife, Canary Islands, Spain, 2010. Springer.

11. D. Dolev and A. C. Yao. On the security of public key protocols. In 22Nd An-
nual Symposium on Foundations of Computer Science, SFCS ’81, pages 350–357,
Nashville, USA, 1981. IEEE Computer Society.

12. GlobalPlatform Card technology. Card specification - v2.2.1, Jan. 2011.
13. GlobalPlatform Device Committee. TEE protection profile version 1.2, public

release, gpd spe 021, November 2014.
14. GlobalPlatform Device technology. TEE system architecture, v1.0, Dec. 2011.
15. GlobalPlatform Device technology. Trusted user interface API, v1.0, June 2013.
16. K. Kostiainen, N. Asokan, and A. Afanasyeva. Towards user-friendly credential

transfer on open credential platforms. In J. Lopez and G. Tsudik, editors, 9th
International Conference on Applied Cryptography and Network Security, volume
6715 of LNCS, pages 395–412. Springer, Nerja, Spain, june 2011.

17. K. Kostiainen, N. Asokan, and J.-E. Ekberg. Credential disabling from trusted ex-
ecution environments. In 15th Nordic Conference on Secure IT Systems, number 2,
pages 171–186, Espoo, Finland, Oct. 2012. Springer.

18. K. Kostiainen, A. Dmitrienko, J.-E. Ekberg, A.-R. Sadeghi, and N. Asokan. Key
attestation from trusted execution environments. In A. Acquisti, S. Smith, and
A.-R. Sadeghi, editors, 3rd International Conference on Trust and Trustworthy
Computing, volume 6101 of LNCS, pages 30–46. Springer, Berlin Germany, 2010.

19. C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun. Secure
enrollment and practical migration for mobile trusted execution environments. In
Third ACM workshop on Security and privacy in smartphones & mobile devices,
pages 93–98, Berlin, Germany, november 2013. ACM Press.

http://www.avispa-project.org


20. A.-R. Sadeghi, C. Stüble, and M. Winandy. Property-based TPM virtualization. In
T.-C. Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee, editors, 11th Information Security
Conference, volume 5222 of LNCS, pages 1–16, Taipei, Taiwan, september 2008.
Springer.

21. Trusted Computing Group. TPM main specification. http://www.
trustedcomputinggroup.org/resources/tpm main specification, 2015.

A Our transfer protocol in HLPSL

1 role sdSrc (SrcTEE, SDsrc, SDtgt, SP: agent,
2 PKSrcTEE, PKSDsrc, PKSDtgt, PKSP: public key,
3 SDCred: text,
4 SND, RCV: channel (dy))
5 played by SDsrc def=
6 local
7 State: nat,
8 EncSD: text,
9 KProxy: public key

10 init State:=0
11 transition
12 0.State=0 /\ RCV(start) =|> EncSD’:={SDCred} PKSDsrc /\ State’:=1
13 1.State=1 =|> SND(EncSD)
14 /\ secret(SDCred,transfer,{SDsrc, SP, SDtgt})
15 /\ equal({EncSD} KProxy, {SDCred} PKSDtgt)
16 end role
17
18 role src (SrcTEE, SDsrc, TgtTEE, TEEAdmin, SP: agent,
19 PKSrcTEE, PKSDsrc, PKTgtTEE, PKTEEAdmin, PKSP : public key,
20 SK : symmetric key,
21 SND, RCV: channel (dy))
22 played by SrcTEE def=
23 local
24 State : nat,
25 TimeStamp,EncSD: text,
26 Ack: message,
27 KProxy: public key
28 init State := 0
29 transition
30 0.State = 0 /\ RCV(EncSD) =|> State’:= 1 /\ TimeStamp’:= new()/\SND(SrcTEE.

TEEAdmin.PKSP.PKSDsrc. PKSrcTEE. PKTgtTEE.{PKSP. PKSDsrc. PKSrcTEE.
PKTgtTEE.TimeStamp’} inv(PKSrcTEE))

31 1.State= 1 /\ RCV(SrcTEE.TEEAdmin.KProxy.{PKSP.PKSrcTEE. PKTgtTEE} inv(PKSP)
.{KProxy.{ PKSP.PKSrcTEE. PKTgtTEE. TimeStamp} inv(PKSP)} inv(
PKTEEAdmin)) =|> State’:= 2

32 2.State=2/\SND(SrcTEE.TgtTEE.{{EncSD} KProxy.PKSP} SK) =|> RCV({SrcTEE.
TgtTEE.Ack.TimeStamp} SK)

33 end role
34
35 role teeAdmin (SrcTEE, TgtTEE, TEEAdmin, SP: agent,
36 PKSrcTEE, PKTgtTEE, PKTEEAdmin, PKSP: public key,
37 SND, RCV: channel (dy))
38 played by TEEAdmin def=
39 local
40 State : nat,
41 SDCreate, Param, Ack: message,
42 TimeStamp: text,
43 PKSDsrc, KProxy: public key
44 init State := 0
45 transition
46 0.State=0 /\ RCV(TEEAdmin.SrcTEE.PKSP.PKSDsrc.PKSrcTEE.PKTgtTEE.{PKSP.

PKSDsrc.PKSrcTEE. PKTgtTEE.TimeStamp} inv(PKSrcTEE))=|> State’:= 1 /\ SND
(TEEAdmin.SP.PKSDsrc.PKSrcTEE. PKTgtTEE)

47 1.State=1 /\ RCV(TEEAdmin.SP .SDCreate .PKTgtTEE) =|> State’:=2 /\ TimeStamp’:=
new()/\SND(TEEAdmin. TgtTEE. SDCreate. {SDCreate.TimeStamp’} inv(
PKTEEAdmin))

48 2.State=2 /\RCV(TEEAdmin. TgtTEE.Ack.Param.{ Ack.Param.TimeStamp} inv(PKTgtTEE
)) =|> State’:=3 /\ SND(TEEAdmin.SP.Param)

49 3.State=3 /\RCV(TEEAdmin.SP.KProxy.{PKSP.PKSrcTEE. PKTgtTEE. TimeStamp} inv(
PKSP))=|> SND(TEEAdmin. SrcTEE.KProxy.{ PKSP.PKSrcTEE. PKTgtTEE.
TimeStamp} inv(PKSP).{ KProxy.{PKSP.PKSrcTEE. PKTgtTEE.TimeStamp} inv(
PKSP)} inv(PKTEEAdmin))

50 end role
51
52 role sp(TEEAdmin, SP: agent,
53 PKTEEAdmin, PKSP: public key,
54 SND, RCV: channel (dy))
55 played by SP def=
56 local
57 State : nat,
58 SDCreate, Param: message,
59 TimeStamp: text,

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification


60 PKSrcTEE, PKTgtTEE, PKSDsrc, PKSDtgt, KProxy: public key
61 init State := 0
62 transition
63 0.State=0 /\ RCV(SP.TEEAdmin.PKSDsrc.PKSrcTEE.PKTgtTEE) =|> State’:=1 /\ SND(

SP.TEEAdmin.SDCreate.PKTgtTEE)
64 1.State=1/\RCV(Param) =|> TimeStamp’:=new()/\PKSDtgt’:=new()/\ KProxy’:=new()/\

SND(KProxy’.{PKSP.PKSrcTEE.PKTgtTEE.TimeStamp’} inv(PKSP))
65 end role
66
67 role tgt(SrcTEE, TgtTEE, TEEAdmin, SDTgt: agent,
68 PKTgtTEE, PKTEEAdmin, PKSP, PKSDtgt: public key,
69 SK : symmetric key,
70 SND, RCV: channel (dy))
71 played by TgtTEE def=
72 local
73 State : nat,
74 TimeStamp, EncSD: text,
75 SDCreate, Ack, Param: message,
76 KProxy: public key
77 init State := 0
78 transition
79 0.State=0/\RCV(TgtTEE.TEEAdmin.SDCreate.{SDCreate.TimeStamp} inv(PKTEEAdmin))

=|> State’:=1/\TimeStamp’:=new()/\SND(TgtTEE.TEEAdmin.Ack.Param.{Ack.
Param.TimeStamp’} inv(PKTgtTEE))

80 1.State=1/\RCV(TgtTEE.SrcTEE.{{EncSD} KProxy.PKSP} SK)=|>State’:=2/\TimeStamp
’:=new()/\SND(TgtTEE.SrcTEE.{Ack.TimeStamp’} SK)

81 2.State=2 =|>SND(TgtTEE.SDTgt.{EncSD} KProxy)
82 end role
83
84 role sdTgt(TgtTEE, SDTgt: agent,
85 PKTgtTEE, PKSDsrc, PKSDtgt: public key,
86 SND, RCV: channel (dy))
87 played by SDTgt def=
88 local
89 State: nat,
90 EncSD: text,
91 KProxy: public key
92 init State:=0
93 transition
94 0.State= 0 =|> RCV({EncSD} KProxy)
95 end role
96
97 role session(SDsrc, SDtgt, SrcTEE, TgtTEE, TEEAdmin, SP: agent,
98 PKSDsrc,PKSDtgt,PKSrcTEE,PKTgtTEE,PKTEEAdmin,PKSP: public key,
99 SK : symmetric key,

100 SDCred: text)
101 def=
102 local S0, R0, S1, R1, S2, R2, S3, R3, S4, R4, S5, R5 : channel (dy)
103 composition
104 sdSrc (SrcTEE, SDsrc, SDtgt, SP, PKSrcTEE, PKSDsrc, PKSDtgt, PKSP, SDCred, S0, R0)
105 /\ src (SrcTEE, SDsrc, TgtTEE, TEEAdmin, SP, PKSrcTEE, PKSDsrc, PKTgtTEE,

PKTEEAdmin, PKSP, SK, S1, R1)
106 /\ teeAdmin (SrcTEE, TgtTEE, TEEAdmin, SP, PKSrcTEE, PKTgtTEE, PKTEEAdmin,

PKSP,S2, R2)
107 /\ sp (TEEAdmin, SP, PKTEEAdmin, PKSP, S3, R3)
108 /\ tgt (SrcTEE, TgtTEE, TEEAdmin, SDtgt, PKTgtTEE, PKTEEAdmin, PKSP, PKSDtgt,

SK, S4, R4)
109 /\ sdTgt(TgtTEE, SDtgt, PKTgtTEE, PKSDsrc, PKSDtgt, S5, R5)
110 end role
111
112 role environment()
113 def=
114 const
115 sdsrc, sdtgt, srctee, tgttee, teeadmin, spagent, i: agent,
116 pksdsrc,pksdtgt,pksrctee,pktgttee,pkteeadmin,pksp,ki: public key,
117 sk: symmetric key,
118 transfer : protocol id,
119 sdcred: text
120 intruder knowledge={pksrctee, pktgttee, pkteeadmin, pksp, ki, inv(ki)}
121 composition
122 session(sdsrc, sdtgt, srctee, tgttee, teeadmin, spagent, pksdsrc, pksdtgt, pksrctee, pktgttee,

pkteeadmin, pksp, sk, sdcred)
123 /\ session(sdsrc, sdtgt, i, tgttee, teeadmin, spagent, pksdsrc, pksdtgt, pksrctee, pktgttee,

pkteeadmin, pksp, sk, sdcred)
124 /\ session(sdsrc, sdtgt, srctee, i, teeadmin, spagent, pksdsrc, pksdtgt, pksrctee, pktgttee,

pkteeadmin, pksp, sk, sdcred)
125 /\ session(sdsrc, sdtgt, srctee, tgttee, i, spagent, pksdsrc, pksdtgt, pksrctee, pktgttee,

pkteeadmin, pksp, sk, sdcred)
126 end role
127
128 goal
129 secrecy of transfer
130 end goal
131
132 environment()


	Practical and Privacy-Preserving TEE Migration

