
HAL Id: hal-01110259
https://inria.hal.science/hal-01110259

Submitted on 27 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Can code polymorphism limit information leakage?
Antoine Amarilli, Sascha Müller, David Naccache, Daniel Page, Pablo Rauzy,

Michael Tunstall

To cite this version:
Antoine Amarilli, Sascha Müller, David Naccache, Daniel Page, Pablo Rauzy, et al.. Can code
polymorphism limit information leakage?. 5th Workshop on Information Security Theory and Prac-
tices (WISTP), Jun 2011, Heraklion, Crete, Greece. pp.1-21, �10.1007/978-3-642-21040-2_1�. �hal-
01110259�

https://inria.hal.science/hal-01110259
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Can Code Polymorphism Limit Information

Leakage?

Antoine Amarilli1, Sascha Müller2, David Naccache1,
Daniel Page3, Pablo Rauzy1, and Michael Tunstall3

1 École normale supérieure, Département d’informatique
45, rue d’Ulm, f-75230, Paris Cedex 05, France.

{name.surname}@ens.fr
2 Technische Universität Darmstadt, Security Engineering

Hochschulstraße 10, d-64289 Darmstadt, Germany.
mueller@seceng.informatik.tu-darmstadt.de

3 University of Bristol
Merchant Venturers Building, Woodland Road, Bristol, bs8 1ub, uk.

{page,tunstall}@cs.bris.ac.uk

Abstract. In addition to its usual complexity assumptions, cryptogra-
phy silently assumes that information can be physically protected in a
single location. As one can easily imagine, real-life devices are not ideal
and information may leak through different physical side-channels. It is
a known fact that information leakage is a function of both the executed
code F and its input x.

In this work we explore the use of polymorphic code as a way of resisting
side channel attacks. We present experimental results with procedural
and functional languages. In each case we rewrite the protected code
code Fi before its execution. The outcome is a genealogy of programs
F0, F1, . . . such that for all inputs x and for all indexes i 6= j ⇒ Fi(x) =
Fj(x) and Fi 6= Fj . This is shown to increase resistance to side channel
attacks.

1 Introduction

From a security perspective, the advent of a software monoculture is an oft
cited problem. Monoculture software is coarsely defined as programs (e.g., In-
ternet Explorer), generated from the same source code by the same compiler
(e.g., Visual Studio) and executed on the same processor family (e.g., Intel x86)
under control of the same operating system (e.g., Windows). The premise is
that monoculture makes attacks easier: an attack against any one member can
be applied directly to the entire population; analogues exist in biology where
monocultures and parthenogenesis are known to ease the spread of disease and
lessen adaptation to environmental changes.

Various (seemingly different) protections attempt to break software monocul-
ture through diversification. A simple example is that of Address Space Layout

Randomization (aslr): if each program is executed within a different address
offset, then any assumptions an opponent makes on the location of a particular
datum limits attacks to a smaller subset of the population.

This argument is equally relevant to embedded security and side-channel
resilience, even if one accepts Kerckhoffs’ principle (that cryptographic security
should lay in the key alone). Defenders endeavor to make attacks harder by
randomizing execution: even if opponents know the program being executed,
their task of exploiting leakage is harder since they cannot focus their analysis
with accuracy.

Background and Related Work Focusing specifically on temporal random-
ization (e.g., ignoring masking and related techniques), the term desynchroniza-
tion is often used. The basic idea is to somehow alter normal program execution
by “shuffling” instructions on-the-fly. This roughly means that the i-th instruc-
tion is no longer executed during the i-th execution cycle: the defender either
swaps it with another instruction or inserts delays that cause the code to execute
during a j-th cycle.

Consider the following randomization of the aes S-box layer [5]. Assuming
that SBOX is a pre-computed table representing the aes S-box, a simple C im-
plementation might resemble the following loop:

for(int i = 0; i < 16; i++) {
S[i] = SBOX[S[i]];

}

To randomise the order of accesses to SBOX, one idea would be to maintain a
table T where the i-th entry, i.e., T[i], is initially set to i for 0 ≤ i < 16. This
table can be used for indirection as follows:

for(int i = 0; i < 16; i++) {
S[T[i]] = SBOX[S[T[i]]];

}

Note that this represents what one might term online overhead in the sense
that the indirection’s cost is paid during every program execution. Of course
the trade-off is that table T can be updated, more specifically randomized, at
regular intervals (e.g., after each execution of the program) to ensure that S-box
accesses are reordered. Such re-randomization is achievable using something as
simple as:

t = rand() & 0xF;

for(int i = 0; i < 16; i++) {
T[i] = T[i] ^ t;

}

This update of T represents what we term offline overhead: although the
computational toll is not paid before run-time, the cost is offline in the sense
that it is not borne during the execution of the program itself. Related work
includes (but is certainly not limited to):

– Herbst et al. [7] describe the use of “randomization zones” within an aes
implementation; the basic idea is to randomly reorder instructions within
selected round functions, thus temporally skewing them in an execution pro-
file.

– May et al. [12] describe nondet, a processor design idiom that harnesses
Instruction Level Parallelism (ilp) within a given instruction stream to issue
instructions for execution in a random (yet valid) order. This essentially
yields a hardware-supported and hence more fine-grained and more generic,
version of the above.

– A conceptually similar idea is the design of re-randomizable Yao circuits by
Gentry et al. [6]; the goal in both cases is to prevent leakage and in a sense
construct per-use programs (circuits) via randomization.

– Many proposals have made use of random timing delays, i.e., temporal skew-
ing. For example Clavier et al. [3] describe a method which uses the interrupt
mechanism while Tunstall and Benôıt [16] describe a similar software-based
approach.

– A vast range of program obfuscation techniques have appeared in the liter-
ature (see [4] for an overview) and are used in industry. The typical goals
are to make reverse engineering harder and diversify the form of installed
software; other applications include the area of watermarking.

Goals and Contribution We consider the use of program self-modification
as a means to allow a more general-purpose analogue of the above; we aim to
describe an approach which

1. can be automated in a compiler (noting that parallelizing compilers can
already identify light-weight threads in programs), and

2. can be composed with other countermeasures (e.g., masking).

The basic idea is to (randomly) rewrite the program before execution and limit
all overhead to being offline. The online overhead would be essentially nil: the
overhead is associated purely with the number of static instructions in the pro-
gram, i.e., the cost of rewriting, rather than the number of dynamic instructions

executed. A fully randomized rewriting approach would be costly since it de-
mands analysis and management of instruction dependencies: in a sense, this
would be trying to do in software what a nondet processor does in hardware.
We nonetheless explore this approach concretely using Lisp in Section 5. A con-
ceptually simpler approach would be to follow the reasoning of Leadbitter [11]
who imagines randomization as choices between threads which are already free
from dependencies.

More formally, letting c = F0(k,m) denote a cryptographic program run on
public input m and secret input k in a protected device, we explore ways to code
F0 in such a way that after each execution Fi will rewrite itself as Fi+1 whose
instructions differ from those of Fi before returning c.

In other words ∀i, j,m, k, Fi(k,m) = Fj(k,m), but i 6= j ⇒ Fi 6= Fj , a
property that makes the attacker’s signal collection task much harder.

2 Algorithmic Description

We represent the straight-line program fragment under consideration as a graph
with n levels; each level contains a number of nodes which we term buckets. Gi

denotes a list of buckets at the i-th level, with |Gi| giving the length of this list.
Gi,j denotes a list of instructions in the j-th bucket at the i-th level, with |Gi,j |
giving the length of the list and Gi,j [k] giving the k-th instruction.

Consider two instructions ins1 and ins2 that reside in buckets at the i-th
and j-th level respectively: ins1 may be dependant on ins2 iff i > j, ins1 and
ins2 must be independent if i = j. Informally, levels represent synchronization
points: for some i > j, no instruction within the i-th level can be executed until
every instruction within the j-th level has been executed. As such, buckets within
a level can be viewed as threads and each level as a thread team: for some i > j

and k, instructions within buckets i and j can execute in parallel (or constituent
instructions be scheduled in any order) if both buckets are at level k.

Our approach is to maintain in memory two copies of program instructions:
a static version (source program) and a dynamic version (target program). The
target program is actually executed at run-time. At some parameterized interval,
the target program is rewritten using instructions extracted from the source pro-
gram. The rewriting process is driven by the program graph which describes the
source program structure: the goal is to use the structure to randomize the order
according to which instructions are written into the target program while pre-
serving dependencies. This is possible since the layer and buckets are essentially
a pre-computed description of instructions inter(in)dependencies. The rewriting
process is performed at run-time with a granularity matching the level of exe-
cution randomization (which relates loosely to the level of security) dictated by
the context.

Algorithm 1: initializes the indirection lists driving the program rewriting
process.

Input: A program graph G with n levels representing a source program S.

1 for i = 0 upto n− 1 do

2 Let t be the type of buckets within Gi.
3 Ri ← ∅
4 if t = 1 then

5 for j = 0 upto |Gi| − 1 do

6 Append j to the list Ri.
7 end for

8 end if

9 else if t = 2 then

10 for j = 0 upto |Gi| − 1 do

11 for k = 0 upto |Gi,j | − 1 do

12 Append j to the list Ri.
13 end for

14 end for

15 end if

16 end for

2.1 Bucket Types

To facilitate rewriting we define two bucket-types. Where we previously denoted
a bucket as Gi,j we now write Gt

i,j for a type-t bucket. Consider two buckets G
and G′, both at level i in the program graph:

Type-1 if the bucket is of type-1 this means we must extract all instructions in
one go. This ensures that if we select G and then G′, the instructions from
G are written in a contiguous block within the target program and then

instructions from G′ are written in a second contiguous block.
Type-2 if the bucket is of type-2 this means we can extract a single instruction

at a time. This means that if we select G and then G′, instructions can be
freely interleaved with each other.

The two bucket types represent a tradeoff. On one hand, using type-2 buckets
is ideal since it allows fine-grained interleaving of instructions and therefore a
higher degree of randomization. However, to preserve the program’s functional
behavior, such buckets must use a disjoint set of registers so that the instruc-
tions can be freely interleaved. Since a given register file is limited in size, this
is sometimes impossible; to avoid the problem, one can utilize type-1 buckets
as an alternative. Here, register pressure is reduced since buckets can use an
overlapping set of registers.

2.2 Rewriting Algorithms

One can remove the restriction at extra cost, but to simplify discussion assume
that all buckets at a particular level in the program graph are of the same type.

Algorithm 2: randomly rewrites the source program into a target pro-
gram.

Input: A program graph G with n levels representing a source program S.
Output: The target program T representing a valid, randomized reordering of

instructions from S.

1 Set T ← ∅
2 for i = 0 upto n− 1 do

3 Shuffle the list Ri.
4 end for

5 for i = 0 upto n− 1 do

6 Let t be the type of buckets within Gi.
7 if t = 1 then

8 for j = 0 upto |Ri| − 1 do

9 j′ ← Ri[j]
10 for k = 0 upto |Gi,j′ | − 1 do

11 Let I be the next unprocessed instruction in Gi,j′ .
12 Append I to the target program T .

13 end for

14 end for

15 end if

16 else if t = 2 then

17 for j = 0 upto |Ri| − 1 do

18 j′ ← Ri[j]
19 Let I be the next unprocessed instruction in Gi,j′ .
20 Append I to the target program T .

21 end for

22 end if

23 end for

24 return T

To drive the rewriting process, Algorithm 1 is first used to initialize n indirection

lists: Ri is the i-th such list whose j-th element is denoted Ri[j]. This effectively
sets Ri = 〈0, 1, . . . , |Gi| − 1〉 if the buckets within Gi are of type-1, or

Ri = 〈 0, 0, . . . , 0
︸ ︷︷ ︸

|Gi,0| elements

, 1, 1, . . . , 1
︸ ︷︷ ︸

|Gi,1| elements

, . . .〉

if buckets are of type-2. The lists relate directly to table T used within the
example in Section 1.

When the program needs to be rewritten, Algorithm 2 is invoked: one level
at a time, instructions from the source program S are selected at random, driven
by the associated indirection list, to form the target program T . Note that before
this process starts, each indirection list is randomly shuffled; this can be done,
for example, by applying a Fisher-Yates shuffling [9, Page 145-146] driven by a
suitable lcg-based prng [9, Page 10-26].

3 Concrete Implementation

As an example, consider an aes implementation [5] using an eight-bit soft-
ware data-path; we represent the state matrix using a sixteen-element array S.
One can describe instructions that comprise a standard, non-final aes round
(i.e., SubBytesyShiftRowsyMixColumnsyAddRoundKey), as a program graph.
Using both C and continuation dots for brevity, such a program graph is shown
in Figure 1.

– For the example (and in general) one can specialize the program rewriting
algorithm once the source program is fixed. e.g. all loops can be unrolled,
empty levels or levels with a single bucket can be processed at reduced cost
and special case treatment can be applied to levels with a single bucket type.

– The MixColumns layer houses buckets that can be split into smaller parts
depending on register pressure. e.g. within level five one could split the second
phase of each bucket into a further layer with sixteen buckets: each bucket
would compute one element of the resulting state matrix (rather than the
current formulation where four buckets each compute four elements).

4 Experimental Evaluation

Algorithm 2 was implemented on an arm7 microprocessor. In this section we
describe the performance of an unrolled reordered aes implementation and how
one could attack such an implementation. We compare this with a straightfor-
ward unrolled aes implementation.

4.1 Performance

A standard (unprotected) unrolled aes implementation and a polymorphic aes
code were written for an arm7 microprocessor. The polymorphic version is only
1.43 times slower than the unrolled aes (7574 cycles vs. 5285), a time penalty
which is not very significant for most practical purposes. This comparison is only
indicative as faster polymorphic programs are possible (our rewriting function
was written in C with no optimizations). Nonetheless, the polymorphic aes code
requires a significant amount of extra ram which might be problematic on some
resource constrained devices.

4.2 Attacking a Standard aes Implementation

A standard aes code will call each sub-function deterministically. This typically
involves constructing a loop that will go through all the indexes required to
compute a given function in a fixed order. These loops are typically seen in the

G
1

0,0

G
1

1,0

S[0] = SBOX[S[0]];

G
1

1,1

S[1] = SBOX[S[2]];
· · ·

G
1

1,15

S[15] = SBOX[S[15]];

G
1

2,0

G
1

3,0

t0 = S[0];

t1 = S[4];

t2 = S[8];

t3 = S[12];

S[0] = t0;

S[4] = t1;

S[8] = t2;

S[12] = t3;

G
1

3,1

t0 = S[1];

t1 = S[5];

t2 = S[9];

t3 = S[13];

S[1] = t1;

S[5] = t2;

S[9] = t3;

S[13] = t0;

G
1

3,2

t0 = S[2];

t1 = S[6];

t2 = S[10];

t3 = S[14];

S[2] = t2;

S[6] = t3;

S[10] = t0;

S[14] = t1;

G
1

3,3

t0 = S[3];

t1 = S[7];

t2 = S[11];

t3 = S[15];

S[3] = t3;

S[7] = t0;

S[11] = t1;

S[15] = t2;

G
1

4,0

G
1

5,0

t0 = S[0];

t1 = S[1];

t2 = S[2];

t3 = S[3];

S[0] = XMUL[t0 ^ t1] ^

t1 ^ t2 ^ t3;

S[1] = XMUL[t1 ^ t2] ^

t2 ^ t0 ^ t3;

S[2] = XMUL[t2 ^ t3] ^

t3 ^ t0 ^ t1;

S[3] = XMUL[t3 ^ t0] ^

t0 ^ t1 ^ t2;

G
1

5,1

t0 = S[4];

t1 = S[5];

t2 = S[6];

t3 = S[7];

S[4] = XMUL[t0 ^ t1] ^

t1 ^ t2 ^ t3;

S[5] = XMUL[t1 ^ t2] ^

t2 ^ t0 ^ t3;

S[6] = XMUL[t2 ^ t3] ^

t3 ^ t0 ^ t1;

S[7] = XMUL[t3 ^ t0] ^

t0 ^ t1 ^ t2;

G
1

5,2

t0 = S[8];

t1 = S[9];

t2 = S[10];

t3 = S[11];

S[8] = XMUL[t0 ^ t1] ^

t1 ^ t2 ^ t3;

S[9] = XMUL[t1 ^ t2] ^

t2 ^ t0 ^ t3;

S[10] = XMUL[t2 ^ t3] ^

t3 ^ t0 ^ t1;

S[11] = XMUL[t3 ^ t0] ^

t0 ^ t1 ^ t2;

G
1

5,3

t0 = S[12];

t1 = S[13];

t2 = S[14];

t3 = S[15];

S[12] = XMUL[t0 ^ t1] ^

t1 ^ t2 ^ t3;

S[13] = XMUL[t1 ^ t2] ^

t2 ^ t0 ^ t3;

S[14] = XMUL[t2 ^ t3] ^

t3 ^ t0 ^ t1;

S[15] = XMUL[t3 ^ t0] ^

t0 ^ t1 ^ t2;

G
1

6,0

G
1

7,0

S[0] = S[0] ^ K[0];

G
1

7,1

S[1] = S[1] ^ K[1];
· · ·

G
1

7,15

S[15] = S[15] ^ K[15];

G
1

8,0

Fig. 1. A program graph for one aes round; the graph consists of 9 levels, with levels
0, 2, 4, 6 and 8 acting as synchronization points. Note that SBOX and XMUL represent
precomputed tables for the aes S-box and xtime operation.

instantaneous power consumption, as a pattern of nine distinct patterns corre-
sponding to the aes’ first nine rounds. The last round is typically represented
by a different pattern because of the absence of the MixColumn function.

The different sub-functions of an aes code can be identified by inspecting a
power consumption trace. In the left hand part of Figure 2 two patterns of six-
teen peaks can be seen. These correspond to the plaintext and secret key being
permuted to enable efficient computation given the matrix representation in the
aes’ specification. This is followed by a pattern of four peaks that correspond to
the exclusive or with the first key byte (the arm7 has a 32-bit architecture). Fol-
lowing this there is a pattern of sixteen peaks that corresponds to the SubBytes
function and two patterns of four peaks that correspond to the generation of
the next subkey. ShiftRow occurs between these functions but is not visible in
the power consumption. The exclusive or with this subkey can be seen on the
right hand side of Figure 2, which means that the remaining area between this
exclusive or and the generation of the subkey is where MixColumn is computed.
However, no obvious pattern can be seen without plotting this portion of the
trace with a higher resolution.

It is known that power consumption is typically proportional to the Hamming
weight of the values being manipulated at a given point in time. This can be used
to validate hypotheses on portions of the secret key being used in a given instance
[2,10]. For example, the correlation between the Hamming weight of SubBytes’s
output the power consumption traces can be computed in a pointwise manner
for a given key hypothesis, in this case we only need to form a hypothesis on
one secret key byte. If the hypothesis is correct a significant correlation will
be visible as shown in the right hand graphic of Figure 2, we note that the
maximum correlation coefficient is ∼ 0.6. If the key hypothesis is incorrect then
no significant hypothesis will be present.

1000 encryption power consumption traces were taken where the secret key
was a fixed value and the plaintext randomly changed for each trace. The right
hand graphic of Figure 2 shows a trace of the correlation between the points of the
power consumption traces and the Hamming weight of the result of the first byte
produced by the SubBytes function given that the secret key is known. That is,
the correlation is computed between the list of Hamming weights and the values
of the first point of each trace, the values of the second point of each trace, etc.
to form a trace of correlation values. The first peak corresponds to the point in
time at which the first byte is produced in SubBytes and indicates which of the
sixteen peaks corresponds to that byte being produced. The subsequent peaks in
the correlation trace indicate the instants where the same byte is manipulated
by MixColumns.

4.3 Attacking an Unrolled aes Implementation

The typical power consumption trace of an unrolled aes is shown in the left part
of Figure 3.

0

40

80

120

160

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

V
ol

ta
ge

 (
m

V
)

Sample

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
or

re
la

tio
n

Sample

Fig. 2. Power consumption trace of a single round of an aes encryption performed by
an arm7 microprocessor (left) and a Differential Power Analysis signal (right).

0

40

80

120

160

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

V
ol

ta
ge

 (
m

V
)

Sample

0

40

80

120

160

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

V
ol

ta
ge

 (
m

V
)

Sample

Fig. 3. Power consumption trace of an unrolled aes on arm7. Unprotected (left) and
polymorphic (right) codes.

In Figure 4, we note that the maximum correlation coefficient for an unrolled
implementation is ∼ 0.7.

Figure 4 is the analogous of 2 under identical experimental conditions (1000
traces etc). Interpretation remains the same: the subsequent peaks in the cor-
relation trace indicate the instants at which the same byte is manipulated in
MixColumns but have a lower correlation coefficient.

The left graph of Figure 6 shows the maximum observed correlation for all
256 possible hypotheses for one observed key for x power consumption traces.
Incorrect hypotheses are plotted in grey and the correct hypothesis is plotted
in black. We note that ∼ 100 traces suffice to distinguish the correct hypothesis
from the incorrect hypotheses.

4.4 Attacking a Polymorphic aes Implementation

A polymorphic aes, as described in Section 3 was implemented on an arm7. The
power consumption for the round function changes considerably. In the imple-
mentation, the subset of opcodes used has a lower average power consumption
and features local peaks in the power consumption caused by the call and return
from the subfunctions in the individual round (right part of Figure 3). The in-
dividual round functions can only be identified by the time required to compute
them as the patterns visible in Figure 2 are no longer present. These peaks can
easily be removed by implementing the round function as one function. However,
this feature is convenient for our analysis.

Figure 5 is the equivalent of Figure 4 for a polymorphic aes. Figure 5 features
two groups of peaks, the first of which has a correlation of ∼ 0.06; this group is
caused by the sixteen possible positions where the byte output from the SBOX

indexed by the exclusive-or of the first plaintext byte and the first byte of the
secret key is created. A second series of peaks representing a correlation of ∼ 0.1
is visible. This series of peaks is caused by the sixteen possible positions where
the same byte can be manipulated in the MixColumn function. We can note that
these correlation coefficients are very low and 20, 000 power consumption curves
were required to produce a correlation coefficient that is significantly larger than
the surrounding noise.

The right graph of Figure 6 shows the maximum observed correlation for all
256 possible hypotheses for one observed key for x power consumption traces.
The incorrect hypotheses are plotted in grey and the correct hypothesis is plotted
in black. We note that ∼ 2, 500 traces are required to distinguish the correct
hypothesis from the incorrect ones. This is considerably more than required to
distinguish the correct hypotheses when attacking a non-polymorphic aes.

5 Can Lisp-Like Languages Help?

A further sophistication step consists in requiring Fi and Fi+1 to have an extreme
difference. While we do not provide a rigorous definition of the word extreme,

0

20

40

60

120

140

160

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

V
ol

ta
ge

 (
m

V
)

Sample

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
or

re
la

tio
n

Sample

Fig. 4. The rightmost trace is the correlation between the power consumption and the
output of the S-box that operates on the ⊕ of the first plaintext byte and the secret
key. The leftmost trace shows a sample power consumption, in millivolts, during the
same period of time.

20

30

40

50

60

70

80

 0 10000 20000 30000 40000 50000 60000 70000

V
ol

ta
ge

 (
m

V
)

Sample

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10000 20000 30000 40000 50000 60000 70000

C
or

re
la

tio
n

Sample

Fig. 5. The analogous of Figure 4 for the polymorphic code. In the leftmost trace the
round functions are divided up by peaks in the power consumption.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 250 500 750 1000 1250 1500 1750 2000

C
or

re
la

tio
n

Sample Size

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 1000 2000 3000 4000 5000 6000 7000 8000

C
or

re
la

tio
n

Sample Size

Fig. 6. Maximum correlation. Unrolled aes (left curve) and unrolled polymorphic aes
(right curve).

the aim of our next experiment, nicknamed Pastis, is to illustrate the creation
of a program able to rewrite itself in a way that does not alter functionality
but potentially changes all its code. We call a code fully polymorphic if any
instruction of Fi can potentially change in Fi+1.

The code was designed with two goals in mind: illustrate the way in which
fully polymorphic code is designed and provide a platform allowing to comfort-
ably test the efficiency of diverse replacement rules as a step stone towards the
design of a fully polymorphic aes code.

Such techniques can already be seen in polymorphic viruses as a way to foil
signature-based detection attempts by anti-virus software; they also appear in
code obfuscation systems. Readers can refer to [17] for more information on this
topic.

Pastis is written in Scheme for the mit Scheme implementation [15]. The
payload to transform (e.g. an aes) also has to be written in Scheme and is
restricted to the subset of the Scheme syntax which the rewriting system is able
to understand (Of course, since the rewriting engine has to rewrite itself, it is
itself written using this limited subset of Scheme).

Pastis is modular in a way making it easy to install new rewriting rules.
Rules must change the source code’s form while keeping it functionally equiva-
lent. In this paper we voluntarily provide illustrative rules which could not work
indefinitely because they tend to make the size of the code increase.

5.1 Structure

The top-level Pastis function is pastis-generator. It creates the self-rewriting
program from the payload and a rewriting function (which takes code as input
and produces functionally equivalent rewritten code as its return value).

The produced code behaves functionally like the payload function: it will
be evaluated to the same value if it gets the same parameters. However, it will
additionally print, during the evaluation, a rewritten, equivalent version of itself.

Of course, the rewritten version is still functionally equivalent to the original
payload and will also produce a rewritten version of itself, which, in turn, can be
run, and so on, ad infinitum (forgetting about the growing size of the rewritten
code, i.e., assuming that we have an infinite amount of memory).

Internal Structure The use of the pastis-generator function is quite straight-
forward; its role is to provide a convenient mechanism to weld the payload and
rewriter together to make self-rewriting possible. Here is an example of the use
of pastis-generator. The payload here is a simple function which adds 42 to
its parameter and the rewriter is the identity function.

(pastis-generator

’((payload . (lambda (x) (+ 42 x)))

(rewriter . (lambda (x) x))))

The resulting code-blend produced by the pastis-generator function is
given below.

(lambda (args)

(define (pastis-rewrite x)

((lambda (x) x) x))

(define (pastis-payload x)

((lambda (x) (+ 42 x)) x))

(define (pastis-ls l)

(map (lambda (x) (write (pastis-rewrite x)) (display " ")) l))

(define (pastis-code l)

(display "(")

(pastis-ls l)

(display "(pastis-code ’(")

(pastis-ls l)

(display ")) (pastis-payload args))\n"))
(pastis-code

’(lambda (args)

(define (pastis-rewrite x)

((lambda (x) x) x))

(define (pastis-payload x)

((lambda (x) (+ 42 x)) x))

(define (pastis-ls l)

(map (lambda (x) (write (pastis-rewrite x)) (display " ")) l))

(define (pastis-code l)

(display "(")

(pastis-ls l)

(display "(pastis-code ’(")

(pastis-ls l)

(display ")) (pastis-payload\nargs))\n"))))
(pastis-payload args))

5.2 Step by Step Explanations

The code generated by pastis-generator seems complicated, but its structure
is in fact very similar to that of the following classical quine4.

(define (d l) (map write-line l))

(define (code l) (d l) (display "(code ’(\n") (d l) (display "))\n"))
(code ’(

(define (d l) (map write-line l))

(define (code l) (d l) (display "(code ’(\n") (d l) (display "))\n"))))

4 A quine [8], named after Willard Van Orman Quine, is a program that prints its
own code.

Adding a payload to this quine is quite straightforward.

(define (payload) (write "Hello, World!\n"))
(define (ls l) (map write-line l))

(define (code l) (ls l) (display "(code ’(\n") (ls l) (display "))\n"))
(payload)

(code ’(

(define (payload) (write "Hello, World!\n"))
(define (ls l) (map write-line l))

(define (code l) (ls l) (display "(code ’(\n") (ls l) (display "))\n"))
(payload)))

Given Pastis’s role, it is quite easy to see that it is related to quines. The
only difference is that Pastis has to modify its code before printing it, instead
of printing it verbatim as regular quines do. This is also quite easy to do.

However, deeper technical changes are required if we want to be able to pass
parameters to the payload because the classical quine’s structure does not permit
this. The solution is to make a quine that is also a λ-expression (instead of a list
of statements). This is possible, thanks to S-expressions.

The way the quine works relies on the fact that its code is a list of statements
and that the last one can take a list of the previous ones as arguments. Making
the whole quine a λ-expression in order to accept arguments for the payload
means making it a single expression. But thanks to the language used, it appears
that this single expression is still a list. This enables us to solve our problem.
Here is the result:

(lambda (args)

(define (payload x) (+ x 42))

(define (ls l) (map write-line l))

(define (code l)

(display "(")

(ls l) (display "(code ’(")

(ls l) (display "))\n(payload x))"))

(code ’(lambda (x)

(define (payload x) (+ x 42))

(define (ls l) (map write-line l))

(define (code l)

(display "(")

(ls l) (display "(code ’(")

(ls l) (display "))\n(payload x))"))))

(payload args))

5.3 Rewriter

In addition to pastis-generator, we also provide a rewriter function. Its
role is to call specialized rewriters for each keyword, which will call rewriters
recursively on their arguments if appropriate.

Specialized rewriters randomly choose a way to rewrite the top-level con-
struct. In our example, the implemented rules are any interchange between if,
case and cond (i.e. if! cond! case! if) along with the transformation
if (condition) {A} else {B} if (!condition) {B} else {A}. It is easy
and trivial to change these rules.

5.4 Results

Pastis was tested with a simple payload and the example rewriter provided.

The code size increases steadily with generations, which seems to demonstrate
that the rewriter function provided often adds new constructs, but seldom
simplifies out the useless ones. As is clear from Pastis’ structure, code size grows
linearly as generations pass (right-hand graphic of Figure 7). In our experiment
code size in megabytes seemed to grow as ∼ 15.35× generation.

The produced code is still fairly recognizable: keywords are not rewritten and
highly specific intermediate variables appear everywhere in the code. Further-
more, the numerous tautological conditional branches (of the form (if #t foo

#!unspecific)) and useless nesting of operators are also a sure way to identify
code produced by Pastis. It is unclear if such artifacts could be used to conduct
template power attacks to identify and remove polymorphic transformations.
Given that a Lisp smart card does not exist to the best of that authors’ knowl-
edge, we could not practically test the effectiveness of this countermeasure in

vivo.

Here is an example of the code produced by Pastis after some iterations.

(lambda (args) (define (pastis-rewrite x) ((lambda (x) (define

(rewrite-if s) (define get-cond (rewrite (cadr s))) (define

get-then (rewrite (caddr s))) (define get-else (let ((

key90685615124305205095555138 (not (not (not (null? (cdddr s)))))))

(let ((key45066295344977747537902121 key90685615124305205095555138

))(let ((key34753038157635856050333413 (not (or (eq?

key45066295344977747537902121 (quote #f)))))) (let

((key74822769707555069929340259 (not (or (eq?

key34753038157635856050333413 (quote #f)))))) (cond ((not (not

(not (not (or (eq? key74822769707555069929340259 (quote #t)))))))

(let ((key15300951404900453619092096 #t)) (if (or (eq?

key15300951404900453619092096 (quote #t))) (begin (case #t ((#t) (let

((key8783884258550845645406647 (not (or (eq?

key74822769707555069929340259 (quote #t)))))) (case (not (or (eq?

key8783884258550845645406647 (quote #f))))((#t)(let ((

key41701470274885460121759385 key8783884258550845645406647))(if (not

(not (or (eq? key41701470274885460121759385 (quote #t))))) (if (not

(or (eq? key41701470274885460121759385 (quote #t)))) (let ((

key98134142793119041861980707 #t)) (if (or (eq?

key98134142793119041861980707 (quote #t))) (begin 42)

It is interesting to note that the self-referencing nature of Pastis makes it
extremely hard to debug. When the third generation fails to run, for example,
one needs to find the bug in the third generation code, identify what caused
the second generation to produce it – and finally which code in the first gener-
ation caused the second generation to work this way. Several cases of bugs only
occurring after several generations appeared during the development of Pastis.

Readers wishing to experiment with the three main program modules5 can
download them from [14].

5.5 Possible Extensions

The current rewriter function only serves as an example. First, it leaves sev-
eral recognizable features in the code. More importantly, the transformations
it applies are not very deep, since one could simply decide to only use cond

constructs, systematically rewrite all if and case constructs to cond and fo-
cus on the rewriting of cond. To be more precise, if and case can be seen as
Scheme syntactic sugar; it would probably be better to restrict the rewriting
to a bare bones subset of the Scheme syntax, convert everything to this subset
before rewriting and possibly convert some things back to syntactic sugar forms
to make the rewritten code look more natural.

Several transformations could be applied instead of the simplistic operations
done by our rewriter function. Here are a few ideas:

5 rewriters.scm, rewrite.scm and generator.scm

α-Renaming The current rewriter does not rename variables at all. A way to
do this would be to keep an environment indicating current renamings. When we
encounter a definition, we change the name and add the original and rewritten
name to the environment. When we encounter a name, we change it to the
appropriate rewritten name by a simple lookup in the environment. It is assumed
that when the Scheme virtual machine processes names, power signatures caused
by processing different names will differ as well.

β-Reduction and β-Expansion A possible rewriting method would be to
perform β-reductions (in the usual λ-calculus sense). Conversely, it would also
be possible to perform β-expansions: select a sub-term, replace it by a variable
and replace the whole expression by a function in this variable applied to the
selected sub-term, taking all necessary care to prevent variable capture problems
(roughly, ensuring that the operation does not bind other occurrences of the new
variable and that the bindings of the sub-terms are still the same).

Of course, if we want to do such an operation without changing the semantics,
we must ensure first that there is no breach of referential transparency in the
code we are rewriting. Indeed, if side effects are taking place somewhere, the
planned modifications could change the order of evaluation, or even the number
of evaluations of some sub-terms.

Adding and Removing Definitions This would be the ability for the rewriter
to add or remove local definitions when possible. When the rewriter sees an
expression E(expr) it could replace it with (let ((const expr)) E(const)).
This is very similar to the aforementioned β-reduction and expansion ideas and
could be implemented in a similar way.

6 Avoiding Code Growth

While Pastis is conceptually interesting, the code growth problem makes Pastis
useless for practical purposes. Let F0 be the first generation of a self-rewriting
program. Besides a payload representing the actual code’s purpose, F0 also con-
tains a non-deterministic rewriting function H. H takes as input a version of
the program and outputs another version, so that ∀i ∈ N, Fi = H(Fi−1) with
i 6= j ⇒ Fi 6= Fj while retaining the code’s core functionality, i.e. Fi(m, k) =
F0(m, k) ∀ i,m, k, as shown in the left hand-side of Figure 7.

As in the basic Pastis example the size of Fi is monotonically increasing6

(i.e., size(Fi+1) ≥ size(Fi) with overwhelming probability), it is desirable to look
for a different rewriting scheme7.

6 Code size is monotonically increasing on the average, we neglect the unlikely cases
where rewriting will cause a decrease in code size.

7 Note that it is theoretically impossible to require that both i 6= j ⇒ Fi 6= Fj and
∀i, size(Fi) < some bound.

An interesting alternative approach is to keep a representation of the original
function F0 within Fi and always rewrite F0 differently. To ensure that each
time a different program is created, the index i of the next version is passed
to H: Fi = H(F0, i). Having Fi completely determined by F0 and the index i

can be helpful, especially for debugging purposes. However, this approach has
a crucial drawback: An attacker may be able pre-compute all Fi and analyze
them for side channel information leakage, thereby weakening the polymorphic
protection. Thus, it is advisable to have an additional randomness source that
makes H non-deterministic. If H is truly non-deterministic, there is no need to
pass i as an argument toH because each call ofH(F0) creates a new, randomized
version of F0. The left-hand side of Figure 8 illustrates such a system.

Note that at each rewritten generation, Fi is completely discarded and only
the description of F0 is used again for the new code generation. In addition, the
description of F0 does not need to be included in clear. If desired by the setting,
it can instead be encrypted with a random key. For this, the corresponding en-
cryption and decryption function as well as the random key, must be included
with Fi and upon each code rewrite, the encrypted description of F0 must be
decrypted, rewritten by H, and encrypted again with a new random key. In-
terestingly, if the payload itself contains a block-cipher code, this code can be
also used for encrypting F0; thus no additional encryption routine needs to be
embedded in the program. This encryption approach bears some similarities to
techniques used by polymorphic viruses.

6.1 Separating H From Fi

Pastis is primarily meant for the protection of cryptographic functions from
certain types of side-channel attacks. To this end, Pastis’ primary goal is to
rewrite the payload, while the rewriting process H itself is not directly subject
to such attacks and thus may not need to be rewritten at all. This is because the
functionality of H is independent of the public message input m and the secret
input k.

Thus, it may appear fit for purpose to rewrite only F0 and keep H intact.
Such an approach is interesting as in many cases, H will be much more complex
than the payload and may become even more complex (and maybe less efficient)
after being rewritten, as rewriting rules can have a detrimental effect on the size
and the efficiency of H. However, in some cases side channels emanating from
H may leak information about the rewriting process and thus about the code of
Fi. If this is the case, then the information gained from the attack could be used
to subsequently create attacks on Fi. If, however, such an indirect attack on Fi

is considered infeasible or unlikely for a particular instance of polymorphic code,
then the approach of not rewriting H can be a practicable way to improve code
efficiency. This may also allow for more complex rewriting rules that would not
be possible if H had to be expressed in the possibly restricted realm of rewritable
code (for example, the limited subset of Scheme used in Pastis).

code_generation
�

rewriter payload

generator

args
�

payload(args
�
)

code_generation
�

args
�

payload(args
�
)

code_genration
�

args
�

payload(args
�
)

etc...

code size in MB

number of generations

20 40 60 80 100

0.5

1.0

1.5

Fig. 7. Summary of the use of Pastis (left) and typical evolution of code size with
generations (right).

F
�
=code_generation

�
(including H)

rewriter payload

generator

args
�

payload(args
�
)

args
�

payload(args
�
)

args
�

payload(args
�
)

etc...

Description of F
�

Description of F
�

Description of F
�

F
�
=code_generation

�
(including H)

F
�
=code_generation

�
(including H)

F
�
=code_generation

�

rewriter payload

generator

args
�

payload(args
�
)

args
�

payload(args
�
)

args
	

payload(args
	
)

etc...

Description of F

F
�
=code_generation

�

F
	
=code_generation

	

Rewriting logic H

Description of F

Rewriting logic H

Description of F

Rewriting logic H

Fig. 8. Self-rewriting program without growth. Basic idea on the left, faster version on
the right.

This motivates the suggestion of yet another modification of our paradigm:
Instead of having H be a part of Fi, we may consider H and Fi as separate

functions. On each invocation H is called first. H loads the description of F0

and takes as additional (implicit) input either an index i and/or a source of
randomness and outputs Fi, which – as above – has the same functionality as
F0 but is rewritten.

After rewriting F0 as Fi, H passes the inputs {m, k} to Fi to execute the
desired payload. This is illustrated in the right-hand side of Figure 8.

6.2 Randomizing Compilers: A Practical Approach

It remains to decide how such a “description of F0” that is included in each
code generation should be chosen. From an implementor’s perspective, the form
of F0’s description must be chosen such that it consists only of elements that
are understood by the rewriting engine while at the same time allows for a fast
creation of Fi for all i. While it may appear natural to use the same type for
F0 as for Fi (i.e., code that can directly be executed), using a more abstract
representation has some advantages: For example, if a program is represented
under the form of a syntax tree, it can be straightforward to analyze to find
permutations of code blocks (i.e., subtrees) that do not change the code’s se-
mantics. This is similar to our buckets idea in Section 2. When, in contrast,
the program is represented as virtual machine code, such code rearrangements
may be much more difficult to identify. Thus, F0 should be described in a more
abstract way and converted by H to a more concrete representation. In fact, we
may consider H as a compiler that transforms code from a high-level language
into a less abstract one.

For example, F0 may be represented by a gimple tree. gimple [13] is a
rather simple language-independent tree-representation of functions used exten-
sively by the gnu Compiler Collection (gcc) in various stages of the compila-
tion process. Source code from any language supported by gcc is transformed
into gimple which is then analyzed and optimized before being converted to
the target language (for example, machine code).8 Representing functions un-
der gimple removes much of the complexity from the compiler that would be
needed when working directly with a high-level language like C++. This makes
compilation very fast.

gcc applies many optimizations to gimple trees which may change their
form in several ways. This can be used to create very powerful polymorphic
code: randomizing which of these optimizations are done and how exactly they
are applied to the tree leads to many different possible results, all of which yield
semantically equivalent code. Randomization can also be applied to the next
compilation steps which turn the gimple tree into the target language. As there
are many ways to encode constructs like an if or simple arithmetic expressions

8 This description of gcc’s inner workings is – of course – greatly simplified.

into machine code, a great variety of possible realizations of such constructs can
be found.

Thus, an extensive polymorphic framework can be built by using a random-

izing version of the parts of gcc that deal with gimple trees and transform
them to machine code as H. Such a framework would allow the execution of
very elaborate rewriting rules while preserving efficiency by only dealing with
gimple instead of source code.

The implementation of this approach is an idea that is yet to be explored –
left as future work.

Acknowledgements

The work described in this paper has been supported in part by the European
Commission ist Programme under Contract ict-2007-216676 ecrypt ii and
epsrc grant ep/f039638/1.

References

1. G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti and S. Marchesin, Efficient
Software Implementation of aes on 32-Bit Platforms, Cryptographic Hardware and
Embedded Systems (ches), Springer-Verlag lncs 2523, 159–171, 2002.

2. E. Brier, C. Clavier and F. Olivier, Correlation Power Analysis with a Leakage
Model, ches 2004, Springer-Verlag lncs 3156, 16–29, 2004.

3. C. Clavier, J.-S. Coron and N. Dabbous, Differential Power Analysis in the Presence
of Hardware Countermeasures, Cryptographic Hardware and Embedded Systems
(ches), Springer-Verlag lncs 1965, 252–263, 2000.

4. C. Collberg and C. Thomborson, Watermarking, tamper-proofing, and obfuscation
- tools for software protection, ieee Transactions on Software Engineering, 28 (8),
735–746, 2002.

5. J. Daemen and V. Rijmen, The Design of Rijndael, Springer-Verlag, 2002.

6. C. Gentry, S. Halevi and V. Vaikuntanathan, i-Hop Homomorphic Encryption and
Rerandomizable Yao Circuits, Advances in Cryptology crypto 2010, Springer-
Verlag lncs 6223, 155-172, 2010.

7. C. Herbst, E. Oswald and S. Mangard, An aes Smart Card Implementation Re-
sistant to Power Analysis Attacks, Applied Cryptography and Network Security
(accs), Springer-Verlag lncs 3989, 239–252, 2006.

8. D. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, (1999)
[1979].

9. D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms (3rd Edition), Addison Wesley, 1998.

10. P. Kocher, J. Jaffe and B. Jun, Differential Power Analysis, Advances in Cryptology
crypto 1999, Springer-Verlag lncs 1666, 388–397, 1999.

11. P. Leadbitter, D. Page and N. Smart, Non-deterministic Multi-threading, ieee
Transactions on Computers, 56 (7), 992–998, 2007.

12. D. May, H. Muller and N. Smart, Non-deterministic Processors, Australasian Con-
ference on Information Security and Privacy (acisp), Springer-Verlag lncs 2119,
115–129, 2001.

13. J. Merrill, generic and gimple: A new tree representation for entire functions,
Technical report, Red Hat, Inc. (2003) gcc Developer’s Summit.

14. http://pablo.rauzy.name/files/cryptomorph-sources.zip

15. http://www.gnu.org/software/mit-scheme/

16. M. Tunstall and O. Benôıt, Efficient Use of Random Delays in Embedded Software,
Information Security Theory and Practices (wistp), Springer-Verlag lncs 4462,
27–38, 2007.

17. Z. Xin, H. Chen, H. Han, B. Mao and L. Xie, Misleading Malware Similarities
Analysis by Automatic Data Structure Obfuscation, isc 2010, Information Secu-
rity, Springer-Verlag lncs 6531, 181–195, 2011.

