N

N

xESB: An Enterprise Service Bus for Access and Usage
Control Policy Enforcement
Gabriela Gheorghe, Stephan Neuhaus, Bruno Crispo

» To cite this version:

Gabriela Gheorghe, Stephan Neuhaus, Bruno Crispo. xESB: An Enterprise Service Bus for Access and
Usage Control Policy Enforcement. 4th IFIP WG 11.11 International on Trust Management (TM),
Jun 2010, Morioka, Japan. pp.63-78, 10.1007/978-3-642-13446-3_5 . hal-01061319

HAL Id: hal-01061319
https://inria.hal.science/hal-01061319
Submitted on 24 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01061319
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

xESB: An Enterprise Service Bus for
Access and Usage Control Policy Enforcement*

Gabriela Gheorghe, Stephan Neuhaus, and Bruno Crispo

Universita degli Studi di Trento, I-38100 Trento, Italy
First.Last@disi.unitn.it

Abstract. Enforcing complex policies that span organizational domains
is an open challenge. Current work on SOA policy enforcement splits se-
curity in logical components that can be distributed across domains, but
does not offer any concrete solution to integrate this security functional-
ity so that it works across security services for organization-wide policies.
In this paper, we propose xESB, an enhanced version of an Enterprise
Message Bus (ESB), where we monitor and enforce preventive and re-
active policies, both for access control and usage control policies, and
both inside one domain and between domains. In addition, we introduce
indicators that help SOA administrators assess the effectiveness of their
policies. Our performance measurements show that policy enforcement
at the ESB level comes with only moderate penalties.

1 Introduction

As Service-oriented architectures (SOAs) expand, they need to interconnect and
adapt to increasing business and infrastructural demands. These intercommuni-
cation and interconnection requirements are met by a piece of middleware called
the Enterprise Service Bus (ESB). The ESB offers a standard way to connect
services by acting as a message hub, making interservice communication smooth
and painless. But this ease of use comes with a downside: when businesses ex-
pose their services in order to participate in an SOA, they face increased risks
of misuse or abuse. What is therefore needed is a way to formulate and enforce
policies that make such misuse or abuse impossible.

However, ESBs do not address non-functional aspects such as security, so
what protects messages in transit and makes security decisions based on them?
Since ESB components are using the bus as a low-level service which abstracts
communication details from the higher-level services, we believe that it is the
ESB that should be in charge of enforcing message-level policies.

There are two main aspects in which current work in SOA policy enforcement
falls short of this expectation. First, the majority of existing work locates policy
enforcement inside an orchestration engine such as BPEL, but such a view is
not suited to scenarios where policies concern the service request or response

* This work is supported by the European Commission under the project EU-FP7-
IST-IP-MASTER.



messages themselves instead of the effect they have on the business process.
Second, current approaches focus mostly on simple access control policies instead
of complex organization-wide policies that also include usage control.

Another problem, one that plagues administrators of SOAs, is whether se-
curity policies perform as they should. The state of the art is to pepper the
deployed services with debugging output, but this is clearly unsatisfactory, if
not completely infeasible, for example when using third-party services.

This paper addresses all three issues by implementing flexible, instrumentable,
and highly configurable policy enforcement mechanisms at the ESB level. We also
cover access as well as usage control policies that can span the entire organiza-
tion: our enforcement mechanisms implement reactions to violations in addition
to traditional access control. Additionally, we augment policies with indicators
that our ESB continuously monitors in order to measure how well the policies
perform. By providing a unified and service-independent way to aggregate data,
indicators help administrators understand, at run-time, why policies fail.

Besides addressing the issues of regulating message flow and allowing organi-
sation-wide policies, our work also decouples the enforcement logic from the
business logic. This way, process and application designers can focus on the
business aspects of their applications and how they must be used, but not how
this is technically enforced. Thus our contributions can be summarized as follows:

— A new approach for security policy enforcement for SOA (Sect. 4).

— A working prototype implementation of xESB, (Sect. 5), that has low over-
head (Sect. 8).

— Support for reactive policies, and for usage control policies (Sect. 6).

Support for indicators to help monitoring policies (Sect. 7).

The remainder of this paper is organized as follows. After showing our sup-
porting case study (Sect. 2) and some background on the ESB platform (Sect. 3),
we motivate why policy enforcement on the ESB is needed (Sect. 4). After that,
we introduce our xESB prototype (Sect. 5) and briefly present the language we
used to write our policies (Sect. 6). We next give an overview of some possible
enforcement indicators (Sect. 7), and present a performance evaluation (Sect. 8).
We finish with a review of related work (Sect. 9) and a discussion of future work
and conclusions (Sect. 10).

2 DMotivating Example

As motivating example to illustrate the design and features of xESB, we con-
sider a hypothetical company ‘Foo.uk’, providing VoIP-based services using a
communication platform implemented as a SOA using an ESB. While Foo.uk
is hypothetical, the problems it faces definitely are not. For example, Zimmer-
mann et al. published a large case study in which a “large telecommunication
wholesaler” switches to BPEL and SOA, so it is clear that the wholesaler will
also have to face security issues at the SOA level [1]. However, giving examples
from actual companies would give much extraneous detail not relevant to this



paper, and we have therefore stripped the examples down so that the relevant
problems and their solutions can be exposed more clearly.

Since Foo.uk operates in the UK, it must comply with regulations such as
those described in the Statutory Instrument 2003 No. 2426 [2] implementing the
Privacy and Electronic Communications EC Directive [3]. In order to do so, the
Foo.uk platform must be able to enforce policies such as “Log starting time and
duration of incoming calls” or “Hide initiator number in outgoing calls”.

For the first policy, a simple mechanism should signal the start of a call and
its duration. Capturing and logging these events should leave the application
unaltered. What is therefore required is a control that is able to filter messages
and to duplicate them to a logging service. For the second policy, a mechanism is
needed to filter outgoing calls from incoming ones. This can be achieved simply
by looking at the type and parameters of the event (either a service invocation
or a service response) and then modifying those that identify the initiator. In
addition, for business purposes Foo.uk must be able to enforce also policies like:

Silver customers can use premium services only for 3 hours a
month. If the control service assigns special message identification that can
easily differentiate between subscriber types and call types, Foo.uk needs logic
to infer the duration of a call for a specified amount of time. Anytime a silver
customer would request a video call, the request should not be serviced unless
the 3 hours a month have not been exceeded. Thus, the service response depends
on whether a predicate is satisfied or not.

Process collect calls only after destination has agreed to pay. Similar
to the previous case, verifying a condition in this case means ensuring that
something has happened in the past: the VoIP destination must have accepted
to pay for the call. This predicate needs to be checked only before replying
to a collect call request: the response is delayed until the destination either
explicitly accepts or rejects the payment or times out (which should be construed
as rejection).

Delay high-quality calls until resources are available. Assuming a
VoIP user requests high quality parameters for a call, a load-balancer component
of the SOA would have the authority to delay the service request until it allocates
the resources needed for such a situation.

Enacting the rules above can be done by a dedicated component acting as
gateway for rule compliance: as an infrastructure component, it would interpose
between the VoIP provider and the service clients. Having an application-level
module in charge of this would be inefficient because the above policies do not
directly relate to application logic; they concern legal issues that the VoIP com-
munication protocol should obey, irrespective of its conceptual design or its
architecture. These issues, or constraints, can be more frequently subject to
change (or update), than the overall SOA application. We argue that it is best
to separate the constraint checking functionality from the business application in
such a way that the former can easily adapt to new organizational requirements.
If a new business or regulatory policy would replace an existing one (e.g., not
hide, but encrypt initiator number in outgoing calls), then the changes on the



enforcement logic should be as light as changing a service endpoint (from one
that hides data to one that encrypts data). This behavior would be in complete
resonance with the concepts of service-orientation and reuse, because it brings
a clear decoupling between service logic and service security. Such a separation
has not been previously addressed at the message level, and our solution benefits
from this approach in that the prototype is not hardcoded to a specific decision
making or enforcement component; any trusted security components of these
types can be plugged in.

3 The ESB in the Service-Oriented Architecture

The ESB is a middleware placed between the various services of an SOA applica-
tion. It offers a layer of communication and integration logic in order to mitigate
technology disparities between communication parties, ranging from intelligent
routing to XML data transformation.

Java Business Integration (JBI) [4] standardizes deployment and manage-
ment of services deployed on an ESB. It describes how applications need to be
built in order to be integrated easily. The generic JBI architecture is shown in
Figure 1 (left). Since the primary function of the ESB is message mediation, the
Normalized Message Router (NMR) is the core of the JBI-ESB and provides
the infrastructure for all message exchanges once they are transformed into a
normalized form. Components deployed onto the bus can be either service en-
gines, which encapsulate business logic and transformation services; or binding
components, which connect external services to the JBI environment.

JBI ENVIRONMENT
SERVICE ( SERVICE ) SERVICE
ENGINE EN?WE ENGINE

[ [

[ NORMALIZED MESSAGE ROUTER

T T : . .
‘mNmNGCOMPONENT“ mNmNGCOMPONENT‘ service: {http://www.microsoft.com}acceptReceiverl

‘ ‘ endpoint: acceptorl
| ] in: <?xml version=1.0" encoding="’UTF-8"?><example
EXTERNAL SERVICE ‘ EXTERNAL SERVICE ‘ id="123"/> ]

InOnly[

id: ID:192.168.233.83-1228375ebcb-8:0
status: Active

role: provider

=<
o3>
g2
40
cm
=
mm
uiz
35

)

PROVIDER PROVIDER

Fig. 1. The architecture of the JBI system (left) and example of a normalized message
in an InOnly exchange (right)

4 The Enforcement Process

The runtime enforcement process starts the moment a message is intercepted.
Once obtained, the event is evaluated against the deployed security policies;
the result is a decision that the enforcer translates into a series of actions; the
enforcement process is in charge of performing those actions (either directly or



by delegating them to a trusted third party). This section describes how we
modeled the policy enforcement process that we later implemented in xESB.
The policy language and its interpretation are the subject of Section 6.

POLICY
______________________ 1
I '
Invocation/reply| DECISION InvoLation/repIy*
|::¥ INTERCEPTOR > » ENFORCER :’>
| MAKER |
l_xE.ﬁB ____________________ J

Fig. 2. The enforcement process behind xESB

4.1 Interception

Enforcement starts by intercepting messages to which at least one policy applies.
The policies dictate what message types and parameters to look at: message
destination, source, size, or metadata like annotation information. Irrespective
of the message format (usually XML-based), the elements described above are
usually easy to inspect on every message simply because all messages on the bus
have the same format. A prefiltering mechanism can help the interceptor catch
messages with a higher probability of being relevant than any other message; for
instance, if a policy refers to requests that are simultaneously outgoing and have
a valid security signature, then the interceptor could just check if the current
call is outgoing. This is a condition which is inexpensive to check compared to
the validity of the signature, and if it does not hold then the signature need
not be validated. Figure 1 (right) shows the format of a message on the NMR;
because of the normalized format, split into structured metadata and payload,
the message destination and the direction of the message can be easily extracted
and compared against given data.

This simple mechanism is an easy way to separate incoming calls from out-
going ones, based on message metadata.

4.2 Decision

Once a policy-relevant message is intercepted, it needs to be evaluated against
the applicable policy (see Fig.2). The decision component does policy matching:
it examines all policies in the policy base (or policy repository) by evaluating
them against the current message. The evaluation is done by comparing message
context and actual parameters (e.g., destination service, source service, message
type, etc) with the conditions required by interested policies. We considered the
simple case of comparing the message against all policies in the policy base, until
the first match is found.



The output of the decision phase is called the werdict. This enforcement
decision is binary: either the message is legitimate, or it is a policy violation.
While the first case implies that there will be no consequences onto the message
flow, the second case calls for one or more enforcement actions. These actions
are detailed below.

4.3 Actions

The third step of enforcement is to take action based on the verdict that was
reached in step 2. We have implemented five basic enforcement actions that
implement the four mechanisms formalized by Pretschner et al. [5] to approach
usage control enforcement:

The acceptor accepts whole messages. If the verdict does not indicate any
policy violation, then the acceptor is invoked, with the effect that the message
is allowed without any modification.

The blocker rejects whole messages. Contrary to the previous case, the blocker
mechanism is invoked to react to a policy violation by rejecting the entire
message and sending back an error message.

The modifier pertains to the class of mechanisms that modify a message. The
point is to go beyond the classic “all or nothing” enforcement approach and
modify the message so that it conforms to the given policy.

The delayer refers to the class of mechanisms that postpone a message until
a condition is satisfied. This mechanism maps to the idea of obligation en-
forcement, where an actor would be allowed to perform an action only after
a condition has been verified. For instance the policy “Delete all traces of
a call after the call has been terminated and paid” can be implemented by
delaying the deletion of call traces until the arrival of a message that signals
a call that is terminated and paid for.

The executor enables complex actions. In some cases, the reaction to a viola-
tion may require the execution of a complex recovery process that requires
more than the basic mechanisms implemented by xESB. Implementing these
mechanisms in xESB would make it inflexible, so xESB uses the executor
to invoke an external service or process, which can also be an orchestration
engine.

Actions can be differentiated as preventive or corrective. Preventive actions
ensure that a policy violation will not happen: prior to allowing a sensitive action,
they check its compliance with the policies. Corrective actions, on the other hand,
try to compensate a violation that already happened. The blocker is a preventive
mechanism: if a message on the ESB is not allowed to reach its destination, then
it is simply dropped. The other actions—modifying, delaying, calling an external
entity—are by their nature compensatory: if an intercepted message or a group
of messages already constitute a policy violation, an appropriate action must be
taken to correct the respective message or message flow (e.g., reroute to a secure
service, deny further messages on that route until next day, etc.). The executor
mechanism can be both preventive and reactive.



We see the actions described above as enforcement primitives on ESB mes-
saging. Because implementing a blocking, modifying, delaying and executing
mechanism should be different from application to application, we argue that
our design caters to a customizable ESB enforcement framework. Our model
provides a set of basic components — the interceptor, the decision maker, the
action performer — and the wiring between them; the semantic behind the en-
forcement actions and the policies are independent of the solution design.

5 The Design of xESB

NORMALIZED
MESSAGE
ROUTER

SERVICE
1.5, PROVIDER 1

\ SERVICE

1.1 .
SERVICE CLIENT |~ E N PROVIDER 2
1
L1677
N L .-
V.,1 7

POUCV

Fig. 3. The xESB enforcement architecture. The solid arrows indicate the invoke chain,
while the dotted arrows show the response chain. Both request and response are inter-
cepted. The policy is only on requests from Client 1 to Provider 2, hence the interceptor
gives the request to the PDP, and then passes the response from the PDP to the PEP.

In a JBI service bus, the component that mediates all communication is the
normalized message router (NMR). It is therefore natural to embed an interpo-
sition mechanism within the NMR, in order to capture incoming messages on
their way to their destination, be it before being processed (service requests) or
after being processed (service replies).

Once the message has been intercepted, the next step is to analyze the mes-
sages just captured. The JBI standard helps us again: the messages being routed
are normalized before they get to the router; this means that they are trans-
formed to a fixed format that separates clearly the XML payload of a message,
the message context (metadata) and message attachments (the format is given
in Figure 1). This feature makes it feasible to analyze parts of a normalized
message. In order to derive a verdict, we designed the analysis component to
compare the metadata of a current message with the metadata specified by the
policies in the policy base. By metadata, we mean information such as message
source and destination; by context we mean any flow-related condition, such as



a constraint that pertains to message flow precedence (e.g., an incoming call
was not logged before it was accepted), or usage control-specific constraints that
mainly involve counting (e.g., a silver customer has used 2 hours of premium
services this month) or obligations (e.g., silver customers can use video calls for
no more than 3 hours a month). With some information on the state of a service
or a message, the problem of comparing the current intercepted message against
the business constraints in the policy base is described in Sect. 6.

Once a verdict is reached, the action performing phase consists of one of
the actions given in Sec. 4.3. xESB implements message blocking by sending
the current message not to its desired endpoint but to a loopback interface
(the request initiator can receive nothing or a fault message); the xESB modifier
simply replaces parts of the message header as specified by the policy; the delayer
routes the message to a delayer component that puts the message in a queue and
removes it again when the condition associated with it is satisfied (be it time or
a boolean condition); lastly, the executor is implemented by routing the current
message to the endpoint of the desired service. An underlying assumption of
the design is that the xESB mechanism is always invoked because the NMR
processes every message. The xESB is trusted to always invoke the PEP, and
the enforcement actions are on services that are deployed on the ESB (hence a
service not deployed on the bus is not known to xESB). Therefore, xESB acts
as a reference monitor.

Performance considerations made us embed the modifying and rerouting
functionality into the component that does message interception on the bus.
The specific delaying and blocking behavior were implemented as separate com-
ponents (namely, plain Java objects) to which the NMR would direct messages.
Thus, while the intercepting mechanism is ESB platform-specific, we aimed to
make the analysis and action hooks reusable across applications. The logic to
decide on the enforcement verdict can be reused irrespective of the deployed
policies, but the actions matching this verdict are application-dependent. This
design has flexibility as its greatest advantage; for instance, it does not rule out
the call-back to an analysis component that is application-logic aware, and that
might be interested to analyze message payload in order to make an enforce-
ment decision. In addition to this aspect, we have also incorporated support for
indicators within our xESB. Section 7 will discuss indicators in greater detail.

6 Enforcement Language

As we have shown in Sect. 4.3, we wish to enforce not only by control, but also by
reaction. Reaction covers temporal and transient obligations to which any entity
in the distributed environment can be bound. Existing languages and language
frameworks address only some of these aspects (see Sect. 9). Consequently, we
have created our own policy language.

A policy is written as text, which is compiled into binary form. During exe-
cution, the compiled policy file resides in memory and is interpreted by a stack
machine. Policy turnover is at the moment not implemented, but we do not see



large technical difficulties in doing so: turnover is problematic only for enforce-
ment on message exchanges or sessions, where different policies may have to be
applied to different messages. Since we enforce policies one message at a time,
such problems do not exist in xESB.

6.1 Policy Files

Policies are expressed as a sequences of rules, expressed in Event-Condition-
Action form. A message is sequentially checked against the rules until either a
rule applies or there are no more rules. Figure 4 shows how the policy “Silver
customers can use video calls for no more than 3 hours a month” would be ex-
pressed in this language. From this example, we can see that the policy language
contains the following components:

default-action { allow; }
// Total duration of video calls, in seconds
hash videoDuration = 0;
timer resetDuration = next month;
obligation {
if invocation
when { resetDuration.fired }
do {
clear videoDuration;
arm resetDuration fire next month;
}
}
obligation {
if response
when { h "Type" equals "video-call" && h "Success" equals "True"
&& h "Customer-Type" equals "Silver" }
do { update-counter videoDuration[source] += h "Duration"; }
¥
rule {
if invocation
when { h "Type" equals "video-call" &% h "Customer-Type" equals "Silver"
&% videoDuration[source] > 10800 }
do { block; }
}

Fig. 4. Policy for “Silver customers can use video calls for at most 3 hours a month”.

Default Action. This allows allow-based or deny-based policies.

Counters, Timers, and Hashes. These declare items of state, which are
pieces of data that keep their values across policy checks. There are three types of
state: counters, timers, and hashes. The latter keep arrays of state, thus allowing
state per user or state per messge source etc.

Rules and Obligations. Rules and obligations are very similar. However,
rules compute verdicts such as block, allow and so on. When a rule that carries
a verdict matches a message, the action part of that rule is executed and pro-
cessing is stopped. On the other hand, obligations exist solely for the purpose of
updating state, so processing continues.



Event, Condition and Action Specifications. The event part of a rule
or obligation checks if the message is a request or a response. Conditions are
part of a rule or obligation and checks whether the rule or obligation applies to
the current message. The action specification of a rule or obligation can update
state (both rules and obligations) or return a verdict (rules only).

What is the overall effect of this policy file? The first obligation takes care
of rearming the timer if it has fired. The second obligation updates the length
of video calls, and the rule blocks video calls in excess of three hours. Identifiers
such as ‘type’, ‘source’, ‘destination’; etc. refer to names of the metadata fields
in the normalized message.

While this example illustrates the main features of the language, some other
features of interest include:

Modifying message metadata. The language construct “modify h metadata-
name = string-expression” modifies parts of a message’s metadata, i.e., any-
thing outside the message payload. Modification lets the message pass after
modification.

Delaying a message. One possible verdict is “delay n”, which means to delay
the message by a specified amount of time. This implies allowing the message
to pass eventually.

Delay until a condition is met. Another innovative verdict is “delay until
condition”, which will delay a message until a certain condition is met. The
condition can be any boolean expression on the state (but not on any message
headers). This is not the same as bocking a message, since a message is
completely discarded when it is blocked, whereas here it is merely delayed.

6.2 Cross-Service Policies

To show that we can use xESB to enforce cross-service and hence potentially
inter-organisational policies, let us consider the regulatory requirement to hide
initiator numbers in outgoing calls. Since this policy holds for video, audio and
ordinary phone calls, it affects potentially many services and therefore also po-
tentially different organisations within Foo.uk. Figure 5 shows how to express
this policy. Note how simple this policy is to implement on the ESB level. On the
BPEL level, it would be much more complicated, because a generic anonymisa-
tion service would have to be written and deployed, and message transformation
would have to be performed at the BPEL level.

default-action { allow; }
rule {
if invocation
when { h "Type" equals "start-call" }
do { modify h "Initiator" = "000000"; }
}

Fig. 5. Policy expressing “Initiator numbers need to be anonymized for outgoing

calls” .2



Figure 6 shows the two remaining policies from Sect. 2, namely “log start time
and duration of calls”, and “accept collect calls only after destination explicitly
accepts to pay”.

default-action { allow; } default-action { allow; }
rule { hash payAccepted = 0;

if invocation obligation {

when { h "Type" equals "start-call" if request

|l h "Type" equals "end-call" } when { h "Type" equals "collect-payment" }
do { duplicate do { update-counter payAccepted[destination] := 0; }
"http://internal.foo.uk/log"; } }

} obligation {

if response
when { h "Type" equals "collect-payment"
&% h "Success" equals "True"
&% h "PaymentAgreed" equals "True" }
do { update-counter payAccepted[destination] :=

I
[
[

rule {
if invocation
when { h "Type" equals "call-collect"
&& payAccepted[destination] == 0 }
do { block; }
}

Fig. 6. Policies expressing “log start time and duration of calls” (left), and “accept
collect calls only after destination accepts to pay” (right).

7 Enforcement Indicators

As previously mentioned, we want indicators to give a quantitative measure
of the quality of the enforcement process. We will provide some examples of
possible ESB-level indicators that have an impact over the assessment of policy
enforcement. We split them in two basic types:

Indicators for misconfiguration. By counting repeated violations from
a particular service, an indicator can show that the service always violates the
policy no matter the user on whose behalf it works. This would mean that
the cause is not the user nor the way the service is used, but rather the way
in which the service is configured. Another example is an indicator that can
quantify how many services do not follow deployment or runtime constraints
such as: using disallowed protocol versions, being in disallowed service states or
deploying services that should not have been deployed. That may be a more
general indicator for misconfiguration of the overall application. We show two
simple examples in Fig. 7.

Indicators for reaction to misuse/attacks. Recursion in service chains
can impact service availability because it can lead to deadlocks. Counting and
limiting the number of times this happens may be an indicator of service avail-
ability. An example of an indicator preventing attacks is disabling access to

2 The modify action implies a verdict, hence this is indeed a rule, not an obligation.



counter violations = 0; counter violations = 0;

rule { obligation {
if request if request
when { ... } when { h "Protocol-Version" != "1.3"
do { Il h "Service-Type" != "ShoppingCart" }
update-counter violations += 1; do { update-counter violations += 1; ¥
block; }
}
}

Fig. 7. Indicators for misconfiguration: Counting repeated violations (left), counting
deployment errors (right)

counter recursion = 0; hash fails = 0;
counter aCalledB = 0; obligation {
obligation { if response
if request when { source = "Payment" && h "Status" = "Fail" }
when { source = "a" do { update-counter fails[destination] += 1; } }
&& destination != "b" } rule {
do { update-counter aCalledB := 0; } } if response
obligation { when { source = "Payment" && h "Status" = "Success" }
if request do { update-counter fails[destination] := 0; } }
when { source = "a" rule {
&& destination = "b" } if response
do { update-counter aCalledB := 1; } } when { source = "Fail-Admin" && h "Status" = "Success" }
obligation { do { pass;
if request update-counter fails[h "Subject"] := 0; } }
when { source = "b" rule {
&& destination = "a" && aCalledB } if request
do { update-counter recursion += 1; } } when { destination = "Payment" && fails[source]l > 3 }

do { block; } }

Fig. 8. Indicators for misuse or attack: counting recursions (left), preventing DoS or
password guessing (right).

services based on security parameters or on the history of requests from a caller.
For example, if a caller is denied access three times in a row, we block access
permanently. Limiting the number of requests from a particular client to a par-
ticular service can prevent DoS attacks; see Fig. 8.

It can be noticed from the examples above that we can derive a number
of useful indicators by combining mechanisms for counting, using flags for flow
precedence, inspecting message types, sizes and message parts. Our language
and our intercepting mechanism can be used to count specific events and reason
on message precedence, as well as inspecting message properties.

8 Performance Evaluation

To implement xESB, we chose Apache Servicemix 3.3, a JBI-compliant open
source ESB. We used the Servicemix API to intercept messages according to
Fig. 3. This section describes the evaluation of our prototype implementation.
We followed a capacity testing model [6] to measure the lower bound of the
instrumentation overhead. We used the sample SOAP that come with ServiceMix
3.3, and soapUI as a tool for load generation®. We used SOAP messages of 8 Kb

3 http://www.soapui.org/



RTT, 8 kB messages, 100 threads RTT, 8 kB messages, 100 policies

o

1500

1
@o ©o

1500

S

°
o

o

4§  z

8

8 o

8
o T

SEEEERE| el

1000
‘4+m>o o

1000
|
o

RTT [ms]
RTT [ms]

500

-
il

I == ‘ 3
" H L "
S T E S = | < L =
o - © -
T T T T T T T T T T T T
0 5 10 25 50 100 200 25 50 75 100 150
Number of policies Number of threads

Fig.9. RTT for varying policy file sizes (left) and varying number of parallel connec-
tions (right), for 8 Kb messages. The x axes are not uniformly spaced.

size and a varying number of parallel clients. Our testbed PC was a 32-bit system
with a 2.6GHz processor and 3GB of RAM. The JVM was allowed 1280MB of
memory, with a ServiceMix queue size of 256 requests.

To answer the question “how does the number of rules in a policy file affect
the round-trip time (RTT) of messages?”, we constructed policy files of 0, 5,
10, 25, 50, 100, and 200 rules such that in all files, only the last rule would
ever match. Therefore we are actually measuring the effect of checking the rules,
not simply loading a larger ruleset, which would have almost no effect. For each
policy file, we then used SoapUI to send 8 Kb messages to xESB using 100 parallel
threads for 3 minutes. We repeated this process 3-5 times. Since SoapUI does
not return the RTT for individual messages, we looked at the average RTT. The
results are plotted in Fig. 9, left. The most important conclusion is that xESB
is almost unaffected by the size of the policy file: the main delay seems to be in
message processing, not policy enforcement. In fact, profiling shows that policy
enforcement takes only about 0.2% of CPU time.

The next question we asked is “How does the number of parallel clients affect
the RTT?”. Using a similar method as above (8 Kb messages using 100 rules
for 3 minutes, repeat 3—5 times, then look at the average RT'Ts), we arrived at
Fig. 9, right. As expected, both the average RTT and the variability rise linearly.

A curious feature that can be seen in the figure is the tremendous variability
in RTT. Since this variability also shows in the uninstrumented ServiceMix, we
conclude that policy enforcement is not responsible for this. We conjecture that
this is due to the staged-event architecture of ServiceMix, where processing is
done in bursts because computation happens in stages?.

1 Staged Event-Driven Architecture http://www.eecs.harvard.edu/~mdw/proj/
seda/



9 Related Work

There is a large number of security standards that cover XML message valida-
tion, authorization, encryption or even federated authentication: OASIS’s WS-
Security, SAML, XACML?, and other WS-* specifications. These standards only
deal with particular narrow issues of SOA scenarios (point-to-point authentica-
tion, authorization, message integrity, etc.) and not with SOA policy compliance.

The work on enforcing security at the message-level is limited to considering
access control policies. The solution of Svirskas et al. [7] is limited to controlling
service access and logging on the ESB. A similar approach [8] suggests several
infrastructure security services to act on different types of events by means of a
gateway, but the separation between business and security concerns is not clear.
Maierhofer et al. [9] describe a dynamic enforcement framework for security at
the message-level, but do not discuss interoperability nor implementation. An-
other solution [10] suggests a custom security service bus for enforcement of
complex policies. Other conceptual approaches based on law-governed interac-
tions [11] aim to model enforcement of laws onto communication between servers
and clients, but they consider generic distributed dedicated entities to perform
the law realization. Our assumption differs in that it uses the ESB as a cen-
tralized mechanism that either performs on-the-fly enforcement or delegates it
to a trusted entity. We explicitly focus on access and usage control policies,
and unlike other approaches, we offer a concrete model and a proof-of-concept
implementation.

Concerning the policy language, elaborate access control languages (e.g., Pon-
der [12], EPAL [13], SPL [14]) are unable to express obligations that pertain to
usage control. More generic usage control centric languages are POLPA [15] and
OSL [16]; while the former does not explicitly address obligations, the latter
is not supported by an implementation. Unaware of any implementation of a
generic usage control language that supports compensations, we have developed
a proof-of-concept policy language fit for the ESB. Compared to theoretic works
on access control compensations [17], violation management [18] and obligation
assessment [19, 20], we go beyond access control and provide an implementation
of compensations on the fly. This means that whenever a violation of some ser-
vice usage rule is detected, the correction happens as the event travels through
the system, before it reaches some interested party.

In usage control enforcement [21], Katt et al. [22] add the notion of post-
obligations to the obligation model; they consider and implement a mechanism
for ongoing enforcement. The work of Pretschner et al. [5,23] describes a for-
malized usage control language and the mechanisms to enforce such a language,
but do not cover an enforcement model for SOA. xESB reuses these enforcement
mechanisms as well as idea of post-obligations but applies them for the first time
to the ESB level.

® These OASIS standards can be found at http://docs.oasis-open.org



10 Conclusion and Future Work

The paper presented xESB, an instrumented JBI ESB for the enforcement of
security policies that are organization-wide. xESB is able to enforce both ac-
cess and usage controls policies. The rich enforcement semantics of xESB allows
not only to reject ESB messages that violate a policy but also to compensate
that violation. xESB also introduces and supports indicators aiming to help the
security administrator analyze and derive useful information about policy vi-
olations (e.g., discover configuration mistakes) and their impact to the overall
security of the organization. While initial performance tests are very promising,
we are planning to use xESB with a commercial SOA application and run more
extensive tests to validate the initial results.
We are currently working to extend xESB on four aspects:

Optimization. In a large policy file a lot of time is spent evaluating conditions
in order to find those rules or obligations that apply to a given message. To
improve this, we will implement some form of the Rete algorithm [24], or
select rules according to which message parts appear in where-clauses.

Conditions on message payload. We will extend xESB so that complex con-
ditions on the message payload can also be evaluated. We will most likely
base this capability on XPath.

Performance measurements. Apart from measuring the performance impact
of the executor and modifying mechanism, we plan to evaluate different
policy engines against our enforcement design, thus checking its extensibility.

Performance indicators. We will implement performance indicator support
in order to derive general information on the runtime enforcement process
(e.g., statistics on the rules that are frequently enforced or violated).

References

1. Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-oriented archi-
tecture and business process choreography in an order management scenario: ra-
tionale, concepts, lessons learned. In: OOPSLA ’05: Companion to the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, New York, NY, USA, ACM (2005) 301-312

2. UK Government: The privacy and electronic communications (ec directive) regu-
lations 2003. http://www.opsi.gov.uk/si/si2003/20032426.htm (June 2009)

3. European Parliament: Directive 95/46/ec of the european parliament and of
the council. http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/
dir1995-46_partl_en.pdf (June 2009)

4. Sun, Java Community Process Program: Sun JSR-000208 Java Business
Integration. http://jcp.org/aboutJava/communityprocess/final/jsr208/
index.html (August 2005)

5. Pretschner, A., Hilty, M., Basin, D., Schaefer, C., Walter, T.: Mechanisms for
usage control. In: Proc. ASTACCS 08, New York, NY, USA, ACM (2008) 240244

6. Ueno, K., Tatsubori, M.: Early capacity testing of an enterprise service bus. In:
ICWS ’06: Proceedings of the IEEE International Conference on Web Services,
Washington, DC, USA, IEEE Computer Society (2006) 709-716



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Svirskas, A., Isachenkova, J., Molva, R.: Towards secure and trusted collaboration
environment for european public sector. Collaborative Computing: Networking,
Applications and Worksharing, 2007. CollaborateCom 2007. International Confer-
ence on (Nov. 2007) 49-56

. Leune, K., van den Heuvel, W.J., Papazoglou, M.: Exploring a multi-faceted frame-

work for soc: how to develop secure web-service interactions? Research Issues on
Data Engineering, Proc. 14th Intl. Workshop on (March 2004) 56-61

Maierhofer, A., Dimitrakos, T., Titkov, L., Brossard, D.: Extendable and adaptive
message-level security enforcement framework. Networking and Services, 2006.
ICNS ’06 (2006) 72-72

Goovaerts, T., De Win, B., Joosen, W.: Infrastructural support for enforcing and
managing distributed application-level policies. Electron. Notes Theor. Comput.
Sci. 197(1) (2008) 31-43

Lam, T., Minsky, N.: A collaborative framework for enforcing server commitments,
and for regulating server interactive behavior in soa-based systems. In: Proceed-
ings of thebth International Conference on Collaborative Computing: Networking,
Applications and Worksharing. (November 2009) 1-10

Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: POLICY ’01: Proceedings of the International Workshop on Policies
for Distributed Systems and Networks, Springer-Verlag (2001) 18-38

Backes, M., Pfitzmann, B., Schunter, M.: A toolkit for managing enterprise privacy
policies. In: In Proc. of ESORICS03, LNCS 2808, Springer (2003) 162-180
Ribeiro, C., Zquete, A., Ferreira, P., Guedes, P.: Spl: An access control language
for security policies with complex constraints. In: In Proceedings of the Network
and Distributed System Security Symposium. (1999) 89-107

Baiardi, F., Martinelli, F., Mori, P., Vaccarelli, A.: Improving grid services security
with fine grained policies. In: Proc. On the Move to Meaningful Internet Systems
Workshop. Volume 3292 of LNCS., Springer-Verlag (2004) 123-134

Hilty, M., Pretschner, A., Basin, D., Schaefer, C., Walter, T.: A policy language for
distributed usage control. In: 12th European Symposium on Research in Computer
Security (ESORICS 2007). Volume 4734 of LNCS., Springer-Verlag (2007) 531-546
Povey, D.: Optimistic security: A new access control paradigm. In: In Proceedings
of 1999 New Security Paradigms Workshop, ACM Press (1999) 40-45

Brunel, J., Cuppens, F., Cuppens, N., Sans, T., Bodeveix, J.P.: Security policy
compliance with violation management. In: FMSE ’07, New York, NY, USA, ACM
(2007) 31-40

Irwin, K., Yu, T., Winsborough, W.H.: Assigning responsibility for failed obliga-
tions. IFIP Intl. Federation for Information Processing 263 (2008) 327-342
Irwin, K., Yu, T., Winsborough, W.H.: On the modeling and analysis of obligations.
In: CCS ’06, New York, NY, USA, ACM (2006) 134-143

Park, J., Sandhu, R.: The UCON 4 gc usage control model. ACM Trans. Inf. Syst.
Secur. 7(1) (2004) 128-174

Katt, B., Zhang, X., Breu, R., Hafner, M., Seifert, J.P.: A general obligation model
and continuity: enhanced policy enforcement engine for usage control. In: Proc.
SACMAT 08, New York, NY, USA, ACM (2008) 123-132

Pretschner, A., Schiitz, F., Schaefer, C., Walter, T.: Policy evolution in distributed
usage control. In: 4th Intl. Workshop on Security and Trust Management. (06 2008)
Forgy, C.: A network match routine for production systems. Working paper,
Carnegie-Mellon University (1974)



