
HAL Id: hal-01060679
https://inria.hal.science/hal-01060679

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the Problem of Attribute Selection for Software Cost
Estimation: Input Backward Elimination Using

Artificial Neural Networks
Efi Papatheocharous, Andreas S. Andreou

To cite this version:
Efi Papatheocharous, Andreas S. Andreou. On the Problem of Attribute Selection for Software Cost
Estimation: Input Backward Elimination Using Artificial Neural Networks. 6th IFIP WG 12.5 Inter-
national Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca,
Cyprus. pp.287-294, �10.1007/978-3-642-16239-8_38�. �hal-01060679�

https://inria.hal.science/hal-01060679
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On the Problem of Attribute Selection for Software

Cost Estimation: Input Backward Elimination Using

Artificial Neural Networks

Efi Papatheocharous1 and Andreas S. Andreou2

1 University of Cyprus, Department of Computer Science. 75 Kallipoleos Street, P.O. Box

2053, CY1678 Nicosia, Cyprus

efi.papatheocharous@cs.ucy.ac.cy
2 Cyprus University of Technology, Department of Electrical Engineering and Information

Technology, 31 Archbishop Kyprianos Street, 3036 Lemesos, Cyprus

andreas.andreou@cut.ac.cy

Abstract. Many parameters affect the cost evolution of software projects. In the

area of software cost estimation and project management the main challenge is

to understand and quantify the effect of these parameters, or „cost drivers‟, on

the effort expended to develop software systems. This paper aims at

investigating the effect of cost attributes on software development effort using

empirical databases of completed projects and building Artificial Neural

Network (ANN) models to predict effort. Prediction performance of various

ANN models with different combinations of inputs is assessed in an attempt to

reduce the models‟ input dimensions. The latter is performed by using one of

the most popular saliency measures of network weights, namely Garson‟s

Algorithm. The proposed methodology provides an insight on the interpretation

of ANN which may be used for capturing nonlinear interactions between

variables in complex software engineering environments.

Keywords: Software Cost Estimation, Artificial Neural Networks, Connection

Weights, Garson‟s Algorithm.

1 Introduction

Software effort estimation is the process of predicting the required effort to support

the software development process by utilising attributes of cost, often called „cost

drivers‟. This process usually involves activities after product specification and until

software implementation and delivery, and is usually performed at the initiation of a

project. The accurate computation of the development effort in software organisations

is critical since it enables project managers to effectively deal with uncertainties and

risks associated with resource planning and allocation. Specifically, cost

overestimations result, in over allocation of resources and budget increase, which may

cause loss of contracts and interruption of negotiations. On the other end, cost

mailto:efi.papatheocharous@cs.ucy.ac.cy

underestimations cause loss of money upon project completion, misallocation of

project resources, quality compromises or budget and schedule extensions.

Artificial Intelligence (AI) techniques are quite popular in software cost estimation

and are used for building models and calculating the effort factor. Especially,

Artificial Neural Networks (ANN) that have the ability to provide a non-linear

mapping among the inputs and the output have been used extensively. Nevertheless,

in previous related works ANN are commonly used only as predictors and very rarely

quantitative analysis is conducted regarding the influence of the network inputs on the

output. In this work we focus on the ability of ANN to capture interactions between

the influencing cost factors and effort and, in addition, the input‟s degree of influence

built within the network is examined using Garson‟s Algorithm [1]. The overall

purpose is to examine the prediction accuracy of development effort through the

utilisation of different models and variable contributing factors. The values of the cost

drivers are located within two widely-known and public databases, namely the

Desharnais and the ISBSG, which are selected for experimentation. The contribution

of inputs is assessed through a random sampling approach and using the resulting

values of internal weights from the ANN. Gradually the contributing weights of

inputs whose values do not significantly affect the output of the ANN are removed

from the initial complete set of cost factors. The experiments conducted show that in

software cost estimation there are several factors which are not critically significant

but are commonly used for predicting effort in related research work. The input

analysis conducted using Garson‟s Algorithm helps in removing factors in a backward

manner, starting from the least significant ones and until half of the initial cost factors

are left in each dataset whereas during this process ANN‟s prediction performance is

continuously assessed.

The rest of this paper is organised as follows: Section 2 discusses the recent work

on ANN utilisation for the problem of software cost estimation and also presents

common approaches used for simplification and interpretation of ANN in other

problem domains. Section 3 specifies the modeling technique and theory behind

Garson‟s Algorithm. Section 4 presents in detail the methodology proposed, accuracy

measures used in the experimental process and discusses the main results obtained.

Finally, Section 5 summarises the conclusions and future research steps.

2 Related Work

This section initially presents the latest applications of Artificial Neural Networks

(ANN) in the software cost estimation literature and identifies that even though the

approach is considered promising, one of the most important steps, the identification

and inspection of the dominant cost attributes, is not given proper thought.

Recent work of Tronto et al. [2] investigates the application of ANN and stepwise

regression for software effort prediction. The experiments were conducted on the

COCOMO dataset employing categorical variables whose impact was identified

based on the work of Angelis et al. [3] forming new categorical values. The authors

identified a strong relationship between the success of each technique and the size of

the learning dataset, the nature of the cost function and dataset characteristics, such as

existence of outliers, collinearity and number of attributes.

In software cost estimation the comparison of models is a common research goal.

Kaur et al. [4] prove the effectiveness of ANN models for the NASA dataset

compared to the Halstead, Walston-Felix, Bailey-Basili and Doty models, all of which

are popular legacy models used in software cost estimation. Backpropagation ANN

were used and reported as the most generalised networks currently in use that present

good estimation capabilities. In addition, Reddy and Taju [5] used the popular

COCOMO model in software cost estimation mapped to an ANN with minimal

number of layers and nodes to increase the performance of the network. They

employed a feedforward backpropagation MLP and obtained improved predictions for

effort using the COCOMO dataset compared to the COCOMO model. Rao et al. [6]

used a Functional Link Artificial Neural Network (FLANN) which does not contain

any hidden layers so that the network architecture becomes simple and training does

not involve full backpropagation, thus reducing computational complexity. Their

method provides more accurate results compared to other methods for software cost

estimation on the NASA dataset.

Many researchers applied ANN on software cost estimation and yielded very

accurate results. However, when using ANN one crucial step is to identify the

dominant cost factors, or attributes, that affect development effort [7]. A number of

measures exist to determine the significance of ANN input attributes [1, 8, 9, 10] but

we identified that they have never been applied for software cost drivers. For

example, sensitivity analysis, fuzzy curves, MSE change, weight elimination and

node pruning, and optimal brain damage (OBD) methods are measures that rank input

feature importance. Some of these measures are heuristic (forward and backward

selection), sensitivity index-based, are based on pseudo weights, rely on Garson‟s

algorithm and some of its modified and extended versions that appear in the literature

[11]. More specifically, in this work the concepts described in the following

methodologies have been adopted for software cost drivers: Garson [1] proposed a

method for partitioning the ANN connection weights to determine the relative

importance of each input variable in the network (for more details see Section 3.2).

Glorfeld [9] presented a methodology to simplify ANN using a backward selection

process to eliminate input variables that are not contributing to the predictive power

of accurate networks. According to the author this enables decision makers to

understand the resulting effect of each contributing variable in producing accurate

predictions. The application is on two classification examples, a commercial loan and

a cheque overdraft problem.

3 Modeling Technique and Methodology for Input Elimination

3.1 Artificial Neural Networks

One of the primary applications of ANN involves models to forecast a dependent

variable from a given set of independent variables. These are non-linear, model-free

and alternative to traditional statistical methods. ANN consist of basic computational

elements called neurons organized in groups forming layers. Certain types of neurons

organised in multiple layers form the Multi-Layer Perceptron (MLP) [12] which is

one of the most popular networks. The number of neurons in the input (first) layer is

equal to the number of attributes used as independent variables. The last layer is the

network output. Each subsequent layer uses the weights coming from the previous

layers and adjusts them so that the accuracy performance error between the actual and

predicted values for the dependent variable represented by the output is diminished.

3.2 Methodology with ANN and Garson’s Algorithm

There are many methods for measuring the contribution of independent variables

within a neural network, but most of which are very complicated and thus are rarely

used in the area of software cost estimation. Garson‟s algorithm [1] is considered a

good trade-off example among complexity and effectiveness. It partitions the hidden

layer weights into components associated with each input node. Next, the percentage

of all hidden nodes weights associated with a particular input node is used to measure

the relative importance of that attribute. The interested reader may refer to [13] for a

step-by-step example on the algorithm.

A variety of ANN architectures were implemented, starting with a topology which

contains a number of neurons in the hidden layer equal to the number of attributes

used as inputs in each experiment and continuing with topologies resulting from

increasing the number of hidden neurons by 1 until their number becomes twice the

size of the input attributes. In addition, the „weakest‟ attribute is removed from the

sample until the inputs are reduced to half the initial size. Moreover, the following

randomisation process was followed for each sample: The initial weights and biases

of the network were randomly set and the dataset used was randomly divided into

three holdout subsets, training, validation and testing, with the percentages of 60%,

20% and 20% of the total available samples respectively, where each sample

participates in only one subset.

The scaled conjugate gradient training function was used which is based on the

derivative functions of weights, net inputs and transfer functions. The training process

is repeated ten times so that the optimal network that minimizes the prediction error is

identified and the weights of each input-hidden-output path are stored for further use

by Garson‟s algorithm. Evaluation of the networks was performed using the testing

data samples based on the well known MMRE and pred(.25) accuracy measures. For

each experiment ten holdout random samples were chosen so that validation on

random data is performed.

After training is executed and the network is stabilized, for each input j, j=1,2,…,i,

the Relative Importance (RIj) is calculated using equation (1), where Ni and Nh are the

number of input and hidden neurons, respectively and w is the connection weight, the

superscripts „i‟,„h‟ and „o‟ refer to input, hidden and output layers, respectively and

subscripts „k‟, „m‟ and „n‟ refer to input, hidden and output neurons (in our case n=1

as there is only one output neuron). According to Garson‟s algorithm, for each input

node j the relative contribution of j to the outgoing signal of each hidden neuron is

calculated and converted to a percentage, which serves as a measure of importance for

each input node representing each variable. According to the proposed methodology,

each input that makes the smallest contribution to the final output of the network, as

this is reflected through the weight connections, is eliminated. Thus, in each repetition

the initial number of variables utilised is lowered gradually by one until the necessary

number of variables are left in the dataset.

 





 







































































































Ni

k

Nh

m

ho

mnNi

k

ih

km

ih

km

Nh

m

ho

mnNi

k

ih

km

ih

jm

j

w

w

w

w

w

w

RI

1 1

1

1

1

(1)

4 Experiments and Results

4.1 Datasets Description

The Desharnais (1989) dataset [14] included 81 observations for systems developed

by a Canadian Software Development House. The second dataset ISBSG R9 [15]

provided by the International Software Benchmarking Standards Group contains an

analysis of the cost and other measurements for a large group of software projects,

approximately 3,024. The projects come from a broad cross section of industry and

range in size, effort, development platform, language, etc. These projects underwent a

series of quality checks and pre-processing to create filtered versions of the datasets

that do not contain null values and conform to the standards we set for homogeneity

and integrity before feeding them as inputs to the ANN. The filtered datasets

contained 77 and 113 in the Desharnais and ISBSG datasets and the attributes selected

and used in this work, along with their abbreviations are summarised in Table 1.

4.2 Results

The results reported in this section include the initial and final lowest performance

values of the best obtained network architectures in terms of prediction accuracy

(MMRE value). The results of the training and testing phases of the various network

architectures created are sensitive to the initialisation of weights, bias values and

random division of the data samples used for training and testing. Initially, the

number of input attributes for each experiment is reduced gradually by one according

to importance of the inputs suggested by Garson‟s algorithm; then, the network is

trained again with the reduced variables and the new performance is traced. This

process is repeated ten times (on random holdout samples) and Tables 2 and 3 report

the MMRE and Pred(.25) ANN performance figures for the training and testing

phases using the Desharnais and ISBSG datasets respectively. The „Initial‟ and „Final‟

column results report accuracy having the number of inputs being equal to the initial

number of attributes in each dataset p and being reduced to p/2 respectively. The

order in which attributes are removed in each experiment repetition (first column) is

given in the second column, while the rest columns present the forecasting

performance observed after removing the „less important‟ attributes.

Table 1. Summary of the attributes in the datasets used

Desharnais ISBSG

Team Experience (years) TE Functional Size FS

Manager Experience (years) ME Adjusted Function Points AFP

Duration (months) DU Project Elapsed time PET

Transactions TR Project Inactive time PIT

Entities EN Resource Level (ordinal) RL

Points Adjusted PA Maximum Team Size MTS

Scope SC Input count INC

Points Non Adjusted PNA Output count OC

 Enquiry count EC

 File count FC

 Interface count IFC

 Added count AC

 Changed count CC

 Deleted count DC

Table 2. Random sampling and first four attributes removed from the Desharnais dataset.

Order of

Attributes

Removed

ANN Training Phase ANN Testing Phase

Initial

MMRE

Initial

Pred

Final

MMRE

Final

Pred

Initial

MMRE

Initial

Pred

Final

MMRE

Final

Pred

1 TE,DU,SC,ME 0.384 0.936 0.559 0.936 0.536 0.867 0.600 0.867
2 ME,DU,TR,TE 0.280 0.979 0.343 1.000 0.409 0.933 0.487 0.933

3 SC,EN,TE,DU 0.557 0.936 0.583 0.936 0.198 1.000 0.335 1.000

4 TE,TR,PA,SC 0.474 0.915 0.485 0.894 0.364 1.000 0.387 1.000
5 ME,PA,TE,DU 0.361 0.957 0.360 0.979 1.264 0.867 1.060 0.867

6 TE,SC,DU,ME 0.512 0.915 0.784 0.915 0.386 0.933 0.346 0.933

7 ME,SC,PNA,PA 0.472 0.957 0.572 0.957 0.569 0.800 0.512 0.800
8 TE,ME,SC,EN 0.509 0.957 0.572 0.957 0.351 0.800 0.512 0.800

9 TE,ME,EN,DU 0.358 0.936 0.356 0.936 0.507 0.933 0.578 0.933

10 TE,SC,EN,DU 0.482 0.894 0.768 0.894 0.312 0.933 0.293 0.933

Mean 0.439 0.938 0.538 0.940 0.490 0.907 0.511 0.907

The experiments indicate that quite accurate and successful predictions were obtained,

as suggested by the consistently low MMRE values in both the Desharnais and ISBSG

cases throughout the random holdout validation sampling process. Moreover,

comparing the initial and final values of the accuracy measures we observe some

performance degradation, something which indicates that maybe a part of useful

information is lost when reducing the number of the participating attributes. One may

argue that this is expected as the information contributing to the ANN learning

process is truncated and hence prediction accuracy is gradually lowered as we move

from the initial to the final network state. More specifically, the accuracy degree of

the Desharnais dataset decreases 0-29% in the training phase depending on the

experiment repetition, while during testing accuracy increases in some cases by 20%

and in others decreases by 16%. This also occurs with the ISBSG dataset, where by

removing attributes the performance accuracy increases by 6% and decreases by 6%

in the training phase depending on the experiment, while during the testing phase

accuracy increases by 16% and decreases by 24%.

Another interesting finding is that the attributes that seem to be the „weakest‟ effort

contributors in the majority of the experiments are TE, ME, DU, SC for the

Desharnais case and RL, FC, CC, INC, OC for the ISBSG. We should also report,

though, that there were validation cases in which the general picture of input

significance was a bit disrupted. This may be considered as a weakness of the method

as it relies on ANN models that behave differently when the initial conditions

(initialisation) and the training/testing data samples change. Therefore, the results

must be interpreted cautiously and only after a satisfactory number of repetitions that

will enable a statistically safe conclusion.

Table 3. Random sampling-first seven attributes removed from the ISBSG dataset.

Order of Attributes

Removed

ANN Training Phase ANN Testing Phase

Initial

MMRE

Initial

Pred

Final

MMRE

Final

Pred

Initial

MMRE

Initial

Pred

Final

MMRE

Final

Pred

1 CC,AFP,MTS,PET,OC,PIT,EC 0.223 0.957 0.329 0.928 0.358 1.000 0.578 1.000

2 DC,CC,PET,RL,PIT,INC,EC 0.280 0.986 0.352 0.971 0.418 0.955 0.575 0.955
3 INC,CC,DC,RL,OC,AC,FC 0.337 1.000 0.404 0.986 0.255 0.955 0.265 0.909

4 MTS,CC,RL,INC,FC,FS,AC 0.350 0.957 0.493 0.957 0.199 0.955 0.191 0.955

5 FS,RL,FC,EC,IC,INC,CC 0.367 0.971 0.411 0.986 0.202 0.955 0.298 0.955
6 RL,DC,CC,INC,OC,EC,FS 0.362 1.000 0.303 1.000 0.346 0.909 0.385 0.864

7 CC,OC,RL,FC,INC,AFP,IC 0.210 1.000 0.271 0.986 0.377 0.909 0.257 0.909

8 FC,OC,AC,AFP,RL,IC,FS 0.247 0.957 0.344 0.957 0.188 1.000 0.424 1.000
9 FC,IC,RL,AFP,AC,EC,PIT 0.261 0.957 0.305 0.971 0.662 1.000 0.500 1.000

10 FS,IC,PIT,OC,AFP,RL,FC 0.338 0.986 0.279 0.986 0.249 0.955 0.270 0.955

Mean 0.297 0.977 0.349 0.972 0.325 0.959 0.374 0.950

5 Conclusions

This work investigates the ability of ANN to capture interactions between the

influencing cost factors and effort within empirical software engineering project

samples and attempt to provide cost predictive models. The main contribution is the

understanding of the explanatory value of the inter-relationships between the input

variables and the final output (effort) which is extracted from the internal network

weights. Thus, it may provide an insight regarding each variable‟s contribution to the

overall prediction.

We performed a backward elimination strategy to minimise the initial inputs and

progressively evaluated the significance of connection weights and input variables.

The approach was based on Garson‟s Algorithm which exploits the various ANN

models created, trained and tested over ten random sets of training and testing distinct

samples. Moreover, from the various architectures created, trained and tested the

results obtained from the best networks in terms of MMRE of actual vs. the prediction

testing samples, i.e. result of the simulation phase of the process provide quite

promising results. The approach enables decision makers to understand the resulting

effect of each contributing variable in producing accurate predictions.

An interesting issue for future research is the comparison of the contributions of

other saliency measures reported in the literature along with Garson‟s over the same

or newer datasets. In addition, a cost-benefit analysis of accuracy declination and the

fewer attributes leading to less cost for collecting data and faster cost estimation

modeling should be carried out to prove the validity of this work.

References

1. Garson, G.D.: Interpreting Neural-Network Connection Weights. AI Expert 6, 46--51

(1991)

2. Tronto, I.F.D.B., Silva, J.D.S.D., Sant'Anna, N.: An Investigation of Artificial Neural

Networks based Prediction Systems in Software Project Management. Journal of Systems

and Software 81, 356--367 (2008)

3. Angelis, L., Stamelos, I., Morisio, M.: Building A Software Cost Estimation Model Based

On Categorical Data. Proceedings of the 7th International Symposium on Software Metrics,

IEEE Computer Society, pp. 4--15 (2001)

4. Kaur, J., Singh, S., Kahlon, K. S., Bassi, P.: Neural Network – A Novel Technique for

Software Effort Estimation. International Journal of Computer Theory and Engineering 2

(1) 1793-8201, 17--19 (2010)

5. Reddy C.S., Raju, K.: A Concise Neural Network Model for Estimating Software Effort.

International Journal of Recent Trends in Engineering 1 (1), 188--193 (2009).

6. Rao, B.T., Sameet, B., Swathi, G.K., Gupta, K.V., RaviTeja, C., Sumana, S.: A Novel

Neural Network Approach for Software Cost Estimation using Functional Link Artificial

Neural Network (FLANN). International Journal of Computer Science and Network

Security 9 (6), 126--131 (2009)

7. Park, H., Baek, S.: An Empirical Validation of a Neural Network Model for Software

Effort Estimation. Expert Systems with Applications 35, 929--937 (2008)

8. Belue, L.M., Bauer, K.W.: Determining Input Features for Multilayer Perceptrons.

Neurocomputing 7, 111--121 (1995)

9. Glorfeld, L.W.: A Methodology for Simplification and Interpretation of Backpropagation-

Based Neural Network Models. Expert Systems with Applications 10, 37--54 (1996)

10. Satizábal, H.M., Pérez-Uribe, A.: Relevance Metrics to Reduce Input Dimensions in

Artificial Neural Networks, Artificial Neural Networks-ICANN, Springer Berlin /

Heidelberg, pp. 39--48 (2007)

11. Zhang, G.: Neural Networks for Classification: A Survey. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews 30, 451--462 (2000)

12. McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous

Activity. Bulletin of Mathematical Biology 5 (4), 115--133 (1943)

13. Olden, J.D., Jackson, D.A.: Illuminating the “Black Box”: a Randomization Approach for

Understanding Variable Contributions in Artificial Neural Networks. Ecological Modelling

154 135--150 (2002)

14. J.M. Desharnais, Analyse Statistique de la Productivite des Projects de Development en

Informatique a Partir de la Technique de Points de Fonction, MSc. Thesis, Université du

Québec, Montréal, 1989.

15. The International Software Benchmarking Standards Group, http://www.isbsg.org/

Repository Data Release 9, 2005.

http://www.isbsg.org/

