
HAL Id: hal-01060670
https://inria.hal.science/hal-01060670

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Algorithms for the Reconciliation of Ontologies in Open
Environments

Yaqing Liu, Rong Chen, Hong Yang

To cite this version:
Yaqing Liu, Rong Chen, Hong Yang. Algorithms for the Reconciliation of Ontologies in Open En-
vironments. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and
Innovations (AIAI), Oct 2010, Larnaca, Cyprus. pp.211-218, �10.1007/978-3-642-16239-8_29�. �hal-
01060670�

https://inria.hal.science/hal-01060670
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Algorithms for the Reconciliation of Ontologies in Open
Environments

Yaqing Liu1, Rong Chen, Hong Yang

School of Information Science & Technology, Dalian Maritime University,

116026 Dalian, China
{liuyaqing234@yeah.net, tsmc.dmu@gmail.com}

Abstract. The dynamic changing feature of Semantic Web determines that the
ontology which is a part of Semantic Web needs constantly to be modified in
order to adapt outer environment. In this paper we make a careful analysis of
the ontology changes’ complexity under open environment. The main contents
discussed are as follow. At first we point out all possible relation types between
any two ontology change sequences including directly conflict relation,
indirectly conflict relation, dependent relation and compatible relation
according to ontology change’s definition. And then we propose a new
algorithm named Algorithm of Searching Maximum and Sequential Ontology
Change Sequence Set(ASMSOCSS) to find all maximum and sequential
ontology change sequence subset in the prime ontology change sequence set
and prove the independence of the result which may be got after running
ASMSOCSS. At last we put forward the algorithm by using these maximum
and sequential ontology change sequence sets to create new ontology versions
according to the dependence relation between ontology change sequences.

Keywords: Ontology Changes Sequence, Maximum and Sequential Ontology
Changes Sequence, Ontology Change.

1 Introduction

Ontology Evolution is the timely adaptation of an ontology to the arisen changes and
the consistent propagation of these changes to dependent artifacts. Ontology change
disposal, as a part of ontology evolution, focuses on exploring some ontology
evolution’s methods and technologies to modify ontology on the assumption with not
breaking ontology consistency. By far, a lot of research work has been done on
ontology change disposal and they may be classified into some based on logical
reasoning[6] and others based on belief revision[8].But all of them mainly focus on
ontology change disposal under centralized environment. The research on ontology
change disposal under open environment is infrequent. [1] discussed ontology change
disposal under open environment for the first time. Its main contribution is to define

1 The corresponding Author. This work was supported by National Natural Science Foundation

of China (60775028), Dalian Science &Technology Program (2007A14GX042),Young Key
Teachers Foundation Projects of Dalian Maritime University (2009QN034)

the mapping relation between any two ontology versions by analyzing these logs of
editing ontology. But [1] is not all-inclusive because it can’t provide some guide for
ontology evolution’s trend in semantic level.

Multiple ontology versions will be achieved under open environment. But these
ontology versions are not all worthy. Moreover, too many ontology versions will
make it more difficult to manage the base of ontology versions. Unfortunately, how to
get worthy ontology versions under open environment is seldom concerned. In
addition, the problem on ontology change of analysis and disposal is independent of
the problem on merging multiple ontology versions. And it is well known that the
work of merging ontology versions is very heavy. If the work of merging ontology
versions can be integrated into the course of analysis and disposal of ontology
changes it will greatly save the work of ontology evolution. In this paper, we propose
a new method which may not only create a worthy ontology version but also avoid the
work of merging ontologies through analyzing and disposing ontology change
sequences.

This paper is organized as follow. The whole scheme of ontology change disposal
under open environment is given in section 2. And then we make certain all possible
relation types between ontology change sequences in section 3. We propose
Algorithm of Searching Maximum and Sequential Ontology Change Sequence Set in
section 4 and put forward the algorithm used to create new ontology versions in
section 5. Related works are mentioned in section 6 and conclusion and the next work
are arranged in the last section.

2 Description of the Approach

Our approach on ontology change in an open environment is composed of four steps
as illustrated in Figure 1.

Step 1: Having accesses to a version Oi of an ontology, several users have
separate copies Oi

’ of this ontology in their working spaces.
Step 2: Each user makes changes chsj to his/her copy respectively.
Step 3: Given sequences of users’ ontology changes, we algorithmically analyze

the relevance between ontology change operations and search for the maximal
consistent subset of the whole ontology change operations, which is called the
maximal ontology changes set. We put such subsets together and denote them as a
collection of ontology change sequences, i.e., {CHS1,CHS2,…, CHSk}, where each
CHSi (1ik) represents a maximum sequential ontology changes.

Step 4: Several versions of ontologies may be derived from the original Oi by
applying one of maximal ontology changes. Obviously, {CHS1,CHS2,…, CHSk} will
produce k distinguished ontologies.

The above-mentioned step 3 and step 4 are the crucial parts of our approach, next
we will give their details in the remainder of this paper.

Fig. 1. Description of our approach

3 Formal Description of Ontology Change

Definition 1: an ontology O is defined as a 5-tuple:

O={C,R,Hc,Rel,Ao} . (1)

where:
 C is the set of ontology concepts.
 HC⊆C×C is a set of taxonomic relationships between concepts.
 R is the set of non-taxonomic relationships. The function Rel: R→C×C maps the

relation identifiers to the actual relationships.
 Ao is a set of axioms, usually formalized into some logic language.

For brevity, O is short for ontology throughout this paper. Its instances are
denoted by O.I, concept set by O.C, non-taxonomic relationships by O.R. We think of
an ontology as a knowledge base, which contains not only the elements of an
ontology, but also instances of the concepts C and relationships R.

Stojanovic categorizes all ontology changes into “Add” ontology changes and
“Remove” ontology changes respectively. To highlight what type of changes is
made to what object, we redefine ontology change as follows:

Definition 2: an ontology change ch is defined as:

ch={name,type,object,args}. (3)

where:
 name is the identifier of this change ch.
 type∈{“Add”, “Remove”}, is type of ch.
 object⊂O.I∪O.C∪O.R, are the elements which ch act on. O is an ontology.

O.C is the set of concepts of O and O.R is the set of non-taxonomic
relationships of O.

Oi

’

Oi
’

……

O1 Oi

④execute ontology change sequences

②make change Copies of Oi

①copy Oi

…… O2

CHS1

CHS2

③Algorithm of Searching Maximum
and Serial Ontology Change Sequence

Set

The Set of Ontology Versions

chs1

chs2

……

Maximum and Serial Ontology
Change Sequence Sets

……

 args⊂O.I∪O.C∪O.R, is a list of one or more change arguments. There are
changes with one, two or three arguments.
For example, ch={“AddSubConcept”, “Add”, {subc2}, {supc}} denotes an

ontology change that a concept subc2 is added to an ontology as subconcept of supc.
This can be pictured as Figure 2.

Definition 3: an ontology change sequence chs is defined as

chs=<ch1ch2…chn>, chi (1≤i≤n) is an ontology change (4)

if and only if n=1 or ∀1≤i≤n-1, chi always is executed ahead of chi+1.

3.1 Argument Pool and Remove Pool of an Ontology Change Sequence

For an ontology change sequence chs=<ch1ch2…chn>, the argument pool of chs is
used to enumerate all chi.args when chi.type is “Add” and the remove pool of chs is
used to enumerate all chj.object when chj.type is “Remove”. Further, the argument
pool chs.APool and the remove pool chs.RPool of an ontology change sequence
chs=<ch1ch2…chn> can be obtained when we apply the ACAPRP algorithm to chs.

Given a simple example illustrated in Fig.3, we suppose:
 chs=<ch1ch2>
 ch1={“RemoveConcept”, “Remove”,{subc2},{}}
 ch2={“AddSubConcept”, “Add”,{subc3},{supc}}
When ACAPRP algorithm is applied to chs the output is chs.RPool={subc2} and
chs.APool={supc}.

3.2 Relation Types between two Ontology Change Sequences

Definition 4: An ontology change sequence chs1 depends on another ontology change
sequence chs2 if and only if chs1.RPool ∩ chs2.APool≠∅ ∧chs2.RPool ∩

chs1.APool=∅ . dependence(chs1,chs2) means that chs1 depends on chs2 and
¬dependence(chs1,chs2) means that chs1 doesn’t depend on chs2.

Definition 5: An ontology change sequence chs1 directly conflicts with another
ontology change sequence chs2 if and only if chs1.RPool ∩

chs2.APool≠∅ ∧chs2.RPool∩chs1.APool≠∅ . directlyConflict(chs1,chs2) means that
chs1 and chs2 directly conflict with each other and ¬directlyConflict(chs1,chs2) means
that chs1 and chs2 don’t directly conflict with each other.

Fig.3. An illustration of an ontology change
sequence.

Fig.2. An illustration of an ontology
change.

supc

subc1 subc2

supc

subc1

supc

subc1 subc3

chs
supc

subc1 subc2

Fig.2. An illustration of an ontology
change.

supc

subc1 subc2

supc

subc1

Definition 6: For a few of ontology change sequences chs1, chs2, …，chsn, chs1

indirectly conflicts with chsn iff dependence(chs1,chs2), dependence(chs2,chs3),…,
dependence(chsn,chs1) all are true, where indirectlyConflict(chs1,chsn) means that chs1

and chsn indirectly conflict with each other and ¬indirectlyConflict(chs1,chsn) means
that chs1 and chsn don’t indirectly conflict with each other.

Definition 7: An ontology change sequence chs1 is compatible with another
ontology change sequence chs2 iff chs1.RPool ∩ chs2.APool=∅ ∧chs2.RPool ∩
chs1.APool=∅ , where compatible(chs1,chs2) means that chs1 and chs2 are compatible
each other.

4 Algorithm of Searching Maximal Ontology Changes Set

According to the relation type between two ontology change sequences, four lemmas
may be deduced.

Lemma 1: If an ontology change sequence chs1 directly conflicts with another
ontology change sequence chs2, not all of chs1 and chs2 are executed no matter what
the execution order may be.

Lemma 2: If an ontology change sequence chs1 depends on another ontology
change sequence chs2, chs1 and chs2 can be all executed if and only if chs2 is executed
ahead of chs1.

Lemma 3: If an ontology change sequence chs1 indirectly conflicts with another
ontology change sequence chsn , not all of chs1 and chsn are executed no matter what
the execution order may be.

Lemma 4: If an ontology change sequence chs1 is compatible with another
ontology change sequence chs2, chs1 and chs2 may always be executed no matter what
the execution order may be.

According lemma 1,2,3 and 4, if any two of a group of ontology change sequences
are not directlyConflict or indirectlyConflict all these ontology change sequences may
be executed. In order to find all maximum subset of all ontology change sequences

Algorithm 1:ACAPRP(chs)
Input: an ontology change sequence <ch1ch2……chn>
Output:chs.RPool,chs.APool

1. chs.RPool←Ø; chs.APool←Ø; i←1;
2. WHILE(i<=n)
3. chs.APool←chs.APool∪chi.args;
4. IF chi.type=“Remove”
5. chs.RPool←chs.RPool∪chi.object;
6. IF chi.type=“Add” and chi.object⊆chs.RPool
7. chs.RPool←chs.RPool-chi.object
8. i++;
9. Return chs.RPool and chs.APool

that may be executed from a given group of ontology change sequences, we propose
the Algorithm of Searching Conflict Set(ASCS) to be used to find all ontology change
sequence pairs which indirectly conflict or directly conflict with each other and the
Algorithm of Searching Maximum and Sequential Ontology Change Sequence Set
(ASMSOCSS).

Definition 8: Given a group of ontology change sequences CHS={chs1, chs2,……,
chsn} , MSOCSSCHS is defined as Maximum and Sequential Ontology Change
Sequence Set if and only if ¬∃T⊆CHS makes all T⊃MSOCSSMCHS and ∀t1,t2∈T,
¬directlyConflict(t1,t2)∧¬indirectlyConflict(t1,t2) to be true.

In ASMSOCSS, step 2 means to traverse all elements of CONF in unknown order.
It is puzzling whether the order of traversing elements can change the final
MSOCSSSet or not. The problem can be explained by lemma 5.

Lemma 5: The final MSOCSSSet is identical no matter what the order of
traversing elements may be.

Proof
∀(e1,e2),(e3,e4)∈CONF, e1∈CHS∧e2∈CHS∧e3∈CHS∧e4∈CHS is given.
Suppose that e1≠e3∧e1≠e4∧e2≠e3∧e2≠e4∧e1≠e2∧e3≠e4 is true.

If (e1,e2) is traversed ahead of (e3,e4) , MSOCSSSet0={CHS/{e1},CHS/{e2}} is
got. After (e3,e4) is traversed, MSOCSSSet1={CHS/{e1,e3} , CHS/{e1,e4} ,
CHS/{e2,e3}, CHS/{e2,e4}} is got. In turn, if (e3,e4) is traversed ahead of (e1,e2) ,
MSOCSSSet0={CHS/{e3},CHS/{e4}} is got. After (e1,e2) is
traversed ,MSOCSSSet2={CHS/{e3,e1} , CHS/{e3,e2} , CHS/{e4,e1}, CHS/{e4,e2}} is
got. Obviously MSOCSSSet1=MSOCSSSet2.MSOCSSSet1=MSOCSSSet2 is easy
proved when e1=e3∧e1≠e4∧e2≠e3∧e2≠e4∧e1≠e2∧e3≠e4 is true.

∀(e1,e2),(e3,e4)∈CONF, the same conclusion may be drew easily whichever of
e1CHS∧e2∈CHS∧e3∈CHS∧e4∈CHS or e1CHS∧e2CHS∧e3∈CHS∧e4

∈CHS or e1CHS∧e2∈CHS∧e3CHS∧e4∈CHS or e1CHS∧e2CHS∧
e3CHS∧e4CHS is given.

So we may know that the order of traversing any two elements of CONF is
exchangeable. Further, Lemma 5 may be deduced easily according to related
mathematical characteristics.

□

5 Algorithm of Generating New Ontology Versions

According to ASMSOCSS, ∀E∈MSOCSSSet, ∀(e1,e2)∈E, e1 must not directly
conflict or indirectly conflict with e2. So ∀E∈MSOCSSSet, all elements in E are
executed once. When a MSOCSS CHS is applied to an ontology O, a new ontology
version can be got. The algorithm of generating a new ontology version is AGNOV.

Algorithm 3：ASMSOCSS(CHS,CONF)
Input：a group of ontology change sequences {chs1, chs2,……, chsn} and

ASCS({chs1, chs2,……, chsn})
Output：the set of all possible maximum and serial ontology change sequence

set MSOCSSSet
1. MSOCSSSet←{CHS}; i1←1; i2←1;
2. FOR EACH (chs1,chs2)∈CONF
3. FOR EACH e∈MSOCSSSet
4. IF chs1∈e and chs2∈e
5. MSOCSSSet←MSOCSSSet-{e};
6. e1←e-{chs1}; e2←e-{chs2};
7. IF ∃e’∈CAND , e1 e’
8. MSOCSSSet←CAND∪{e1 };
9. IF ∃e’∈CAND , e2 e’
10. MSOCSSSet←CAND∪{ e2};

11. RETURN MSOCSSSet

Algorithm 2：ASCS(CHS)
Input：a group of ontology change sequences {chs1, chs2,……, chsn}
Output：a conflict set CONF

1. CONF←Ø; i1←1; i2←1;
2. WHILE(i1<=n)
3. WHILE(i2>=i1 and i2<=n)
4. IF(directConflict(chsi1,chsi2) or indirectConflict(chsi1,chsi2)) and

i1 i2
5. CONF←CONF∪{{chsi1,chsi2}};
6. i2++;
7. i1++; i2←i1;
8. RETURN CONF

Algorithm 4：AGNOV(O)
Input：an ontology O
Output：the set of all new ontology version OVs

1. OVs←Ø;
2. FOR EACH E∈MSOCSSSet
3. O’←O;
4. WHILE(E≠Ø)

5. IF ∃ chsi∈E,∀ chsj∈E/{chsi },  dependence(chsi, chsj)
6. O’←chsi (O); E←E/{chsi };
7. OVs←OVs {∪ O’};
8 RETURN OV

6 Related Work

Ontology versioning[5] typically involves the storage of several ontology versions
and identification issues, the relationship between different versions as well as
compatibility information.[9] uses the term versioning to describe their approach of
ontology change. They define ontology versioning as the ability to manage ontology
changes and their effects by creating and maintaining different variants of the
ontology. Adequate methods and tools must be used to distinguish and identify the
versions. [4] presents a new ontology evolution approach. The approach keeps track
of the different virtual versions of ontology concepts throughout their lifetime by
combining the manual request for changes by the ontology engineer with an
automatic change detection mechanism. [7] proposes a logic framework used to
reason with multversion ontologies. In the framework such problems can be solved as
querying log of semantic change, selecting a appropriate ontology version, etc.

7 Conclusion and Future Work

We propose a formal method used to analyze and dispose a group of ontology change
sequences under open environment. But our discussion is specific to the same
ontology subject to a group of ontology change sequences. In future, we will use
graph theory to rephrase such a problem.

References

[1] Michel Klein, Academisch Proefschrift, Michel Christiaan, Alexander Klein, and Prof. Dr.
J. M. Akkermans. Change management for distributed ontologies. Technical report, 2004.
[2] Changing Ontologies Peter, Peter Haase, Frank Van Harmelen, Zhisheng Huang. A
framework for handling inconsistency in pages 353--367. Springer, 2005.
[3] Aditya Kalyanpur, Bijan Parsia, Evren Sirin. Repairing unsatisfiable concepts in owl
ontologies. In 3rd European Semantic Web Conference (ESWC2006), June 2006.
[4] Peter Plessers and Olga De Troyer. Ontology change detection using a version log. In
Proceeding of the 4th International Semantic Web Conference, pages 578--592. Springer, 2005.
[5] Natalya F. Noy, Abhita Chugh, William Liu, and Mark A. Musen. Musen m.: A
framework for ontology evolution in collaborative environments. In 5th International Semantic
Web Conference, pages 544--558. Springer-LNCS, 2006.
[6] Peter Haase, Peter Haase, and Ljiljana Stojanovic. Consistent evolution of owl ontologies.
pages 182--197. Springer, 2005.
[7] Zhisheng Huang and Heiner Stuckenschmidt. Reasoning with multi-version ontologies: A
temporal logic approach. In Proceeding of the 4th International Semantic Web Conference
ISWC, pages 398--412, 2005.
[8] Giorgos Flouris, Giorgos Flouris, and Dimitris Plexousakis. On belief change and
ontology evolution. Technical report, University of Crete, 2006.
[9] Natalya F. Noy and Michel Klein. Ontology evolution: Not the same as schema
evolution. Knowl. Inf. Syst., 6(4):428--440, 2004.

