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Statistical Fault Localization with Reduced Program 
Runs 
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Abstract. A typical approach to software fault location is to pinpoint buggy 
statements by comparing the failing program runs with some successful runs. 
Most of the research works in this line require a large amount of failing runs 
and successful runs. Those required execution data inevitably contain a large 
number of redundant or noisy execution paths, and thus leads to a lower 
efficiency and accuracy of pinpointing. In this paper, we present an improved 
fault localization method by statistical analysis of difference between reduced 
program runs. To do so, we first use a clustering method to eliminate the 
redundancy in execution paths, next calculate the statistics of difference 
between the reduced failing runs and successful runs, and then rank the buggy 
statements in a generated bug report. The experimental results show that our 
algorithm works many times faster than Wang's, and performs better than 
competitors in terms of accuracy. 

Keywords: Software Fault Localization, Path Redundancy, Statistical Method, 
Clustering 

1   Introduction 

A typical thinking in fault localization is to compare successful runs and failing runs 
[2, 3, 4, 5, 6, 7]. There are different ways of comparison, and can be divided into 
distance measures-based methods [2, 3, 4] and characteristic statistics-based methods 
[5, 6, 7]. But both methods require a lot of failing runs and successful runs. Our 
analysis found that many characteristics of the runs are same. 

Figure 1.1 shows a program example with a bug in the assignment statement on 
line 11, which should be "max = x;” In order to locate this buggy statement by using 
Wang [3] method, we run manual design of 12 test cases, and obtain 8 successful runs 
and 4 failing runs, in which there exists exactly same paths, such as max (4, 2, 3) and 
max (8, 5, 7). To be fair, for sorting methods students write, we execute randomly 
generated test cases, and statistics showed that the proportion of redundant paths is so 
much as 20% ~50%. 

Redundancy leads to many problems: (1) Redundancy contributes nothing to the 
fault location calculations. If two failing runs are with the same path, it means that 
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1  package function; 
2  public class ThreeNum{ 
3   /** 
4  * Calculate the maximum of three numbers 
5  */ 
6  public int max(int x, int y, int z)  
7  { 
8       int max; 
9       if (x > y)  
10     { 
11           max = y; //should be max=x; 
12      }  
13      else  
14      { 
15            max = y; 
16       } 
17       if (z > max)  
18       { 
19            max = z; 
20        } 
21        return max; 
22    } 
23  } 

Fig.1.A small program 

they contributions same to fault localization, so there is no need to separately 
calculate the difference between each of them and successful runs, the same applies 
two successful runs with two paths the same. (2) Computational efficiency of the 
system is reduced. Because the system may spend a lot of time doing pointless things. 
(3) The calculation of too much redundant data may lead to biased results. Thus 
removing the path redundancy is necessary. 

Measures-based method returns executing differences as bug report, however the 
statements in differences are not ordered by their importance in literature [3]. 
Techniques based on characteristics statistics rank the statements or predicates in 
order of suspicious, but it is so many 
statements and predicates, even including 
those are not predictive of anything 
which is usually a majority, statistical 
work on them are time-consuming and 
effortless. 

To overcome these shortcomings, in 
this paper, we first propose a clustering 
method to eliminate the path redundancy, 
and then through statistical analysis of 
differences between classes of runs to get 
and rank suspicious statements. 
Experimental comparison with Wang’s 
algorithm shows that our algorithm 
makes a greatly improved efficiency and 
accuracy of locating. In addition, our 
algorithm can not only diagnose the 
reasons for each failing run, it can also 
get bug report of the whole program 
through statistical analysis of bug reports 
of all the failing runs. 

Section 2 summarizes the related work; Section 3 introduces our fault localization 
method based on statistical differences between reduced runs; Section 4 shows 
comparative analysis of experimental results. Section 5 and gives the next step. 

2   Related Work 

Program runs statistical method is in essence a statistical intelligent method, how to 
make statistics and compare successful runs and failing runs attracted interest of many 
researchers [2, 3, 4, 5, 6, 7]. According to different type of comparison techniques, 
these methods can be divided into distance measures-based method and feature-based 
statistical approach. 

Distance measures-based method is to find a successful run which is the most 
similar to the failing run through a certain distance measure technique, and then 
calculate the difference between it and failing run for fault location. A typical work of 
these methods is that Renieris [2] et al proposed the "Nearest Neighbor" and Wang [3] 
et al proposed calculating difference of two runs through alignment based-on control 
flow information. 



In contrast, feature-based statistical approach locates fault-relevant statements (or 
faulty statements directly) by comparing the statistical information of program 
elements in these two kinds of run. Such program elements can be statements [5] or 
predicates [6, 9, 7]. Tarantula [5] statistics the frequency of every statement occurs in 
failing runs and successful runs, and by analyzing them to get and rank the suspicious 
statements. Predicate-based statistical techniques, such as CBI [6, 9] and SOBER [7], 
locate the program predicates related to faults. CBI [6, 9] measures the increase from 
the probability of a predicate to be evaluated to be true in all failed runs to that in all 
the runs, This increase is used as the ranking score, which indicates how much the 
predicate is related to a fault. SOBER [7] defines evaluation bias to estimate the 
chance that a predicate is evaluated to be true in each run. In brief, CBI and SOBER 
use similar kinds of statistical mean comparison. 

3   Fault Localization With Reduced Run 

3.1   Clustering Execution Paths 

Next we define execution paths and their clustering. 
Definition 1. (Event)  An event denotes an execution of a statement of a given 

program. As [6] we use the line number i of a statement to label the event ei 

associated with the statement, and the statement is thus denoted as stmt(ei). A test case 
that executes a given program provides the values of input variables and the expected 
values of output variables. 

Definition 2. (Run)  A run  of a program is a sequence of events <e0, e1, e2,…, 
en-1> that are sequentially associated with statements executed by a given test case. 
Moreover, we denote the ith event of a run π as ei

π and number of events of  as ||. 

Table 1. Test cases and execution runs of program in fig.1 

output Succ0 Succ1 Succ2 Succ3 Fail0 Fail1 Succ4 Succ5 Succ6 Succ7 Fail2 Fail3 
TCinputs 2,3,4 2,4,3 3,2,4 3,4,2 4,2,3 4,3,2 5,7,8 5,8,7 7,5,8 7,8,5 8,5,7 8,7,5 
 
 
 
Program 

runs 

61 61 61 61 61 61 61 61 61 61 61 61 
82 82 82 82 82 82 82 82 82 82 82 82 
93 93 93 93 93 93 93 93 93 93 93 93 

114 114 114 114 114 114 
154 154 154 154 154 154 
175 175 175 175 175 175 175 175 175 175 175 175 
196 196 196 196 196 196 
217 216 217 216 217 216 217 216 217 216 217 216 

Consider the program in Fig.1, we can get successful and failing runs showed in 
Table 1 by executing a set of test cases, where the TC inputs row sequentially put 
down the input values of variables x, y, and z within test cases (e.g., "2,3,4" means a 
test case having inputs {x=2, y=3, z=4}), while the output row describes that fact 
whether the TC inputs leads to a successful run or a failing run (The indexed Succ for 
successful runs, and Fail for failing runs), and program runs are put sequentially in 
columns below the corresponding test cases. For example, the TC inputs “2,3,4” 
yields a run <61, 82, 93, 154, 175, 196, 217>, where the subscripts denotes the event 
indices (e.g., 82 means that the statement on line 8 is executed once and is the second 



Algorithm I: delta(1, 2) 

input: two program runs π1 and π2 

output: an alignment vector (π1, π2) 

1.  t=1; j=0; //temporarily store the index  

//of events of 2 

2.  ={}; //the return result 

3.  outer: 

4.  for (i=1; i<=|π1|; i++){ 

5.     if alignExist(i, π1, π2) { 

6.        j=alignIndex(i, π1, π2);  

7.        k=j  temp2  1;  

8.        for (n=0; n<k; n++) .add(0); 

9.        .add(1);  //add a "1" 

10.     } else {//otherwise add a "0"  

11.       .add(0); } 

12.  t=j; 

13. continue outer; 

13. } 

14. return ;

event of this run). Note that some cells in program runs are empty because we align 
statements for highlighting the difference in program runs. 

Definition 3. (Dependence): Given a program P, let a variable v1 be defined in 
statement S1 and is used in statement S2 defining value of a variable v2. v2 is 
dependent on v1 if changes to v1 in the execution will is likely to influence the 
definition and value of v2. Equivalently, we also say statement S2 is dependent on S1. 
Moreover, v2 is control dependent on v1, if v1 occurs in a condition the truth of which 
controls the execution from S1 to S2; otherwise, we say that variable v2 is data 
dependent on v1. Equivalently, we raise control/data dependence to the level of 
statements [8]. 

Definition 4. (Dynamic Control Dependence)  Given a program run π, an event 
ei
π is dynamically control dependent on another event ej

π if ej
π is the nearest event 

coming before ei
π in  such that stmt(ei

π) is control dependent on stmt(ej
π). Moreover, 

we use dep(ei
π, ) to denote the events on which ei

π is dynamically control dependent 
in a run . 

Definition 5. (Alignment [3])  For any pair of events e and e′ (e in run  and e′ in 
run ′), we say e and e′ are aligned, denoted as align(e, e′)=true, iff (1) 
stmt(e)=stmt(e′), and (2) either e and e′ are the first events appearing in  and ′ 
respectively, or align(dep(e, ), dep(e′, ′))=true. 

Definition 6. (Alignment Vector) Given 
two program runs π′ and π, a alignment 
vector, denoted as (π, π′), is an array of 
marks for all events in π′ and π, obtained as 
follows: for each event e of π, mark is 1 if 
there exists e′ of π′ which can aligned to e, 
otherwise mark is 0.  

By definition 6, the following corollary is 
obvious: 

Corollary 1. Given two program runs π′ 
and π,  (π, π′)= (π′, π) holds。 

We use Algorithm I to compute 
alignment vectors, where predicate 
alignExist(i, π1, π2) is used to check whether 
there exists an event of π2 that can be 
aligned to some ei of π1, and function 
alignIndex(i, π1, π2) is used to get the index 
of such event of π2. Moreover, function 
.add(i) adds a mark i in the alignment 
vector . 

Definition 7. (Alignment Matrix) An 
alignment matrix of a program run  is a matrix composed of all alignment vectors 
(π, π′) such that π′ is any run distinguish from π, and 0s are appended for padding if 
the length of alignment vectors are not constant. 

By Table I and definition 6, we have (1) (fail0,fail0)= <1,1,1,1,1,1,1>, (2) 
(fail0,fail1)= <1,1,1,1,1,0,1>, (3) (fail0, fail2)= <1,1,1,1,1,1,1>, and (4) 



Algorithm II: diff(1, 2) 

input: two program runs π1 and π2 

output: a set of event indices 

representing  

difference between π1 and π2 

1.  ={}; 

2.  =delta(1, 2); 

3.  n=0; //to store the total number  

//of 0s coming before 1 

4.  for (i=0; i <||  1; i++) { 

5.     if (.get(i)=0) n++; 

6.     if (.get(i)=1.get(i+1)=0) { 

//if the ith event can be aligned, while 

//the next event can’t be aligned 

7.        .add(i1n||); } 

8.  } 

(fail0,fail3)= <1,1,1,1,1,0,1>. With such an alignment matrix, we cluster the matrix 
by column and thus four failing runs in Table I can be divided into two classes: 

FI: fail0(4,2,3), fail2(8,5,7); FII: fail1(4,3,2), fail3(8,7,5) 
where faili(4,2,3) is abbreviated for the ith failing run with a TC inputs (4,2,3)). In 

the same manner, eight successful runs are 
divided into three classes: 

SI:succ0(2,3,4), succ4(5,7,8); SII:succ1(2,4,3), 
succ3(3,4,2), succ5(5,8,7) and succ7(7,8,5);   

SIII: succ2(3,2,4), succ6(7,5,8). 

3.2   Difference Metric 

Definition 8. (Difference Metric [3]) Given 
two program runs  and ′. The difference 
between  and ′, denoted as diff(,′), is 
defined as diff(,′)=<ei1

π, ei2
π,…, eik

π>, such 
that (1) each event e in diff(,′) is a branch 
event occurrence drawn from run , (2) the 
events in diff(,′) appear in the same order as in 
, that is, for all 1≤j＜k，ij＜ij+1 (event eij

π 
appears before event eij+1

π in ), (3) for each e in 
diff(,′), there exists another branch occurrence 
e′ in run ′ such that align(e,e′)=true (i.e. e and 
e′ can be aligned). Furthermore, the outcome of e in  is different from the outcome 
of e′ in ′. (4) All events in  satisfying (1) and (2) are included in diff(,′). (5) As a 
special case, if execution runs  and ′ have the same control flow, then we define 
diff(,′)=<e0

π>. 
By Definition 8, the statements in the difference are all branching statements from 

which two runs separately go to different branches. So if there are two adjacent values 
in the vector such that the former is a "1" and the latter a "0", then the event that "1" 
represents is added to the difference. In Algorithm II, Note that .get(i) returns the ith 
bit of the alignment vector , while .add(i) adds a mark i in the alignment matrix . 
Regarding our running example, differences are summarized in Table2 and Table 3: 

Table 2. Difference between each class of 
failing runs and successful runs 

 SI SII SIII 
FI 93 93,175 null 
FII 93,175 93 175 

Table 3. Difference between each class of 
failing runs 

 F I F II 
FI null 175 
FII 175 null 

3.3   Fault Localization 

For each predicate p in a program P, LIBLIT [6] estimates two conditional 
probabilities:（1）Pr1=Pr(P fails| p is ever observed);（2）Pr2=Pr(P fails| p is ever 
observed as true). LIBIT then thinks the difference Pr2Pr1 as an indicator of how 
relevant p is to the fault. So we conclude that difference between failing runs and 
successful runs indicates that faults are more likely to appear in these positions, while 



difference between failing runs and failing runs indicates that the probability that fault 
appears in these position is very small, that is, the predicate being true can not increase 
the possibility of failure. Let P(e,π,S) be the probability that event e of run π appears in 
the difference between π and successful runs, and P(e,π,F) between π and failing runs. 
Then for any event e in a failing run π, we define the following Score(e,π) to indicate 
the suspiciousness of statements stmt(e). the formulas are as follows: 

( , , ) times that e appear in difference between and successful runs

the total number of events in difference between and successful runs
P e S 

  　 (2) 

( , , ) times that e appear in difference between and failing runs

the total number of events in difference between and failing runs
P e F 

   (3) 

 
( , , ) ( , , ), ( , , ) 0

( , )
,

P e S P e F P e F
Score e

otherwise

  











    (4) 

Given Table 1, Table 2 and (2), (3), and (4), we have: 
P(93,FI,S)=2/3, P(93,FI,F)=0, and Score(93,FI)=; 
P(175,FI,S)=1/3, P(175,FI,F)=1, and Score(175,FI)=1/3; 
P(93,FII,S)=1/2, P(93,FII,F)=0, and Score(93,FII)=; 
P(175,FII,S)=1/2, P(175,FII,F)=1, and Score(175,FII)=1/2. 
Then we get the rank score of suspiciousness that each event in the differences is 

the real cause of each failure. We summarize them in Table 4, where (2/3) and the 
like denote the case of P(e,,F)=0, P(e,,S)=2/3, in which we compare suspiciousness 
by P(e,,S). If the rank score of two events are equal, we consider event that appears 
later has a larger suspiciousness score and will be ranked in the top [3].Assume a 
certain statement is responsible for a failure; it may be executed several times and 
appears several times in the differences. So we compute ranking scores of each 
statement for each failure as (5). So by (5), we get Table 5 of suspicious statements 
for each class of failures in our running example. 

( , ) ( , ) ( ( ) )Score stmt Score e e and stmt e stmt         (5)
Table 4. Score of suspicious events for 
failures 

Score of suspicious events of FI 
 93 175 
FI (2/3) 1/3 
Score of suspicious events of FII 
FI 93 175 
FII (1/2) 1/2 

Table.5. Score of suspicious statements for 
failures 

 
Statement

s 
9 17 

FI (2/3) 1/3 
FII (1/2) 1/2 

We can now locate faults through the analysis of Table 5. Each row of the table 
represents the ranking scores of each statement for a certain failing run, if there are 
some statements the value of which is significantly larger than others, the statements 
are the real cause of such failures. Similarly each column represents the ranking 
scores of a certain statement for each failing run,, the relevant statements with 
significantly larger values are the cause of these failures. As for our example, 
statement 9 has a large effect on both FI and FⅡ, indicating that statement 9 leads to 
the failure with respect to these two classes of failing runs. So we use the following 
equation to compute the suspiciousness of any statement. 
 ( ) ( , )( )

F
p

Score stmt Score stmt F is the set of all failing runs





   (6) 



4   Experiment Results 

We chose four middle-sized programs with branches, by manually injecting different 
errors (some programs injected with an error and some with two errors). In this way, 
we get 43 buggy programs and 79 failing runs. Table 6 shows the description of 
buggy programs generated from the original four programs. 

Table 6. Description of experiment data 

Progr
ams 

nested  
level of 
branches 

Buggy Versions 
having one 
bug 

Kinds of 
failing runs 

having 
two bugs 

Kinds of 
failing runs 

P1 0 5a 14 3 11 
P2 1 4 4 4 7 
P3 2 8 9 8 16 
P4 3 5 5 7 13 

To evaluate our algorithm and compared it with Wang’s, we consider three cases 
for each failing run: (1) case "1": for ours the largest suspiciousness statement or for 
Wang’s the whole bug report exactly indicates the actual fault position, (2) case "-1": 
for two methods the actual faulty location is missed in the bug report, and (3) case "0": 
for ours the most suspicious statement is not the actual fault position, but the actual 
fault location is under suspicion. Statistical results obtained from experiments are 
shown in Fig.2, where the vertical axis is the number of failing runs. 
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Figure.2. Comparison of the bug report of two methods 

Wang's algorithm returns the smallest difference as the bug report, ignoring that 
the position of the fault may not be in this minimal difference but in other differences. 
In contrast, we use statistical methods taking into account all the circumstances, and 
also rank the suspicious statements according to suspiciousness. The faulty statements 
are bound to occur in our report unless they do not appear in any of the differences. 

For programs with multiple bugs, we use the evaluation criteria in [3] to calculate 
the pgm_score(P):instead of using each failing run and successful run, we use each 
class of failing runs and each class of successful runs. The pgm_score(P) measures 
the percentage of code that can be ignored for debugging, the algorithm calculates the 
score of the most suspicious statement and statement with its suspicious in the second 
place, and finally calculate pgm_score(P), as shown in Table 7. 

According to table 7, when there are two errors in the program, the most suspicious 
statement in our bug report has higher score than that by Wang’s algorithm. The 
second suspicious statement also has a higher score, indicating that it is also likely to 
be the actual fault position, that is, there are more likely two errors in the program 

(a) single (b) multiple 



It can be seen from Fig.3, the time Wang spending grows exponentially as the 
redundant data increases since it spends much on calculating differences between 
each failing run and each successful run. While our algorithm eliminates redundancy 
by clustering all the runs, and the next difference computation is less time-consuming, 
so the time grows slightly. Moreover, we not only consider the suspiciousness for 
each failing run, but also that for the entire program through statistical analysis of all 
failing runs and rank statements in bug report based on their overall suspiciousness. 

Table 7. Comparison of two methods when there 
are two errors in the program 

Score 
Wang  

algorithm 

The first 
place of our 
algorithm 

The second 
place of our 
algorithm 

0.8-1.0 13.3 33.3 46.7 
0.7-0.79 60.0 26.7 6.7 
0.6-0.69 6.7 6.7 20.0 
0.5-0.59 13.3 26.7 6.7 
0-0.49 6.7 6.7 20.0 

Figure.3 Comparison of run time 
of two methods 
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5   Conclusion 

In this paper, we present an improved fault localization method using a clustering 
method to eliminate the path redundancy first and then by statistical analysis of 
differences between classes of runs to get and rank suspicious statements. 
Experimental results show the great improvement in terms of efficiency and accuracy 
in fault localization. The next step we will consider to rank all suspicious statements 
and do further experimental study of our techniques running against large software. 
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