
HAL Id: hal-01060622
https://inria.hal.science/hal-01060622

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Virtual Expansion of Rainbow Tables
Vrizlynn Thing

To cite this version:
Vrizlynn Thing. Virtual Expansion of Rainbow Tables. 6th IFIP WG 11.9 International Conference
on Digital Forensics (DF), Jan 2010, Hong Kong, China. pp.243-256, �10.1007/978-3-642-15506-2_17�.
�hal-01060622�

https://inria.hal.science/hal-01060622
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Chapter 17

VIRTUAL EXPANSION
OF RAINBOW TABLES

Vrizlynn Thing

Abstract Password recovery tools are often used in digital forensic investigations
to obtain the passwords that are used by suspects to encrypt potential
evidentiary data. This paper presents a new method for deterministi-
cally generating and efficiently storing password recovery tables. The
method, which involves the virtual expansion of rainbow tables, achieves
improvements of 16.92% to 28.15% in the password recovery success rate
compared with the original rainbow table method. Experimental results
indicate that the improvements are achieved with the same computa-
tional complexity and storage requirements as the original rainbow table
method.

Keywords: Password recovery, cryptanalysis, rainbow table, time-memory trade-off

1. Introduction

Password protection of potential digital evidence by suspects makes
investigative work more complex and time consuming. Traditional pass-
word recovery techniques include password guessing, dictionary attacks
and brute force attacks.

A password guessing technique attempts easily-formed and common
passwords such as “qwerty” and “password.” These passwords could
be based on a user’s personal information or a fuzzy index of words on
the user’s storage media. A statistical analysis of 28,000 passwords re-
vealed that 16% of the users relied on their first names as passwords and
14% relied on “easy-to-remember” keyboard combinations [2]. There-
fore, the password guessing method can be effective in cases where users
are willing to compromise security for convenience.

A password dictionary attack attempts to match the hash values of
dictionary words with the stored password hash value. Well-known tools



244 ADVANCES IN DIGITAL FORENSICS VI

that employ this technique include Cain and Abel [7], John the Ripper
[12] and LCP [6].

In a brute force cryptanalytic attack, the hash value of each unique
combination of password characters is compared with the password hash
value until a match is found. Although such an attack is extremely time
consuming, the password is recovered eventually. Cain and Abel, John
the Ripper and LCP also support brute force attacks.

Traditional password recovery techniques are losing their effectiveness
as suspects use stronger passwords to protect their data. Hellman [5]
introduced a method that trades off the computational time and storage
space needed to make a hash-to-plaintext recovery. This method can
retrieve Windows login passwords as well as passwords used in other
applications (e.g., Adobe Acrobat) that employ the LM and NTLM hash
algorithms [15]. Also, the method supports encryption key recovery
for Microsoft Word and Excel documents. Passwords encrypted with
hashing algorithms such as MD5 [13], SHA-2 [9] and Ripemd-160 [4] can
also be recovered using this method. In general, Hellman’s method is
applicable to searching for solutions to knapsack and discrete logarithm
problems.

Oechslin [11] proposed a cryptanalytic time-memory trade-off method
that is based on Hellman’s password recovery method. This “rainbow
table” method generates password recovery tables with higher efficiency
because it employs multiple reduction functions to reduce the probability
of collisions in a single table.

Thing and Ying [14] enhanced the rainbow table method via initial
chain generation. In this technique, a plaintext value is chosen and
its hash value is computed by applying the password hash algorithm.
Based on this hash value, other hashes are computed; these form the
branches of the initial plaintext value. Multiple blocks are created from
the different initial plaintext values. The final values of the chains in the
blocks are stored with the single initial plaintext value in each block.

The rainbow table method is widely used for password recovery. Prod-
ucts that use pre-computed rainbow tables include RainbowCrack [16]
and Ophcrack [10]. RainbowCrack is an implementation of Oechslin’s
method that supports hash algorithms such as LM, NTLM, MD5 and
SHA-1 [8]. Ophcrack also implements the rainbow table method, but
it only supports the LM and NTLM hash algorithms. Rainbow tables
are also used in several popular commercial tools such as AccessData’s
Password Recovery Toolkit [1] to perform efficient and effective password
recovery.

This paper proposes the virtual expansion of rainbow tables (VERT)
method, a new time-memory trade-off technique that relies on a pre-



Thing 245

computed table structure. Comparisons with the original rainbow table
method [11] and the enhanced rainbow table method [14] demonstrate
higher password recovery success rates of 16.92% to 28.15% without
corresponding increases in computational complexity and storage space.

2. Related Work

In 1980, Hellman [5] conceived of a general time-memory trade-off
hash-to-plaintext recovery method. We begin by describing Hellman’s
algorithm in the context of password recovery.

Let X be the plaintext password and Y be its corresponding stored
hash value. Given Y , it is necessary to find X that satisfies the equation
h(X) = Y where h is the known hash function. However, finding X =
h−1(Y ) is not feasible because the hash values are computed using one-
way functions for which the reversal function h−1 is unknown.

To solve this problem, Hellman suggested applying alternate hashing
and reduction operations to plaintext values in order to generate a pre-
computed table. For example, given a 7-character password (using the
English alphabet), the MD-5 hash algorithm is used to compute the
corresponding 128-bit hash value. Using a reduction function such as
H mod 267, where H is the hash value converted to decimal digits, the
resulting values are distributed in a best-effort uniform manner.

For an initial plaintext password of abcdefg, the binary hash output
could be:

00000000,00000000,00000000,00000000,00000000,00000000,

00000000,00000000,10000000,00000000,00000000,00000000,
00000000,00000000,00000000,00000001.

Therefore, H = 9223372036854775809. The reduction function converts
this value to 3665127553, which corresponds to the plaintext represen-
tation of lwmkgij. This is computed as:

11(266) + 22(265) + 12(264) + 10(253) + 6(262) + 8(261) + 9(260).

In table generation, the hashing and reduction operations are repeat-
edly performed on different initial plaintext values to produce different
rows or chains. The pre-defined multiple rounds of hashing and reduc-
tion operations in each chain increase the length of the chains and the
table contents; this contributes to higher computational overhead during
password recovery. The reason is that the initial and final plaintext val-
ues (i.e., “heads” and “tails”) of the chains are the only elements stored
in the table. The recovery of passwords “residing” in the intermediate
columns requires computations to regenerate the plaintext-hash pairs.



246 ADVANCES IN DIGITAL FORENSICS VI

The password recovery success rate depends on the size of the pre-
computed table. A larger pre-computed table contains more plaintext-
hash pairs, which increases the password recovery success rate. However,
the generation of the intermediate chain columns may result in collisions
of elements in the table. Collisions cause the chains to merge and re-
duce the number of (distinct) plaintext-hash pairs. This decreases the
password recovery success rate.

To increase the success rate, Hellman proposed using multiple tables
where each table has a different reduction function. If P (t) is the success
rate using t tables, then P (t) = 1 − (1 − P (1))t, which is an increasing
function of t. Hence, introducing more tables increases the password
recovery success rate but increases the computational complexity and
storage requirements.

A plaintext password is recovered from its hash value by performing
a reduction operation on the hash value. Next, a search is conducted
for a match of the computed plaintext value with a final value in the
table. If a match is not found, the hashing and reduction operations are
performed on the computed plaintext value to obtain a new plaintext
value for another round of search. The maximum number of rounds of
hashing, reduction and searching operations depend on the pre-defined
chain length.

Rivest [3] suggested using distinguished points as end points when
generating the chains. Distinguished points are values that satisfy a
given criterion (e.g., the first q bits are 0). In this method, chains are
not generated with a fixed length; instead, they terminate upon reaching
a pre-defined distinguished point.

This method decreases the number of memory lookups compared with
Hellman’s method and is capable of loop detection. If a distinguished
point is not reached after a large number of operations, it is assumed
that the chain contains a loop and is discarded. One limitation is that
the chains will merge if there are collisions within the same table. The
variable lengths of the chains also increase the number of false alarms.
Additional computations are needed to rectify these errors.

Oechslin [11] proposed a new table structure that reduces the proba-
bility of chains merging. The method uses a different reduction function
to generate the elements in each chain column. Therefore, chains merge
only when a collision occurs in the same column. For m chains of length
n, the total number of possible chain merges (i.e., when two similar
elements appear in the same column) is:

nm(m− 1)

2
.



Thing 247

The total number of possible pairs not in the same chain column is:

n2m(m− 1)

2
.

Therefore, given a collision in the table, the probability that there is a
chain merge is:

nm(m−1)
2

n2m(m−1)
2

=
1

n
.

Oechslin showed that the measured coverage in a single “rainbow”
is 78.8% compared with 75.8% in a classical rainbow table constructed
using distinguished points. In addition, the search effort is reduced,
which contributes to an improvement in performance.

Thing and Ying [14] proposed an enhancement to the rainbow table
method. The enhancement is achieved through initial chain generation
by systematically manipulating the initial hash values based on an ad-
justable parameter k. A plaintext value is chosen and its hash value is
computed using the password hash algorithm. The resulting hash value
H is used to compute:

(H + 1) mod 2j , (H + 2) mod 2j , . . . , (H + k) mod 2j ,

where j is the number of bits in the hash output. These hash values
form the branches of the initial plaintext value. Alternate hashing and
reduction operations are then applied to these branches. The resulting
extended chains form a block. The final values of the chains in each block
are stored with the single initial plaintext value. The same operations
are performed on all the other initial plaintext values. These sets of
initial and final values form the new pre-computed table.

Instead of storing all the initial and final plaintext values as pairs as
in the rainbow table, an initial plaintext value is stored with multiple
output plaintext values. This results in significant storage space savings
compared with the rainbow table method. In particular, for the same
storage space as the rainbow table method, the enhanced method yields
13.28% to 19.14% improvement in the total number of distinct plaintext-
hash pairs generated. However, some passwords “residing” in the first
column will not be recovered because they are not stored in the table.
This limits the search to n− 1 chain columns instead of n columns.

3. Rainbow Table Method

We use the following notation in our discussion of the rainbow table
method and its extensions: xi denotes the initial value of a chain; yi



248 ADVANCES IN DIGITAL FORENSICS VI

Figure 1. Rainbow table.

denotes the hash value of a password; zi denotes the reduced value of
a hash; ci denotes the final value of a chain; h denotes a hash func-
tion; ri denotes a reduction function; n denotes the number of reduction
functions or chain length; and m denotes the number of chains.

In order to generate a rainbow table, it is necessary to specify re-
duction functions r1, r2, . . . , rn that convert hash values yi to plaintext
values zi. A large set of plaintext values x1, x2, . . . , xm are then chosen
as the initial values of the table. As shown in Figure 1, these plaintext
values are alternately hashed using the password hashing algorithm and
reduced using the reduction functions.

Figure 2. Stored values in a rainbow table.

A rainbow table is created by only storing the final values ci along
with their corresponding initial values xi (Figure 2). A password is
recovered by alternately applying reduction and hashing operations to
the corresponding hash values until a value is obtained that matches one
of the final values in the rainbow table.

Consider the situation where it is necessary to find the password corre-
sponding to the password hash v. One round of the reduction operation
is applied to the password hash v to obtain the plaintext value w. Next,



Thing 249

Figure 3. Password recovery example.

a search is performed and a match of w is found at the final value of the
212th chain in the rainbow table in Figure 3 (i.e., w = c212). The chain
is then computed from its initial value x212 until the password hash v is
reached, which is equal to y212,3000. The password is the plaintext value
z212,3000, which is before the password hash y212,3000.

If no matching value is found, it is assumed that the particular pass-
word does not exist in the rainbow table and cannot be recovered. The
password recovery success rate can be improved by increasing the num-
ber of reduction functions and chains, but this increases the computa-
tional complexity and storage requirements.

4. Virtual Expansion of Rainbow Tables Method

Our proposed virtual expansion of rainbow tables (VERT) method
virtually expands the rainbow table contents while maintaining the stor-
age space requirements of the original rainbow table method. In VERT,
the character set is first remapped to numerical equivalent values using
the VERT mapping table.

An example VERT mapping for the alphanumeric character set is
shown in Table 1. For a 7-character password, the initial plaintext value
in the first chain of the VERT table is selected to be 0000000 and the
initial plaintext value in the last chain is selected to be zzzzzzz. The
initial plaintext values of the remaining chains are chosen from the rest
of the password space based on evenly-distributed gaps. The gap size
depends on the storage contraint. For example, if the storage space is
only sufficient to store four plaintext values, the gap size is:

(367 − 1)/(4 − 1) = 26121388032

after rounding up to the next integer. The four initial plaintext values
are 0000000, c000001 (computed from 26121388032 = 12(366)+1(360)),
n000000 (computed from 2(26121388032) = 52242776064 = 24(366))
and zzzzzzz. These initial plaintext values are not stored in the VERT



250 ADVANCES IN DIGITAL FORENSICS VI

Table 1. VERT mapping table.

Character Numerical
Set Equivalent

0 0

1 1
2 2
... ...

a 10
b 11
... ...

z 35

table. Instead, only their final plaintext values are stored. Therefore,
VERT provides a 100% increase in the number of chains compared with
the original rainbow table [11]. Also, it supports password recovery to
the first column unlike the enhanced rainbow table method [14].

The VERT method also incorporates an efficient storage mechanism
that can support a larger table while using the same amount of storage
as the original rainbow table. As seen in Table 1, each character in the
VERT mapping table can be represented by six bits. Therefore, the
final plaintext values of the chains are converted to their numerical rep-
resentations before storage. Because eight bits of storage are required
for each plaintext character in a rainbow table, the VERT method pro-
vides an additional storage conservation of up to 25% and an additional
33.33% increase in the number of chains without increasing the storage
requirements.

5. Theoretical Analysis

This section presents a theoretical analysis and comparison of the
performance of the VERT, original rainbow table and enhanced rainbow
table methods.

5.1 Success Rate without Collisions

The password recovery success rate depends on the number of distinct
plaintext-hash pairs generated in the chains, which, in turn, depends on
the total number of plaintext-hash pairs generated. First, we perform
the analysis ignoring element collisions. Next, we perform an analysis
based on the number of distinct pairs and evaluate the effect on the
password recovery success rate.



Thing 251

If there are m rainbow chains, each with n reduction functions and
requiring storage for two plaintext values (initial value and final value
of a chain), then a rainbow table has to store a total of 2m plaintext
values. Thus, the number of plaintext-hash pairs is mn.

In the case of the enhanced rainbow table method, optimal perfor-
mance is achieved when a single block is formed. Therefore, using
the same storage space as in the original rainbow table, a total of
n(2m − 1) plaintext-hash pairs can be generated. This is computed
from 2m(n− 1)− (n− 2) ≈ 2mn−n ≈ n(2m− 1) assuming that n≫ 2.

The VERT method does not store the input plaintext values. There-
fore, a VERT table can generate a total of 2(1.3333m) = 2.67m chains
using the same storage space as the original rainbow table. Therefore,
a VERT table would have 2.67mn plaintext-hash pairs. Compared with
the original and enhanced rainbow table methods, this translates to
167% and 33% increases in the password recovery success rate, respec-
tively. This success rate is based on the additional plaintext-hash pairs
that are generated.

5.2 Success Rate with Distinct Pairs

The password recover success rate computed above ignores collisions.
Because the collision probability increases with the size of a rainbow
table, ignoring collisions is reasonable only for very small rainbow tables.
We compute a more realistic password recovery success rate based on
collisions with the distinct plaintext-hash pairs that are generated.

Our analysis assumes that storage space exists for m plaintext values.
The password recovery success rate is computed based only on the dis-
tinct plaintext-hash pairs. The same number of reduction functions n is
used for the original rainbow table, enhanced rainbow table and VERT
methods.

Let N be the password space that comprises all possible plaintext
passwords and let mi be the number of distinct plaintext-hash pairs in
the ith column of the original rainbow table. Then, mi and mi+1 satisfy
the recurrence relation:

mi+1 = N(1− (1−
1

N
)mi)

where m1 = m. Thus, the probability of successful password recovery
for the original rainbow table method is:

P (M) = 1− (1−
m1

N
)(1−

m2

N
) . . . (1−

mn

N
).



252 ADVANCES IN DIGITAL FORENSICS VI

Table 2. Success rate based on distinct plaintext-hash pairs.

Storage Original Enhanced VERT
Size (m) Rainbow Table Rainbow Table Table

10 × 106 45.07% 65.33% 73.22%
15 × 106 56.94% 76.15% 82.62%
20 × 106 65.33% 82.60% 87.82%
25 × 106 71.50% 86.74% 91.00%
30 × 106 76.15% 89.57% 93.07%

In the case of the enhanced rainbow table method, let si be the number
of distinct plaintext-hash pairs in the ith column. Then, si and si+1

satisfy the following recurrence relation:

si+1 = N(1− (1 −
1

N
)si) ∀i > 1; s1 = 1; s2 = 2m− 1.

Thus, the probability of successful password recovery for the original
rainbow table method is:

P (S) = 1− (1−
s1

N
)(1 −

s2

N
) . . . (1−

sn

N
).

In the case of the VERT method, let vi be the number of distinct
plaintext-hash pairs in the ith column of the VERT table. Then, vi and
vi+1 satisfy the recurrence relation:

vi+1 = N(1− (1−
1

N
)vi)

where v1 = 2.67m. Thus, the probability of successful password recovery
for the VERT method is:

P (V ) = 1− (1−
v1

N
)(1−

v2

N
) . . . (1−

vn

N
).

Note that vi > mi for all i ≥ 1. Thus, P (V ) > P (M). In addition,
P (V ) > P (S) since vi > si for all i ≥ 1.

The password recovery success rates for the original and enhanced
rainbow tables and for the VERT tables for different numbers of stored
plaintext values (i.e., storage space) are computed based on the equations
presented above. The results are presented in Table 2. The common
parameters used in the methods are: (i) number of reduction functions
(n): 5,700; (ii) character set: alphanumeric; (iii) plaintext/password
length: 1-7 characters; and (iv) storage space (m): same for all methods.



Thing 253

Table 2 shows that the VERT method yields password recovery suc-
cess rate improvements ranging from 16.92% for storage size m = 30
× 106 to 28.15% for storage size m = 10 × 106. When compared with
the enhanced rainbow table method, the VERT method provides pass-
word recovery success rate improvements ranging from 3.50% for m =
30 × 106 to 7.89% for m = 10 × 106. The results show that even
when collisions are considered, the VERT method offers substantial im-
provements in performance. Note also that the storage size constraint
impacts the original rainbow table method much more significantly than
the enhanced rainbow table and VERT methods.

6. Experimental Results

This section compares the results obtained with the VERT method
and those obtained using RainbowCrack (source code version 1.2) [16].

6.1 Distinct Passwords and Success Rate

To evaluate the password recovery success rate when considering dis-
tinct pairs, we made a slight modification to RainbowCrack to log all
the plaintext passwords (i.e., the stored initial and final columns as well
as the intermediate chain columns). This logging was also performed for
the VERT method. We also implemented scripts to detect collisions and
count the distinct passwords in the logs.

The experiments were conducted using the following common param-
eters: (i) number of reduction functions (n): 3,000; (ii) character set:
lower case alpha; (iii) plaintext/password length: 1-7 characters; and
(iv) storage space (m): 106. For fixed m = 106, this translates to 106

chains for the RainbowCrack method and 2.67 × 106 chains for the
VERT method.

The theoretical password recovery success rates for RainbowCrack and
VERT when considering distinct pairs are 28.13% and 54.31%, respec-
tively. In the experiments, the total plaintext-hash pairs generated were
3 × 109 by RainbowCrack and 8.01 × 109 by VERT. The total plaintext
space was 8,353,082,582. A total of 2,349,122,955 distinct passwords
were identified among the 3 × 109 plaintext passwords generated by
RainbowCrack, corresponding to an actual password recovery success
rate of 28.12%. On the other hand, VERT generated 4,536,258,880 dis-
tinct passwords, yielding an actual password recovery success rate of
54.31%. Thus, the experimental results match the theoretical results.

Note that the experiments conducted are preliminary in nature due
to the scale of collision detection and distinct password count computa-



254 ADVANCES IN DIGITAL FORENSICS VI

tions. Additional experiments will be performed to study the impact of
collisions for larger numbers of chains and reduction functions.

6.2 Computational Complexity

A password is computed by alternatively applying the reduction and
hashing operations to the password hash value. However, VERT requires
an additional final step of processing (numerical representation conver-
sion) on the last computed plaintext value before it is stored in the
table. This conversion is a simple operation; thus, it incurs insignificant
computational overhead compared with hashing and reduction.

We conducted experiments on an Intel P4 3.06 GHz system to com-
pute the time taken to perform: (i) random value generation for the
initial column for RainbowCrack; (ii) deterministic value generation for
the initial column for VERT, (iii) reduction and MD5 hashing operations
for RainbowCrack and VERT (used for intermediate column processing);
and (iv) single conversion of the final plaintext password to its numerical
representation. A total of 109 rounds were performed for each operation
and the average time for each round was computed. The average com-
putation times were: (i) 1,656 ns; (ii) 7 ns; (iii) 644 ns; and (iv) 211 ns.
Note that the final conversion operation only incurs an additional 211
ns for each chain. The initial value generation speed is greatly enhanced
in VERT. The total time taken to generate the initial values for Rain-
bowCrack is 1,656m ns while the time taken for VERT is (2.67 × 7)m
= 18.69m ns. However, the main computational overhead is due to the
reduction and hashing operations, which require a total of 644mn ns.

7. Conclusions

The novelty of the VERT method lies in the virtual expansion of
the pre-computed tables, which increases the password recovery success
rate while limiting the storage requirements. Compared with the orig-
inal rainbow table method, the VERT method increases the password
recovery success rate by 16.92% to 28.15% for the distinct pairs compar-
ison while considering collision effects. The VERT method also shows
an improvement in the password recovery success rate compared with
the enhanced rainbow table method. In particular, the VERT method
yields up to 33% improvement for the total plaintext-hash pairs compar-
ison and 3.5% to 7.89% improvement for the distinct pairs comparison.
Note also that it is possible to trade-off storage conservation in favor of
high password recovery success rates for longer passwords (i.e., larger
password spaces).



Thing 255

Our future work related to the VERT method will analyze collisions
and password recovery success rates in larger tables. Additionally, we
plan to investigate improvements in the password recovery time achieved
by reducing the number of columns while maintaining the same storage
requirements and password recovery success rates as the original and
enhanced rainbow table methods.

References

[1] AccessData, Decryption tools, Lindon, Utah (www.accessdata.com
/decryptionTool.html).

[2] Agence France-Presse, Favorite passwords: “1234” and “password,”
Paris, France, February 11, 2009.

[3] D. Denning, Cryptography and Data Security, Addison-Wesley,
Reading, Massachusetts, 1982.

[4] H. Dobbertin, A. Bosselaers and B. Preneel, Ripemd-160: A
strengthened version of RIPEMD, Proceedings of the Third Inter-
national Workshop on Fast Software Encryption, pp. 71–82, 1996.

[5] M. Hellman, A cryptanalytic time-memory trade-off, IEEE Trans-
actions on Information Theory, vol. 26(4), pp. 401–406, 1980.

[6] LCPSoft, LCP, Moscow, Russia (www.lcpsoft.com).

[7] M. Montoro, Cain and Abel (www.oxid.it/cain.html).

[8] National Institute of Standards and Technology, Secure Hash Stan-
dard, Federal Information Processing Standards Publication 180-1,
Gaithersburg, Maryland, 1995.

[9] National Institute of Standards and Technology, Secure Hash Stan-
dard, Federal Information Processing Standards Publication 180-2,
Gaithersburg, Maryland, 2002.

[10] Objectif Securite, Ophcrack, Gland, Switzerland (ophcrack.source
forge.net).

[11] P. Oechslin, Making a faster cryptanalytic time-memory trade-off,
Proceedings of the Twenty-Third International Cryptology Confer-
ence, pp. 617–630, 2003.

[12] Openwall Project, John the Ripper password cracker (www.open
wall.com/john).

[13] R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321,
1992.

[14] V. Thing and H. Ying, A novel time-memory trade-off method for
password recovery, Digital Investigation, vol. 6(S1), pp. S114–S120,
2009.



256 ADVANCES IN DIGITAL FORENSICS VI

[15] D. Todorov, Mechanics of User Identification and Authentication:
Fundamentals of Identity Management, Auerbach Publications,
Boca Raton, Florida, 2007.

[16] S. Zhu, RainbowCrack: The time-memory trade-off hash cracker
(project-rainbowcrack.com).


