
HAL Id: hal-01058920
https://inria.hal.science/hal-01058920

Submitted on 28 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

memCUDA: Map Device Memory to Host Memory on
GPGPU Platform

Hai Jin, Bo Li, Qin Zhang, Wenbing Ao

To cite this version:
Hai Jin, Bo Li, Qin Zhang, Wenbing Ao. memCUDA: Map Device Memory to Host Memory on
GPGPU Platform. IFIP International Conference on Network and Parallel Computing (NPC), Sep
2010, Zhengzhou, China. pp.299-313, �10.1007/978-3-642-15672-4_26�. �hal-01058920�

https://inria.hal.science/hal-01058920
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

memCUDA: Map Device Memory to Host Memory on

GPGPU Platform*

Hai Jin, Bo Li, Ran Zheng, Qin Zhang, Wenbing Ao

Services Computing Technology and System Lab

Cluster and Grid Computing Lab

School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@mail.hust.edu.cn

Abstract. The Compute Unified Device Architecture (CUDA) programming

environment from NVIDIA is a milestone towards making programming

many-core GPUs more flexible to programmers. However, there are still many

challenges for programmers when using CUDA. One is how to deal with GPU

device memory, and data transfer between host memory and GPU device

memory explicitly. In this study, source-to-source compiling and runtime

library technologies are used to implement an experimental programming

system based on CUDA, called memCUDA, which can automatically map GPU

device memory to host memory. With some pragma directive language,

programmer can directly use host memory in CUDA kernel functions, during

which the tedious and error-prone data transfer and device memory

management are shielded from programmer. The performance is also improved

with some near-optimal technologies. Experiment results show that memCUDA

programs can get similar effect with well-optimized CUDA programs with

more compact source code.

Keywords: GPU, CUDA, memory mapping, programming model

1. Introduction

In the past decade, the era of multi-core computer processor is coming due to power

and performance limitations of VLSI design. As a new computing platform, GPGPUs

become more and more attractive because they offer extensive resources even for

non-visual, general-purpose computations: massive parallelism, high memory

bandwidth, and general-purpose instruction sets. It is also important to revisit parallel

programming model and tools for general-purpose computing on GPU. Programming

on GPU is so complex that it is a significant burden for developers. NVIDIA released

their new product GTX architecture GPU with CUDA support in 2007 [1], which is a

flagship tool chain and has become a de facto standard towards the utilization of

* This work is supported by National 973 Basic Research Program of China under grant

No.2007CB310900, the Ministry of Education-Intel Information Technology special research

fund (No.MOE-INTEL-10-05) and National Natural Science Foundation of China

(No.60803006)

massively parallel computing power of Nvidia GPUs.

CUDA allows the programmer writing device code in C functions called kernels.

Compared to a regular function, a kernel is executed by many GPU threads in a

Single-Instruction-Multiple-Thread (SIMT) fashion. Each thread executes the entire

kernel once. Launching a kernel for GPU execution is similar to calling the kernel

function. Local references in a kernel function are automatically allocated in registers

(or local memory). References in device memories must be created and managed

explicitly through CUDA runtime API. The data needed by a kernel must be

transferred from host main memory into device memory before the kernel is launched,

and result data also needs to be transferred back to host main memory after kernel

execution. Note that these data transfer between host memory and device memories

are both performed in an explicit manner.

For CPU-GPU heterogeneous computing architecture, the address spaces of host

CPU and device GPU are separate with each other. The developer has to use CUDA

APIs to manage device memory explicitly to realize the CPU accessing GPU data,

including transfer data between a CPU and a GPU. Thus, it is very difficult to manage

data transfer between host memory and various components of device memory, and

manually optimize the utilization of device memory. The programmer has to make

decisions on what data to move to/from device memory, when and how to move

them. Practical experience shows that the programmer needs to make significant

tedious and error-prone code changes. The explicit data transfer and communication

between CPU and GPU has become one of the biggest obstacles when programming

on GPU. This paper introduces a scheme that could improve the comprehensive

performance of the system.

The present CUDA only supports data-parallel and not task-parallel, thus, the GPU

is always exclusively used by one kernel. In fact, CUDA does not even allow

independent kernels from the same process to run concurrently. When the kernel is

flying on GPU, there are few high-efficiency mechanisms to support any kinds of

communication between CPU and GPU. Due to the currently available NVIDIA GTX

architecture GPU does not support task-level parallel (the next generation NVIDIA

GPGPU Fermi [18] is claimed to support task-level parallel), the whole kernel

invocation procedure must strictly pass through three following phrases: a)

performing input data transfer from host memory to device memories (global,

constant and texture memory); b) invocating the kernel to process the data; c)

performing result data transfer from device memories to host memory. Generally,

there are another two stages running on CPU, preprocessing or post-processing stages.

As a trivial example, Fig. 1 illustrates the implementation of CUDA-based vector

addition.

The above mentioned data transfers between host memory and device memory in

CUDA program is performed explicitly. It not only increases development time, but

also makes the program difficult to understand and maintain. Moreover, the

management and optimization on data allocation in GPU device memories involves

heavy manipulation of communication, which can easily go wrong, prolonging

program development and debugging.

With these challenges in mind, we design memCUDA, a high-level directive-based

language for CUDA programming, which can automatically map device memory to

host main memory. Just using several pragma directives, the developer can focus on

the usage of host main memory instead of device memory. Therefore, it shields device

memory from programmer and relieves the programmer’s burden out of manually

data transfer between host memory and device memory. Therefore, it supports the

same programming paradigm familiar with CUDA. We have implemented a

source-to-source compiler prototype that translates a memCUDA program to the

corresponding CUDA program. Experiments with six standard CUDA benchmarks

show that the simplicity and flexibility of memCUDA are provided and come at no

expense to performance.

//Comput vector sum c = a + b
__global__ void vecAdd (float *a, float *b, float *c) {

Int I = threadIdx.x + blockDim.x * blockIdx.x;
c[i] = a[i] + b[i];

}

int main() {
/* allocat h_a, h_b, and h_c with size N,

And initialize host(CPU) memory */
float *h_a = ... , *h_b = ... , *h_c = ...;

//allocat device (GPU) memory.
float *d_a, *d_b, *d_c;
cudaMalloc((void **) &d_a, N*sizeof(float));
cudaMalloc((void **) &d_b, N*sizeof(float));
cudaMalloc((void **) &d_c, N*sizeof(float));

//copy host memory to device memory
cudaMemcpy(d_a, h_a, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, N*sizeof(float), cudaMemcpyHostToDevice);

//execute the kernel on N/256 blocks of 256 threads each
vecAdd <<< N/256, 256>>> (d_a, d_b, d_c);

//copy the result data from device back to host memory
cudaMemcpy(h_c, d_c, N*sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

Phrase 1

Phrase 2

Phrase 3

Fig. 1. CUDA vector addition example codelet

The remainder of this paper is organized as follows. In section 2, we review some

related works. In section 3, we give a briefly introduction of the main framework of

memCUDA. Section 4 introduces memCUDA language directives in details. Section 5

gives a description of memCUDA runtime supports. The sixth section, the memCUDA

implementation details are introduced and we conduct some experiments to validate

the performance of memCUDA and also give concluding remarks and research

directions for future work in section 7.

2. Related Work

To make GPU programming more user-friendly, there has been lots of efforts to

improve the development of new programming frameworks, among which

RapidMind [2] is a well-known one and has been commercialized. Existing general

purpose programming languages for the GPU are based on the stream processing

mode. These languages include Brook [11][14], Sh [17], and etc. There are also some

works using the source-to-source technology to improve the programmability or

performance [15][16].

BSGP (Bulk Synchronous GPU Programming) [6], a new programming language

for general-purpose computation on GPU, is easy to read, write, and maintain. BSGP

is based on BSP (Bulk Synchronous Parallel) model. Multicore-CUDA (MCUDA)

[12] is a system that efficiently maps the CUDA programming model to a multicore

CPU architecture. They use the source-to-source translation process that converts

CUDA code into standard C language that interfaces to a runtime library for parallel

execution.

CUDA-lite [4] is a memory optimization tool for CUDA programs, which is also

designed as a source-to-source translator. With some annotations, the compiler

automatically transforms the flat program to CUDA code with the utilization of

shared memory. This tool takes a CUDA program only with global memory, and

optimizes its memory performance via access coalescing. This work puts the shield

the shared memory from programmer. Our work could be considered as a supplement

of CUDA-lite. CUDA-lite aims at automatic memory optimization, but it still requires

the programmer to write a full-fledged data movement between host memory and

device memory function in program. In contrast, memCUDA aims at shielding data

movements and device management for programmer.

A directive-based language called hiCUDA [7] is defined for programming

NVIDIA GPUs. The language provides programmers high-level abstractions to carry

out the tasks mentioned above in a simple manner, and directly to the original

sequential code. The use of hiCUDA directives makes it easier to experiment with

different ways of identifying and extracting GPU computation, and managing device

memory.

The syntax of memCUDA directives bears some similarity to hiCUDA directives.

Our work partly is inspired by hiCUDA. However, there are significant differences

between the two studies. hiCUDA adopts source-to-source compiling technology like

macro replacement without any optimization. Although data movement APIs of

CUDA are warped by hiCUDA directives, it also needs programmer consider data

movement direction and explicit data movement. Our work focuses on memory

mapping from device memory to main memory. The device is completely shielded

from programmer. Moreover, the asynchronous execution optimization is also

performed in memCUDA.

3. Main Framework

Fig. 2 shows the software architecture of memCUDA. At application level,

memCUDA provides APIs and pragma directives to programmers. With the help of

the API to explicitly express the usage of host main memory, programmers are

alleviated from difficult and explicit data transfer and device memory usage, instead

of focusing on performance tuning. Similar to OpenMP programming grammar,

memCUDA API is built on top of C/C++ so that it can be easily adopted.

Below the application layer is memCUDA system layer, which consists of a

source-to-source transformer, source code generator and a number of runtime

libraries. The source-to-source transformer translates memCUDA pragma directives

into native CUDA codes with runtime library APIs. At the same time, it also decides

the near-optimal technology, which includes utilizing the page-locked memory to

achieve the overlap between kernel execution and data transfer through an adaptive

algorithm. The lower NVIDIA NVCC is invoked to compile the transformed CUDA

code to produce the binary code, which could run on the GPGPU platform. The

runtime libraries in Fig. 2 are implemented as wrapper calls to the libraries, which is

used to dynamic memory mapping.

Fig. 2. Software framework of memCUDA

Current implementation of memCUDA is built on top of NVIDIA CUDA compiler

NVCC for GPU. Instead of directly generating CPU and GPU native machine codes,

memCUDA compiler generates CUDA source codes from memCUDA codes on the fly

and then uses the system compilers to generate the final machine codes.

4. memCUDA Pragma Directives

The memCUDA directives are specified using the pragma mechanism provided by C

and C++ standards. Each directive starts with #pragma memcuda and is

case-sensitive. Preprocessing tokens following #pragma memcuda are subject to

macro replacement with the runtime libraries and original CUDA APIs.

In naive CUDA programming framework, device memory is typically allocated

with cudaMalloc() and freed with cudaFree(). Data movements between host memory

and device memory are typically done with cudaMemcpy() and some other APIs.

These APIs are all abandoned in memCUDA system, instead, they are all invoked

implicitly by wrapped as memCUDA APIs. Through the simple pragma directives,

memCUDA high-level compilers perform a source-to-source conversion of a

memCUDA-based program to an original CUDA program. Currently, memCUDA

does not support the mapping of texture and constant memory, and also does not

support CUDA array structure direct mapping. memCUDA current provides four

directives: map, remap, unmap, and update for global memory mapping, just as

following:

 map directive performs the functions of establishing the mapping relationship. It

indicates which references need to be mapped from device memory to host

memory. The size of data block also should be given. The shape of the references

can eventually be directly derived from source code by compiler parser. Then

device memory will be allocated. The new record of the mapping also will be

inserted into Memory Mapping Table (mmTable for short, which will be introduced

in the next section). In some cases the same data block in host memory needs to be

mapped to several counterparts in device memory. Thereby the map directive does

not perform the data transfer, which will be performed by the update directive.  remap directive indicates refreshing the mapping relationship. In some cases,

especially for the applications with multiple kernels, the old device memory block

needs to be freed and substituted by a new block of device memory. So the remap

operation refreshes the mapping relationship.  unmap directive is for annotating to dissolute the mapping relationship. It will

invoke the operation that free data block of device memory. The mapping record in

mmTable will also be deleted.  update directive triggers data transfer operation between host memory and device

memory. The transfer direction is decided by STATE attribute of mmTable.

For rigorous programmer, the update directive could be combined with map or

remap directive. After the mapping relationship installed, the operation which

performed by update directive could be executed automatically. That means the host

memory block must be initialized before the mapping relationship installed. For the

flexibility of programming, we keep the update directive independency of data

transfer from the map and remap directive.

Fig. 3 shows the current form of the pragma directives in memCUDA. Each

directive manages the lifecycle of mapping relationship between data block in device

memory and the correspondent data block in host memory. Since data management in

global memory always happens before or after kernel execution, the pragma

directives must be placed in host code regions. In contrast, the kernel region does not

need to be modified. All the pragma directives are stand-alone, and the associated

actions taken by runtime libraries happen at the place of the directive.

Fig. 3. memCUDA pragma directives

For comparison purpose, the original hand-written CUDA version of TPACF in

Parboil benchmark suite [5] and memCUDA rewritten version both are shown in Fig.

4. For naive CUDA code (see Fig. 4(a)), it needs programmer to allocate device

memory and move data from host memory to device memory through invoking

CUDA APIs. However, in memCUDA version (see Fig. 4(b)), there are no references

in device address space. After using the map pragma, device memory allocation and

the mapping relationship all are undertaken automatically. Thus, the kernel can use

host memory directly. When data requires moving between host memory and device

memory, the update pragma needs to be inserted in the rational place in host code

region. Then data movements are all performed by runtime libraries and the

movement direction (e.g. from host memory to device memory, or vice versa)

determined in the parsing phase of the compiler. Above all, memCUDA shields device

memory and never exposes it to programmer.

(a) Original CUDA Code (b) memCUDA Code

Fig. 4. Original CUDA code vs memCUDA TPACF code

From Fig. 4, we can see that memCUDA code is much simpler to write, understand

and maintain. The programmer does not need to manage GPU device memory nor use

explicit data movement between device memory and host memory. Nonetheless,

memCUDA supports the same programming paradigm familiar to CUDA

programmers.

5. Runtime Support

Runtime support is in charge of memory mapping when the program is running. The

lifecycle of the memory mapping could be described through a state transition

diagram as shown in Fig. 5.  Mapped state: In this state, the mapping relationship has been established. The

data block in host memory and device memory both are allocated. The row which

records this mapping relationship is also inserted into mmTable.  Transferred state: In this state, the data has been transferred from host/device

memory to device/host memory. The transfer direction is determined by the value

of STATE attribution in mmTable.  Destroyed state: This state means the mapping relationship is terminated.

Responding to these states, the mapping tasks include: Map(), Update(), Remap(),

and Unmap(). Especially, the Update() could perform two directions’ data transfer

between host memory and device memory. The following of this section describes

memCUDA runtime libraries.

U
nm

ap
(

)U
nm

ap()

Fig.5. State transition diagram for data mapping

5.1 Mapping Table Structure

Currently CUDA framework does not support concurrent executions of two kernels,

and the size of host memory generally is much larger than device memory, memory

mapping is designed as one-to-one mapping between host address space and device

address space, shown in Fig. 6. The mapping information is maintained by a structure

under a table shape, basically used for looking up and translating operations:

mmTable, which holds information for optimizing the look up mechanism and

implementing the mapping from GPU device memory address space to host memory

address space. A row contains following four attributes for mapping mechanisms:

 BASE_H: the base address of data block in host memory address space, which is

the key attribute of the table;  BASE_D: the base address of the correspondent data block in device memory

address space;  SIZE: the size of data block;  STATE: the state of current mapping operation, which is used to determine the

next data movement direction from host memory to device memory, or vice versa.

_d_r1

_d_r2

r1

r2

...

host memory device memory

mmTable

BASE_H BASE_D SIZE STATEmmTable Items

Fig. 6. Illustration of memory-mapping mechanism

5.2 Memory Mapping

The implementation of mapping mechanism is divided into two phases. The first

phase takes place before launching the kernel to setup the mapping relationship; the

second one occurs inside the mapping runtime system when the kernel flying.

For the first phase, it requires some coordination with the compiler supported by

source-to-source code replacement. When the mapping operation pragma is invoked,

a data block will be allocated in device memory and the size is the same with its

counterpart in host memory. The data will be moved from host main memory to

device memory. After that, the mapping relationship will be established. Then a new

row will be inserted into mmTable to record this mapping relationship, and the

attributes of the base address of data block in host device memory address space, the

base address of the correspondent data block in device memory address space, and the

size of data block and the state of current mapping operation will all be evaluated.

The pseudo code is described in Algorithm 1.

Algorithm 1: Map() directive routine

Input: map() directive statement

Parse map() directives to get references addresses and their sizes

For each reference r in map() directive:

//mapping references

If (mmTbl.contain(r) == false)

allocate device memory d_r with size r_size

move data from host memory to device memory

mmTbl.insert(r, d_r, d_r_size)

else

if (mmTbl.size(r) > r_size)

mmTbl.release(r) // free r mapped device memory

For the second phase, when a host memory reference is adopted as an input

parameter of a GPU kernel, the implementation will keep track about the base address

stored in mmTable. Each time a new instance of a memory reference occurs in kernel

region, the implementation checks out the base address and size of the corresponding

reference in device memory address space from mmTable. The host memory

reference will be replaced by the device memory reference which is checked out from

mmTable. It is under the compiler responsibility to assign an entry in mmTable for

each memory reference in the code.

mmTable is updated at the end of mapping process. The row assigned to memory

reference the mapping operation was treating is appropriately filled: base address of

data block in host main memory, base address of the corresponding block data in

GPU device memory，the size of data block and the state of data block.

5.3 Asynchronous Concurrent Execution

Kernel invocation in CUDA is asynchronous, so the driver will return control to the

application as soon as it has launched the kernel. At the same time, asynchronous

copies are allowed if the used host memory is allocated as page-locked memory,

which the page will never be swapped out of the memory. In this case, the GPU

computation and data transfer between page-locked memory and device memory can

be overlapped to improve the overall performance of the program. However,

page-locked host memory is never be swapped out, it is a scarce resource and

allocations as page-locked memory may start failing long before allocations in

page-able memory. In addition, by reducing the amount of physical memory available

to the operating system for paging, allocating too much page-locked memory will

reduce overall system performance. In memCUDA, we also consider to adopt this

property of page-locked memory to improve the performance. memCUDA will

adaptively allocate page-locked memory instead of page-able memory even if

programmer does not use it explicitly. memCUDA will transfer the program into

CUDA code with asynchronous concurrent execution support, when meeting the

following conditions:

1. There are multiple kernels in the application. Only in this case, the former kernel’s

data transfer can be overlapped with the next kernel execution.

2. There is no data dependence among the kernels. Currently, data flow dependence

analysis is an armature technique and there are lots of tools could achieve this goal,

including GCC. In memCUDA system, the data dependence analysis is based on

related function module including the Cetus [3].

3. The amount of device memory that kernels require is less half of host memory, the

reason has been mentioned in last paragraph.

6. Implementation and Performance Evaluation

We implement a prototype system to translate input memCUDA programs to

equivalent CUDA programs under the Cetus source-to-source compilation framework

[3]. This allows the use of existing CUDA compiler tool chain from NVIDIA to

generate binaries. Fig. 7 shows the compilation flow. Our work focuses on

memCUDA Extensions Handler module and the Running Libs module.

First, we extend the naive CUDA grammar rules with slight modifications to the IR

and preprocessor to accept ANSI C with language extensions of CUDA and

memCUDA pragma directives. Then ANTLR[13], which is used as an internal C

language parser by Cetus, scans and parses the memCUDA source code to establish a

Cetus Intermediate Representations (IR for short) syntax tree.

Second, memCUDA Extensions Handler module is in charge of source-to-source

transformation and data flow dependence analysis based on the prior Cetus IR tree. It

transforms memCUDA IR syntax tree to naive CUDA IR tree. memCUDA-specific

directives will be replaced by naive CUDA and runtime libraries APIs. At the same

time, some optimization manners will also be imposed in the phase such as the

asynchronous current execution through data flow analysis. So the output of this

phase is a modified Cetus IR tree against the original one. Then the code generator

module will print out the source code through traversing the final IR tree. At last,

NVCC compiler will be called to compile the source code into binary code.

Fig. 7. The compilation workflow of memCUDA system

The experiments are conducted on a NVIDIA GeForce GTX 260+ GPU device.

The device has 896MB of DRAM and has 27 multiprocessors (MIMD units) clocked

at 576MHz. Each multiprocessor has 8 streaming processors running at twice the

clock frequency of the multiprocessor and has 16KB of shared memory per

multiprocessor. We use CUDA 2.1 for the experiments. The CUDA code is compiled

with NVIDIA CUDA Compiler (NVCC) to generate device code launched from the

CPU (host). The CPU is an Intel Core 2 Quad 9550 at 2.83GHz with 12MB L2 cache.

The size of memory is 4GB. The GPU device is connected to CPU through a 16-x

PCI Express bus. The host programs are compiled using Intel C Compiler 10.1 at -O3

optimization level.

We present six applications, listed in Table 1, as the benchmarks: MM, MRI-q,

MRI-FHD, CP, PNS, and TPACF, the running example of this paper. Except MM is

extracted from CUDA SDK 2.1, the other five applications1 are selected from Parboil

benchmark suite [5]. For the limitation of the space, we do not explain the detail

configure parameters of each benchmark. The interested reader could refer to the web

site [5]. The input dataset and parameters setting are all selected from the standard

sample datasets of the Parboil benchmark suite. For the matrix multiply benchmark,

we write our own memCUDA version and obtained CUDA version from NVIDIA

CUDA SDK [7]. For the other five benchmarks, we obtain the sequential version and

CUDA version from the Parboil benchmark suite. In that benchmark suite, CUDA

version is heavily optimized [9][10]. We rewrite the memCUDA versions and use

memCUDA to compile them. We compare the memCUDA version’s performance

against the original version from Parboil suite.

In Fig. 8, we can see that there are no noticeable performance differences between

original CUDA version and memCUDA version. Generally, extra overhead is less

than 5% comparing with the original version. This means memCUDA does not

introduce much performance penalties. The performance loss arises from the extra

operations on the mapping between host memory and devices memory. However, the

tiny overhead does not beyond the boundary that we could afford.

1Currently, memCUDA only realizes the global memory mapping, and does not support the

texture, constant memory and CUDA array structure mapping. So the SAD and RPES in the

benchmark suite are not used in our experiments

Table 1. CUDA benchmarks for evaluating the memCUDA compiler

Kernel Configuration

Matrix Multiplication (MM) Vary by dimensions of matrix

Magnetic Resonance Imaging Q (MRI-Q) Large size; Small size

Magnetic Resonance Imaging FHD (MRI-FHD) Large size; Small size

Coulombic Potential (CP) 40000atoms, Vary by grid size

Petri Net Simulation (PNS)
2000×2000 Scale of Petri net;

Trajectory 4

Two Point Angular Correlation Function (TPACF) Default configure

16x16 64x64 256x256 1024x1024 2048x2048
0

3

6

9

12

51

54

57

E
x
e
c
u

ti
o
n

 T
im

e
(m

s
e

c
.)

Scale

 Original

 memCUDA

small large
0.0

0.1

0.2

0.9

1.0

1.1

E
x
e

c
u

ti
o

n
 T

im
e

(s
e

c
.)

Scale

 Original

 memCUDA

(a) MM (b) MRI-Q

small large
0.00

0.05

0.10

0.15

0.90
0.95
1.00
1.05
1.10

E
x
e
c
u

ti
o
n
 T

im
e

(s
e
c
.)

Scale

 Original

 memCUDA

0.0

0.1

0.2

0.84
0.86
0.88
0.90
0.92
0.94
0.96

memCUDA

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
.)

Original

(c) MRI-FHD (d) TPACF

Fig. 8. Performance comparison of memCUDA version over CUDA version

Second, we also evaluate the efficiency of asynchronous execution optimization.

Both CP and PNS repeatedly invoke kernel functions in a for-loop structure, so we

conduct the experiment on CP and PNS. The others have only one kernel to execute,

so the asynchronous execution optimization is not valid to them. The experimental

results are shown in Fig. 9. The original version is naive CUDA version from Parboil

benchmark suite. memCUDA label presents the memCUDA version without

asynchronous execution optimizations. Optimized version is the one that

automatically performs the asynchronous execution optimizations by memCUDA. In

Fig. 9, we can see the optimized version is superior the prior two versions obviously.

In most cases, the performance boosts about 30% comparing to the other two

versions.

128x128 256x256 512x512 1024x1024
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
x
e

c
u
ti
o

n
 T

im
e
(s

e
c
.)

Scale

 Original

 memCUDA

 Optimization

100 1000 10000
0.0

0.5

1.0

1.5

2.0

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
.)

Scale

 Original

 memCUDA

 Optimization

(a) CP (b) PNS

Fig.9. Performance comparison of original CUDA version, memCUDA version and optimized

memCUDA version

7. Conclusions and Future Work

In this paper, we present a study to reduce programmers’ burden of data movement

between host memory and device memory under GPU CUDA programming

environment. memCUDA high-level language is implemented with the composition of

source-to-source compiling and runtime libraries technologies. memCUDA produces

code with performance comparable to hand-optimized version programs. The coding

of memCUDA is lower than the same transformations by hand and a layer of

abstraction is provided from the definition of warps in CUDA. Since memCUDA does

not handle parallelizing aspects of GPU programming, as the memory optimizing

module of an eventual overall framework, memCUDA will facilitate GPGPU

programming to encompass parallelization and resource usage decisions to maximize

performance.

The latest CUDA 2.3 supports a zero-copy mechanism, which could avoid

allocating a block in device memory and copy data between this block and the block

in host memory; data transfers are implicitly performed as needed by the kernel. It

seems that main idea of zero-copy is same as ours. However, there is a tough

constrain for zero-copy mechanism. Host block used for mapping the device memory

must be the page-locked memory (which will never be swapped out by OS). In fact,

the GPU driver always uses DMA (Direct Memory Access) from its internally pinned

memory buffer when copying data from the host memory to the GPU global memory.

The up limited size of available page-locked memory is the half of main memory. So

lots of applications could not use the zero-copy mechanisms to get a performance

improve. Unlike the hardware mapping supported by current CUDA devices and

software, memCUDA uses implicit copy operations inserted by its source-to-source

compiler to maintain consistency between the memory spaces. This avoids the

problem of needing to pin system pages.

Our currently ongoing and future work are followings: a) extend memCUDA to

leverage constant and texture memory mapping; b) use some classic compiler

optimization to automatically optimize transformation performance, such as adaptive

loop unrolling to achieve more efficiency asynchronous execution when a kernel

invoked in for-loop structure; c) simplify the directives in memCUDA, some of which

can be replaced by compiler analyses.

References

1. NVIDIA. NVIDIA CUDA. http://www.NVIDIA.com/cuda

2. McCool, M. D., Wadleigh, K., Henderson, B., and Lin, H.-Y., “Performance Evaluation of

GPUs Using the RapidMind Development Platform”, In: Proceedings of the ACM/IEEE

Conference on Supercomputing (2006)

3. Lee, S.-I., Johnson, T., and Eigenmann, R., “Cetus - an extensible compiler infrastructure

for source-to-source transformation”, In: Proceedings of the International Workshop on

Languages and Compilers for Parallel Computing (2003)

4. Ueng, S.-Z., Lathara, M., Baghsorkhi, S. S., and Hwu, W.-M. W., “CUDA-lite: Reducing

GPU programming complexity”, In: Proceedings of International Workshop on Languages

and Compilers for Parallel Computing (2008)

5. IMPACT Research Group. The Parboil benchmark suite.

http://www.crhc.uiuc.edu/IMPACT/parboil.php (2007)

6. Hou Q., Zhou, K., and Guo, B., “BSGP: bulk-synchronous GPU programming”, ACM

Transaction on Graphics, 27(3): (2008)

7. Han, T. D., and Abdelrahman, T. S., “hiCUDA: a high-level directive-based language for

GPU programming”, In: Proceedings of the Second Workshop on General Purpose

Processing on Graphics Processing Units(2009)

8. NVIDIA, http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA

CUDA Programming_Guide_2.2.pdf

9. Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., and Hwu, W.-M. W.,

“Optimization principles and application performance evaluation of a multithreaded GPU

using CUDA”, Proceedings of the 15th ACM SIGPLAN Principles and Practice of Parallel

Computing(2008)

10. Ryoo, S., Rodrigues, C. I., Stone, S. S., Baghsorkhi, S. S., Ueng, S.-Z., Stratton, J. A., and

Hwu, W.-M. W., “Program optimization space pruning for a multithreaded GPU”, In:

Proceedings of the International Symposium on Code Generation and Optimization(2008)

11. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanrahan, P.,

“Brook for GPUs: stream computing on graphics hardware”, ACM Transaction on Graphics,

Vol.23, No.3, 2004, 777-786(2004)

12. Stratton, J. A., Stone, S. S., and Hwu, W.-M. W., “MCUDA: An Efficient Implementation

of CUDA Kernels for Multi-Core CPUs”, Proceedings of International Workshop on

Languages and Compilers for Parallel Computing (2008)

13. ANTLR, http://www.antlr.org/

14. Liao, S.-W., Du, Z., Wu, G., and Lueh, G.-Y., “Data and computation transformations for

Brook streaming applications on multiprocessors”, In: Proceedings of the 4th International

Symposium on Code Generation and Optimization (2006)

15. Baskaran, M. M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev, A., and

Sadayappan, P., “A Compiler Framework for Optimization of Affine Loop Nests for

GPGPU”, In: Proceedings of the 22nd Annual International Conference on

Supercomputing(2008)

16. Lee, S., Min, S.-J., and Eigenmann, R., “OpenMP to GPGPU: a compiler framework for

automatic translation and optimization”, In: Proceedings of the 14th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (2009)

17. Sh: A High-Level Metaprogramming Language for Modern GPUs,

http://libsh.sourceforge.net(2004)

18. NVIDIA, http://www.nvidia.com/object/fermi_architecture.html

