
HAL Id: hal-01058862
https://inria.hal.science/hal-01058862

Submitted on 28 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Evaluation of WS-* Standards Based Interoperability of
SOA Products for the Hungarian e-Government

Infrastructure
Balázs Simon, Balázs Goldschmidt, Károly Kondorosi, Péter Risztics, László

Bacsa

To cite this version:
Balázs Simon, Balázs Goldschmidt, Károly Kondorosi, Péter Risztics, László Bacsa. Evaluation of
WS-* Standards Based Interoperability of SOA Products for the Hungarian e-Government Infras-
tructure. Joint IFIP TC 8 and TC 6 International Conferences on E-Government, E-Services and
Global Processes (EGES) / Global Information Systems Processes (GISP), / Held as Part of World
Computer Congress (WCC), Sep 2010, Brisbane, Australia. pp.19-31, �10.1007/978-3-642-15346-4_3�.
�hal-01058862�

https://inria.hal.science/hal-01058862
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Evaluation of WS-* Standards Based Interoperability of 

SOA Products 

for the Hungarian e-Government Infrastructure 

Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi, Péter Risztics, 

László Bacsa 

Budapest University of Technology and Economics, 

Department of Control Engineering and Information Technology 

Magyar tudósok körútja 2. 

1117 Budapest, Hungary 

{sbalazs, laszlo, balage, kondor}@iit.bme.hu; {risztics, 

bacsa}@ik.bme.hu 

Abstract. The proposed architecture of the Hungarian e-Government 

Framework, mandating the functional co-operation of independent 

organizations, puts special emphasis on interoperability. WS-* standards have 

been created to reach uniformity and interoperability in the common 

middleware tasks for web services such as security, reliable messaging and 

transactions. These standards, however, while existing for some time, have 

implementations slightly different in quality. In order to assess 

implementations, thorough tests should be performed, and relevant test cases 

ought to be accepted. For selecting mature SOA products for e-Government 

application, a methodology of such an assessment is needed. We have defined a 

flexible and extensible test bed and a set of test cases for SOA products 

considering three aspects: compliance with standards, interoperability and 

development support. 

Keywords: Web services; testing; interoperability; WS-* standards; e-

Government 

1 Introduction 
Similarly to numerous other countries all over the world, Hungary has its own 

strategy for e-government development [10]. Although Hungary has middle-ranked 

position in the level of e-government services [11], strategic studies and assessments 

showed that one of the primary deficiencies is the lack of interoperable, multi- and 

cross-organizational back-office functionality. 

Several interoperability frameworks have been accepted by national, or union-level 

governments or organizations: e-Government Interoperability Framework (eGIF) in 

UK, [8], Federal Enterprise Architecture (FEA) in USA, [12], Standards and 

Architectures for e-Government Applications (SAGA) in Germany [13], European 

Interoperability Framework (EIF) in EU [7] etc. For interoperable cross-sector 

collaboration the concept of Seamless e-Government has been introduced to describe 

the ideal model of delivering public services [9]. 



2 Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi, Péter 

Risztics, László Bacsa 

A similar effort has been started in Hungary by establishing the Hungarian e-

Government Framework (HeGF) [14]. The Framework proposes a SOA-based e-

Government Service Bus for the implementation of the integrated back-office 

services. The architecture specifies three layers: process-level layer, service-level 

layer and message-level layer. The process-level layer orchestrates cross-

organizational activities and services. The service-level layer defines interfaces, 

manages the basic operations, handles security, federated identity and management 

aspects. It is based on WS-* standards, and a wide variety of products promising 

conformity to them. The message layer is based on a message oriented middleware to 

provide reliability. 

Early laboratory pilots showed the difficulties of the integration of heterogeneous 

components on the basis of WS-* standards. In some cases products did not follow 

the standards, in others poor documentation caused difficulties. Two questions arose 

at this point: a) are the SOA products mature enough for e-government use; b) how to 

select the best product at a future tender. 

The rest of this paper describes a methodology developed to evaluate the 

interoperable behavior of SOA products and the quality of the WS-* standards 

implementations. Our goal was only the evaluation of the proposed methodology 

itself, not pre-selection of product, or making a ranking at this stage. The test cases 

copied from the architecture specification in the HeGF are listed in Table I. 

After presenting related work in section II, several SOA products selected for test are 

introduced in section III. Section IV enlists the tested WS-* standards. Section V 

describes the test cases. Section VI specifies the test environment. Section VII 

presents the test results. Section VIII concludes the paper and describes future work. 

Table 1. Test cases from HeGF 

Requirement  Corresponding test case 

Message format M HTTP, SOAP 1.2 

Exception handling M HTTP, SOAP 1.2 faults 

Addressing M HTTP, SOAP 1.2, WS-A 1.0 

Asynchronous messages M HTTP, SOAP 1.2, WS-A 1.0, async 

Message level security M HTTP, SOAP 1.2, WS-A 1.0, WS-SC 

Transport level security M HTTPS, SOAP 1.2 

Binary transmission R HTTP, SOAP 1.2, MTOM 

Reliable messaging O HTTP, SOAP 1.2, WS-A 1.0, WS-RM 

Short-term transactions O HTTP, SOAP 1.2, WS-A 1.0, WS-AT 

Message format O HTTP, SOAP 1.1 

Addressing O HTTP, SOAP 1.1, WS-A 1.0 

Addressing O HTTP, SOAP 1.1, WS-A 2004/08 

Asynchronous messages O HTTP, SOAP 1.1, WS-A 1.0 

Binary transmission O HTTP, SOAP 1.1, MTOM 

Short-term transactions O HTTP, SOAP 1.1, WS-A 1.0, WS-AT 

M=Mandatory, R=Recommended, O=Optional, 

WS-A=WS-Addressing, WS-SC=WS-SecureConversation,  

WS-RM=WS-ReliableMessaging, WS-AT=WS-AtomicTransaction 



Evaluation of WS-* Standards Based Interoperability of SOA Products 

for the Hungarian e-Government Infrastructure  3 

2 Related Work 

2.1 WS-I Basic Profile 

The various WS-* standards provide too many options from which the 
implementers can choose what to implement. This freedom makes interoperability 
much harder since different vendors may choose different options to implement. 
Therefore the Web Services Interoperability (WS-I) Organization [1] was formed by a 
wide range of companies and standards development organizations to provide best 
practices called profiles for a selected set of standards. They also define test cases and 
create testing tools to verify the various implementations against these profiles. 
Software vendors participating in WS-I usually implement the test cases in their own 
products. 

WS-I defines profiles for the most important WS-* standards. Basic Profile covers 
SOAP, WSDL, WS-Addressing and MTOM. Basic Security Profile aims WS-Security 
with different Security Token Profiles including SAML. Reliable Security Profile deals 
with WS-ReliableMessaging and WS-SecureConversation. WS-Coordination and WS-
AtomicTransaction, however, are not yet included in any profiles. 

The advantage of WS-I is that it covers a lot of issues regarding WS-* standards, it 
resolves ambiguities, it defines a lot of test cases and it also implements them. The 
source codes are available for public access; they can be downloaded from the WS-I 
web site. All the major software vendors participate in the WS-I Organization, thus the 
profiles defined are a results of a consensus and are expected to be supported in their 
products as well. 

The disadvantage of WS-I is that its profiles are a result of a slow agreement process, 

therefore it always lags behind the newest versions of the WS-* standards. The 

implementations of the test cases are not up-to-date; they cannot keep up with the 

acquisitions in the market and the rapid evolution of the products. The test cases focus 

mainly on verifying the conformance to the profiles and are not derived from real 

customer needs. 

2.2 Interop events 

While Windows Communication Foundation (WCF, codename Indigo) was being 

developed, Microsoft organized a series of events called Interop Plug-Fests for SOA 

vendors to implement a set of test cases by every participant and then execute the tests 

between each other. In the previous years numerous Interop Plug-Fests have been 

held and the web services endpoints of WCF are still available [2]. The close 

cooperation of Microsoft and Sun Microsystems has led to a very high level of 

interoperability between WCF and Metro, the web services stack of Sun. 

The advantage of these Interop Plug-Fests is that there were very detailed pre-defined 

test cases for the selected WS-* standards and the executed tests resulted in 

immediate feedbacks to the vendors. The test specifications are still available for 

download. Unfortunately, most of the web pages about these Plug-Fests are no longer 

available, the evolution of the products is no longer followed and also the source 

codes cannot be downloaded. 



4 Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi, Péter 

Risztics, László Bacsa 

2.3 Web Services Test Forum 

Web Services Test Forum (WSTF) [3] is an open community founded by a couple 

of software vendors to provide test scenarios and a multi-vendor testing environment. 

Customers can also join the community to suggest test cases based on their needs. 

After accepting the test cases members of the community can implement them and 

provide web services endpoints to the public. 

The advantage of WSTF is that it is less formal than a standards body; therefore, it 

is more flexible. Members of WSTF do not have to wait for the standards 

development organizations to complete the standards or the final version of SOA 

products to be released to start implementing the test cases. The source code is also 

accessible for the community. The current test clients provide a user interface only, no 

automated tests are defined. Although some test cases are already available for the 

various WS-* standards, not all of them are implemented yet, since the community 

was formed at the end of 2008. Unfortunately, Microsoft and Sun Microsystems 

(although acquired by the community member: Oracle) were not among the founders 

and Microsoft still has not joined the community yet. 

Another similar initiative to WSTF is the Apache Stonehenge project [4] formed 

earlier than WSTF mainly by open-source vendors (Apache, WSO2, Red Hat), but 

Microsoft is also a participant and they also welcome other software vendors. 

2.4 Other 

Senthil et al. [5] examined how WS-I Basic Profile (WS-I BP) 1.0 addresses 

interoperability issues with the core web services standards (SOAP 1.1 and WSDL 

1.1). They found that the efforts point to the right direction, however, there are some 

limitations, too. The main argument they brought up is that WS-I BP does not deal 

with such data types as float, decimal, date and time, and this can result in precision 

loss in interoperability scenarios. 

Kuppuraju et al. [6] identified various aspects on how to test interoperability of SOA 

products based on a case study. They raised the issues but did not provide any 

solution: testing tools and test report generation are mentioned only as a future work. 

The main issues are compliance tests against WS-I profiles, integration tests for 

business processes, and performance tests. They also identified WS-* standards as a 

key to interoperability. 

3 SOA Landscape 

This section compares the set of products we selected for testing, but this set is far 

from complete since there are many more SOA products. The proposed test 

environment, however, is flexible and mature enough to extend the range of the 

current study to incorporate further products. 

Table II. compares the selected products based on the following aspects: name, 

vendor name, application server name, Integrated Development Environment (IDE), 



Evaluation of WS-* Standards Based Interoperability of SOA Products 

for the Hungarian e-Government Infrastructure  5 

web service API, web service stack implementation, supported programming 

languages, configuring WS-* protocols. 

Other well-known SOA products subject of further investigation include FUSE 

from Iona based on CXF, the WSO2 SOA Platform based on Axis2, ActiveVOS from 

Active Endpoints, Intalio BPM from Intalio and also TIBCO Service Bus and Sonic 

ESB. 

Table 2. Comparison of SOA products 

name vendor 

name 

applicat

ion 

server 

IDE WS 

API 

WS 

stack 

program 

language 

configuratio

n 

WCF Microsoft IIS Visual 

Studio 

WC

F 

WCF any 

.NET 

custom XML 

GlassFishESB Sun GlassFis

h 

Netbeans JAX

-WS 

Metro Java WS-Policy 

RAD 7 IBM WAS 7 RAD 7 

(Eclipse 

based) 

JAX

-WS 

 Java WS-Policy 

WebLogic 

Suite 

Oracle WebLog

ic Server 

JDevelope

r 

JAX

-WS 

 Java WS-Policy 

JBoss RedHat JBoss 

AS 

Eclipse JAX

-WS 

Native 

(RedHat)

; Metro 

(Sun); 

CXF 

(Iona) 

Java custom 

XML; WS-

Policy 

Axis2 Apache Tomcat Eclipse JAX

-WS 

Axis2 

(WSO2) 

Java custom XML 

Abbreviations: WCF = Windows Communication Foundation, IIS = Internet Information Services, RAD = Rational Application Developer, 

WAS = WebSphere Application Server, AS = Application Server 

4 WS-* Standards 

This section gives a short overview of WS-* standards specified in the 

requirements of the Hungarian e-Government Infrastructure. 

WS-Addressing (WS-A) raises addressing and routing specifications to message 

level thus makes them independent of the actual transport layer. The Message 

Transmission Optimization Mechanism (MTOM) defines how large binary data can 

be efficiently transmitted as part of a SOAP message. WS-ReliableMessaging (WS-

RM) can minimize the impact of network communication problems. It can guarantee 

exactly-once message delivery and preserving the order of the messages. WS-

Coordination and WS-AtomicTransaction (WS-AT) make specifying and committing 

transactions possible. 

WS-Security is responsible for signing and encrypting parts of a SOAP message, and 

also for transmitting authorization tokens. WS-SecureConversation (WS-SC) is 

designed to support excessive encrypted message-exchange by maintaining a security 

context (similarly to SSL). WS-Trust defines means for issuing, renewing, 

exchanging and revoking security tokens by a Security Token Service (STS) 

(similarly to Kerberos) and makes federated authorization across security domains 



6 Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi, Péter 

Risztics, László Bacsa 

also possible mostly through SAML (Security Assertion Markup Language) 

assertions. 

5 Test aspects and test cases 

In order to conduct testing three basic tasks were defined; each designed to be capable 

of assessing the existence or absence of functionalities selected for testing. For each 

task the functionalities checked and the relevant standards are listed. For compliance 

and interoperability testing both the input and the expected output parameters have 

been specified before actual testing was done. 

5.1 Test cases for compliance 

Calculator 

The aim of this task is to test compliance with basic protocols and simple fault 

handling. A calculator application has to be created with the operations: addition, 

subtraction, multiplication and division. The tested standards are: 

• SOAP 1.1 and SOAP 1.2 over HTTP • SOAP 1.2 over HTTPS • Fault handling with SOAP 1.2: when dividing by zero, MathFault exception is to 

be thrown. • Ws-Addressing 1.0 and Ws-Addressing August 2004 • Ws-ReliableMessaging with SOAP 1.2: order of messages preserved; session 

properly closed. • Ws-SecureConversation with SOAP 1.2: message level encryption and digital 

signature is to be applied, based on Basic256 (AES-256) algorithm. Authenticate 

both sides with X.509 certificates. • WS-Trust, SAML: the different operations require different access rights provided 

by SAML tokens issued by a STS. (test case not yet implemented) 

Asynchronous calculator 

The aim of this task is the asynchronous version of the Calculator. The tested 

standards are: 

• WS-Addressing 1.0 with SOAP 1.1 and SOAP 1.2: the server has to retrieve the 

addressing headers and use dynamic addressing when calling back the client. 

Upload 

This test is to check MTOM encoding compliance, by sending a 1MB file to the 

server. The tested standards are: 

• MTOM with SOAP 1.1 and SOAP 1.2 

Bank 

The aim of the test is to check compliance with transaction standards. The task is to 

access a database through a web service. The server is a bank which provides services 



Evaluation of WS-* Standards Based Interoperability of SOA Products 

for the Hungarian e-Government Infrastructure  7 

for modifying the balance of an account and getting the account’s status. If the 

account number is non-existent, or during withdrawal the amount is greater than the 

balance, a specific BankFault exception is to be thrown. For repeatability automated 

SQL scripts have to be created for setting up the database. The tested standards are: 

• WS-AtomicTransaction and WS-Coordination over SOAP 1.1 and SOAP 1.2: 

checking commit, rollback and exceptions. At the end of each transaction the 

correct amounts have to be found in the database. 

5.2 Interoperability 

To each service endpoint a corresponding client has to be created that tests this 

specific service. Clients are also web services and all have the same interface 

containing a single tester operation accepting the URL of the service to be called. This 

tester operation executes a functional test on the service observing the correct 

behavior, handling the expected faults and checking for unexpected exceptions 

resulting from protocol implementation mismatches. The return value of the operation 

indicates the success of the test. This method makes it possible to pair each client and 

each service from all the products corresponding to a given test case, and thus 

automatic tests can be run to check interoperability. 

5.3 Development Support 

This aspect refers to how products support development of web services. Different 

products provide different ways of WS-* protocol configuration. The task was to 

summarize and evaluate these possibilities. 

6 Testing Environment 

The testing environment was predefined and every product had to be installed and 

tested accordingly. This section summarizes the environment and the main problems 

which had to be solved. 

The testing environment was built on five high-performance computers each of 

them capable of hosting multiple virtual machines. Each SOA product had to be 

installed on a separate virtual machine to avoid collisions with the others. The 

primary cause of collisions is that the different application servers use the same HTTP 

port, although in most cases these ports are reconfigurable. 

For security tests X.509 certificates had to be issued for the services, clients and 

STSs. The certificates were generated as self-signing certificates using OpenSSL. 

Then they were installed in Windows with special access rights for IIS to access the 

private keys. The JDK had to be upgraded with the Unlimited Strength Jurisdiction 

Policy Files to be able to use longer keys for security. The public certificates were 

imported into the trust-stores of the Java products using keytool from the JDK. To 

import private certificates into key-stores a separate tool named pkcs12import had to 

be downloaded. To configure a transaction coordinator for WCF some special 



8 Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi, Péter 

Risztics, László Bacsa 

packages had to be installed in Windows. Also the WS-AT coordinators required the 

public certificates of the coordinators to be installed into the other products’ trust-

stores. 

Predefined forms were specified for each task and each test. These forms had to be 

filled for every implementation. Additional forms were supplied for installation 

instructions and development problems. 

In order to automate tests the clients also had to be created as web services, all of 

them providing the same interface having a single operation accepting the URL of the 

service to call. A simple testing tool has been created to pair each client with each 

service for a given test-case, and the results have been summarized in a table for each 

test-case. 

7 Results and Evaluation 

In order to validate the testing environment, including product-dependent 

components, forms, the automated testing program and testing methodology a series 

of tests have been performed. The test-cases mentioned in section V were 

implemented in the selected products. Both the client and service of each test case 

were realized as web services. The results of the tests based on the testing method 

described in sub-section V.B. are grouped into the following categories: 

• Passed: the products participating in the test support the related standards and the 

result conforms to the expectations • Failed: the products participating in the test support the related standards, but the 

cooperation between the parties failed for some reason: the client and the service 

were unable to produce the expected result • Not supported: according to the documentation of the tested version of the 

product the given function is not supported • Not tested: this feature was not supported or was undocumented in the tested 

version of the product, but according to the documentation of a newer version, the 

functionality is now supported 

7.1 Compliance 

In the first test session both the client and the service came from the same SOA 

product. This kind of configuration makes it possible to check compliance to the 

selected functionalities. There were 15 test cases for each of the 6 SOA products. 

From the 90 test runs 63 have passed, and only 3 have failed. The number of 

unsupported test cases was also 3. The relatively high number (21) of the untested 

results demonstrates that the SOA products are evolving rapidly. 



Evaluation of WS-* Standards Based Interoperability of SOA Products 

for the Hungarian e-Government Infrastructure  9 

 

Fig. 1. Number of tests passed, failed, unsupported and untested grouped by products (products 

tested with themselves) 

It can be seen from Fig. 1. that WCF passed all the tests. GlassFish ESB and RAD7 

also perform very well. The reason for the many untested results of the other three 

products is that they lacked detailed documentation at the time of the testing. Since 

then new versions have been released of them and also their documentations have 

gone through improvements, therefore, the tests have to be implemented and executed 

again. 



10 Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi, Péter 

Risztics, László Bacsa 

 

Fig. 2. Number of tests passed, failed, unsupported and untested grouped by test cases 

(products tested with themselves) 

From Fig. 2. it can be inferred that the most supported standards are SOAP 1.1 and 

1.2, WS-Addressing 1.0, and MTOM. WS-SC and WS-AT do not perform very well; 

they had only 2 successful runs each. 

7.2 Interoperability 

In the second test session the test cases were executed for each client-service pair of 

the SOA products (including themselves). This configuration can be used to check 

interoperability between different products. Having 15 test cases for 36 client-service 

pairs the total sum of tests is 540. 



Evaluation of WS-* Standards Based Interoperability of SOA Products 

for the Hungarian e-Government Infrastructure  11 

 

Fig. 3. Number of tests passed, failed, unsupported and untested grouped by products 

as services (products tested with each other) 

From Fig. 3. it can be seen that the results are very similar to the ones before, but 

more tests have failed. This means, that although the products perform well with 

themselves, there are still problems when communicating with the others. Another 

interesting thing to note is that GlassFish ESB became the top one and WCF slid 

down to the third place. The reason for this is that GlassFish ESB is more permissive 

with the protocols, e.g. if a web service call having multiple MIME parts arrives, it 

will still be accepted even if MTOM is not enabled. WCF on the other hand is much 

stricter, and rejects every call that does not conform to the specified configuration. 



12 Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi, Péter 

Risztics, László Bacsa 

 

Fig. 4. Number of tests passed, failed, unsupported and untested grouped by test cases 

(products tested with each other) 

Fig. 4. shows the results grouped by the test cases. It can be noted that the most and 

least supported standards are the same as before. 

7.3 Development support 

For maintainable and interoperable development it is essential to have support for 

generating client proxies and service implementations from a WSDL. WCF has a tool 

named SvcUtil.exe, which generates service contracts as well as application 

configurations. JDK contains a similar tool named wsimport that does the same (less 

the configuration files) in the Java world. In the case of Metro the WSDL containing 

the bindings and policies serves directly as configuration file, too. Other JAX-WS 

API implementations usually rely also on wsimport, however, in most cases the 

configuration has to be done manually due to lack of built-in tool support. 

WCF and JAX-WS implementations automatically generate WSDL-s for the 

deployed service endpoints. Authors have found that WS-Policy support is essential 

for interoperability since more complicated standards like WS-SecureConversation 

require many parameters, and setting them manually in a custom configuration to 

match the required values is very difficult and often results in unexpected errors. 

Some older SOA products lacked WS-Policy support, but the current versions of the 

examined products all perform very well regarding this aspect. 

The different products provide different ways of WS-* standards configuration. 

These were mentioned during the introduction of the SOA products. The two main 



Evaluation of WS-* Standards Based Interoperability of SOA Products 

for the Hungarian e-Government Infrastructure  13 

methods are either the direct usage of WS-Policy or using a custom XML 

configuration file. In the former case it is useful to have pre-defined policies or 

graphical support for policy generation. In the latter case a tool is needed to convert 

between the custom configuration and WS-Policies. 

It is advisable to keep the program code independent of the applied protocols; 

therefore a separate configuration is useful. In most cases this can be achieved. 

Unfortunately, JAX-WS raises some protocols to programming level: the SOAP 

version, MTOM and WS-Addressing features are all selected by Java annotations, 

however, in some cases these can be overridden in configuration files. 

JAX-WS provides a portable API for web services in the Java world, however, 

configuration of WS-* standards is out of scope resulting in vendor-dependent 

configuration solutions. This also makes interoperability harder as it is difficult to find 

the exact match for a specific configuration in another product. 

7.4 Evaluation 

The applied testing methodology is very similar to the one used in WSTF, but our 

testing environment supports automated tests, too. The test cases are not intended to 

formally check conformance to specific standards. The focus is mainly on achieving 

interoperability based on typical application patterns. From the implementations and 

documentations of these patterns new applications can be easily created. The test 

cases cover all the service level requirements of the Hungarian e-Government. 

When a new version of a product was released during the testing phase, we 

immediately switched to that one so that we could always have the most current 

results. The tests ended at the end of 2008. Newer versions of the products released 

since then have to be retested, but it would take much less effort than the original 

tests. Some of the products were already mature enough in 2008 to pass most of the 

test cases. 

Implementing the test cases helped us to learn the peculiarities of the selected 

products, and now we have a broader view of the different development methods. We 

have the virtual machines running the products, the source codes of each test case and 

nearly 400 pages of documentation. Based on this documentation the test environment 

and all the test cases can be reproduced. 

8 Conclusions and Future Work 

When selecting mature SOA products for e-Government application, a 

methodology of assessment, including test-case specifications and a flexible, 

automated testing environment is needed. This paper has shown a test bed suitable to 

assess interoperability of SOA products. The test cases are reproducible and the 

testing environment is flexible enough for adding a new product and having it tested 

with all the others. The automated tests make collecting the results easier. We also 

evaluated our results of tests on products of several major vendors. 

The test results published in this paper only demonstrate the suitability of the 

testing framework for assessing interoperability based on WS-* standards. Our 



14 Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi, Péter 

Risztics, László Bacsa 

intention was not yet the ranking the tested SOA products, although, we have found 

that some SOA products are mature enough to fulfill the HeGF requirements. We 

would like to introduce further test aspects such as performance and stress tests. 

The tested SOA products use different configuration methods. Based on a product-

independent model, a code generator tool could be used to produce directly 

interoperable configurations. The construction of a meta-model and a tool has been 

started and some of its functions are already under test. This tool is also for generating 

common administration and management components, and also functional test cases 

for e-Government services. The platform-independent models of these services and 

the code generators producing the required components could be part of a service 

registry to make development easier. 

As it was shown in section II, WSTF has a similar testing methodology. We have the 

most development experience in WCF and GlassFish ESB, which seem to be a 

shortage of their profile. Cooperation with them could be mutually beneficial. 

References 

[1] WS-I Basic Profile, http://www.ws-i.org/, accessed: June 11, 2009. 

[2] Microsoft, Web Services Interoperability Plug-Fest, http://www.mssoapinterop.org/ilab/, 
accessed: June 11, 2009. 

[3] Web Services Test Forum, http://www.wstf.org/, accessed: June 11, 2009. 

[4] Apache, Project Stonehenge, http://wiki.apache.org/incubator/StonehengeProposal, last 
access: June 11, 2009. 

[5] Senthil Kumar, K. M.; Das, A. S. and Padmanabhuni, S. “WS-I Basic Profile: a 
practitioner's view”, Proc. IEEE International Conference on Web Services, 2004, pp. 17-
24 

[6] Kuppuraju, S.; Kumar, A. & Kumari, G. P. “Case Study to Verify the Interoperability of a 
Service Oriented Architecture Stack”, Proc. IEEE International Conference on Services 
Computing SCC 2007, 2007, pp. 678-679 

[7] European Interoperability Framework, http://ec.europa.eu/idabc/en/document/7728, 
accessed: June 11, 2009. 

[8] Saekow, A. & Boonmee, C. “Towards a Practical Approach for Electronic Government 
Interoperability Framework (e-GIF)”, Proc. 42nd Hawaii International Conference on 
System Sciences HICSS '09, 2009, pp. 1-9 

[9] Estevez, E. & Janowski, T. “Government-Enterprise Ecosystem Gateway (G-EEG) for 
Seamless e-Government”,  Proc. 40th Annual Hawaii International Conference on System 
Sciences HICSS 2007, 2007, pp. 101-110 

[10] E-public administration 2010 Strategy, 
http://www.ekk.gov.hu/hu/ekk/strategia/egovstrategy.pdf, accessed: June 14, 2009. 

[11] United Nations e-Government Survey 2008, From e-Government to Connected 
Governance, United Nations, New York, 2008. 

[12] US Government, Federal Enterprise Architecture, http://www.whitehouse.gov/omb/e-
gov/fea/, accessed: June 14, 2009. 

[13] German Government, “Standards and Architectures for e-Government Applications 
(SAGA) 4.0”, Marz 2008, http://www.kbst.bund.de/saga, accessed: June 14, 2009. 

[14] E_Közgazgatási Követelménytár (in Hungarian); http://kovetelmenytar.complex.hu/, 
accessed: June 14, 2009. 

 


