
HAL Id: hal-01056561
https://inria.hal.science/hal-01056561

Submitted on 20 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Energy-Efficient FPGA-Based Packet Processing
Framework

Daniel Horvath, Imre Bertalan, Istvan Moldován, Tuan Anh Trinh

To cite this version:
Daniel Horvath, Imre Bertalan, Istvan Moldován, Tuan Anh Trinh. An Energy-Efficient FPGA-Based
Packet Processing Framework. 16th EUNICE/IFIP WG 6.6 Workshop on Networked Services and
Applications - Engineering, Control and Management (EUNICE), Jun 2010, Trondheim, Norway.
pp.31-40, �10.1007/978-3-642-13971-0_4�. �hal-01056561�

https://inria.hal.science/hal-01056561
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Energy-Efficient FPGA-Based Packet Processing

Framework*

Dániel Horváth1, Imre Bertalan1, István Moldován1,

Tuan Anh Trinh2

Budapest University of Technology and Economics
1Inter-University Cooperative Research Centre for Telecommunications and Informatics,

2Department of Telecommunications and Mediainformatics

Magyar Tudósok krt. 2, 1117 Budapest, Hungary
{horvathd, emerybim, moldovan, trinh}@tmit.bme.hu

Abstract. Modern packet processing hardware (e.g. IPv6-supported routers)

demands high processing power, while it also should be power-efficient. In this

paper we present an architecture for high-speed packet processing with a

hierarchical chip-level power management that minimizes the energy

consumption of the system. In particular, we present a modeling framework that

provides an easy way to create new networking applications on an FPGA based

board. The development environment consists of a modeling environment,

where the new application is modeled in SystemC. Furthermore, our power

management is modeled and tested against different traffic loads through

extensive simulation analysis. Our results show that our proposed solution can

help to reduce the energy consumption significantly in a wide range of traffic

scenarios.

Keywords: energy management, packet processing.

1 Introduction

The future communication systems must meet several, often conflicting

requirements. Such requirements are the ever-growing processing power while

keeping the energy consumption down. Scalability is required without increasing the

complexity. Flexibility of the software at the speed of the hardware is a requirement

as well. And of course all of this at low price.

Requirements for the increased complexity of hardware design lead to a way of

designing chips, where Composability, Predictability and Dependability need to be

taken into account. Composability enables the development of stable software for

very large systems by ensuring that parts of the software can be developed and

verified separately. Predictability is the ensuring of real-time requirements on a

device. Tools that calculate the timing behavior enable the correct design and scaling

* The research leading to these results has received funding from the ARTEMIS Joint

Undertaking under grant agreement n° 100029 and from the Hungarian National Office for

Research and Technology (NKTH).

of systems need to be used to ensure that the real-time conditions are met. Last but not

least, dependability relates to the behavior of the system in case of errors and

problems during operation.

FPGAs are used in the prototyping of the devices but as the price of larger FPGAs

become accessible, they are considered as a design alternative. For special functions

that are not deployed in large quantities in the network, and which require very fast

processing such as network monitoring applications, firewalls etc. an FPGA based

design provides flexibility and the required performance at reasonable price.

Power consumption is also of major concern in future packet processing

architectures. We address this topic with a hierarchical power management that

minimizes the energy consumption at chip level.

The aim of our work is to provide a toolchain which accelerates the development

process of network applications on FPGA. The toolchain will provide a set of

hardware modules which builds up a variety of network devices. Key use-cases are

switching, routing devices, a NAT device, a firewall/deep packet inspector, and a

traffic loopback device.

For design space exploration and to validate the design, a SystemC [5] based

modeling environment is used. The results of the SystemC modeling can be used to

construct the final hardware models and the corresponding software. The available

hardware components will also be available in generic hardware description language

(Verilog/VHDL) making possible the synthesis of the hardware. The toolchain will

also provide the top-level hardware model. The modules required for the generic

networking applications have been selected by identifying the most important use

cases.

This paper is structured as follows. Section 2 we describe the generic architecture

and its power efficiency considerations are detailed in Section 3. The simulation and

results obtained from it is shown in Section 4. Section 5 concludes the paper.

2 Packet Processing Architecture

The development of the new applications is also assisted by a number of available

hardware component models that can be used for generic networking application

development. The already available components define a generic packet

processing/forwarding mechanism with extensible filtering and processing properties.

Networking applications can be composed from predefined modules and custom

modules. Example predefined modules are e.g. MAC-layer input and output,

switching fabric, and packet scheduler. The behavior of the network devices can be

further customized by adding custom modules that apply application-specific

operations at different stages of packet processing. For easy integration well defined

interfaces are used.

The packet processing framework provides the background for new application

development. Its extensible, modular structure is designed to allow easy integration of

application-specific header operations at the ingress and egress. A method for

buffering the packet payload is also provided.

2.1 Background

In the literature, we have found similar work dealing with packet processing on

FPGA-based systems. Notably, we would mention the work of D. Antos et al. [1] on

the design of lookup machine of a hardware router for IPv6 and IPv4 packet routing

with operations are performed by FPGA, since FPGA-based implementations are an

attractive option for implementing embedded applications. In this framework, part of

the packet switching functionality is moved into the hardware accelerator, step by

step. This allows keeping the complete functionality all the time, only increasing the

overall speed of the system during the whole development process. D. Teuchert et al.

[6] also dealt with FPGA based IPv6 lookup using trie-based method. Another

interesting application of FPGA-based design is Gigabit Ethernet applications [2] due

to the fact that FPGA-based implementations offer the possibility of changing the

functionality of the platform to perform different tasks and high packet-processing

rate capabilities. In particular, the authors of [2] proposed a versatile FPGA-based

hardware platform for Gigabit Ethernet applications. By introducing controlled

degradation to the network traffic, the authors provided an in-depth study on real-

application behavior under a wide range of specific network conditions, such as file

transfer, Internet telephony (VoIP) and video streaming. However, in those previous

works, energy-efficiency of the system is not yet properly dealt with. As energy

efficiency has become a key performance metric, techniques that can quickly and

accurately obtain the energy performance of these soft processors are needed. In [3],

this issue is addressed and methods for rapid energy estimation of computations on

FPGA-based soft processors are provided. The authors propose a methodology based

on instruction level energy profiling by analyzing the energy dissipation of various

instructions with an energy estimator is built using this information. The paper deals

with the estimation of energy consumption of computations on FPGA platforms, but

does not propose any methods to manage and optimize it. Kennedy et al. [10] provide

a frequency scaling based low power lookup method, but they optimize only the

lookup function. We would also mention NetFPGA platforms that are largely in use

in academic research to test for ideas and implement them on flexible hardware.

Given that background, in this paper, we propose a practical energy management

module on FPGA platform and validate our proposed solution through simulation

analysis by using SystemC.

2.2 Packet processing pipeline

The packet processing pipeline is similar to the model recommended by Xilinx [9]

and the model used by the Liberouter project [8]. The packet headers are processed in

the pipeline while the packet payload needs to be buffered as shown on Fig. 1. In our

initial work the buffering of packets is realized using the on-chip RAM referred as

Block RAMs or BRAMs available in the FPGA. In the final design the packets will

be buffered in an external DDR RAM. Since the memory access can be the bottleneck

in our packet processing pipeline, we tried to avoid copying the packet. We have

decided to use the shared-memory packet forwarding model, this way avoiding

unnecessary copying of data. The model has a further advantage: even

multicasting/broadcasting can be done without actually copying the data.

The arriving packets are buffered, while their header is processed in the input

block. The input block applies the input filtering rules and sends the header to the

forwarding module. The routing/switching module is responsible to decide on which

interface the packet leave should. For flooding, broadcast and multicast multiple

interfaces may be selected. For different application types, different routing/switching

modules can be designed. After the decision, the packet can be output filtered, and the

header will go to an output header buffer at the egress port. The packet will be

assembled during transmission: when scheduled, the header will be sent from the

header buffer, while the payload will be read from the payload buffer.

����� ���������� �
�
�

Fig. 1. Generic packet processing framework

Each block has a local power manager, and together with the central power

manager an efficient power management solution is provided.

This packet processing pipeline illustrates an example packet forwarding design.

However, the design possibilities for new applications using the framework are

endless; based on the existing modules monitoring, firewall, routing and switching

applications can be created easily, while designing new modules any hardware-

assisted packet processing application can be developed quickly. These models are

generic, and planned for easy customization and implementation in other FPGA-based

platforms. Furthermore, their scalability is also taken into account. For most models

the scalability is ensured by design, providing cycle-accurate model of the hardware.

Some of the simulation models however require high processor usage and long

programming cycle. Their model is approximate.

2.3 Input and Output blocks

The incoming frames of data are to be stored in BRAMs available on the FPGA

during processing the header information. For receiving the information, we use input

modules (Fig. 2.). These per-port modules get the frames from the PHY. The bit-

stream is deserialized and then it is forwarded both to the input buffer and header

filters. The input filters perform the filtering action before reaching switch/router

module. Before new frames are received, buffer reservation is checked, whether there

are free slots available or not. A module called BRAM manager is responsible for the

management of the BRAM buffers associated to an input.

Fig. 2. Input port module Fig. 3. Output port module

The output module (Fig. 3.) is responsible for sending out the routed/switched

frames. To do this, the upper level modules (switches, routers) send the new packet

header with payload buffer information. The ingress port and BRAM address is

required to fetch the associated payload. The header information is stored in the

header buffer, which is processed in a FIFO basis. This buffer plays the role of the

output buffer, but since we do not want to copy the payload, only the headers are

queued. The header/payload multiplexer takes the headers from the FIFO, starts

sending them, and appends the payload data from the buffer indicated. The serializer

is preparing the packet in a format required for the PHY.

2.4 MAC or IP lookup module

The MAC learning and lookup module as well as the IP lookup module is designed

to be processor based. The module receives the destination MAC address to look it

up, and the source MAC address to learn (Fig. 4.). The IP lookup module receives the

destination IP address to look it up only. After the lookup either module returns the

egress port or ports in case of multicast, broadcast or flooding. The simplest models

would use a static local forwarding table; more complex models can use centralized

lookup tables based on CAMs (or TCAM) and for large routing tables a CPU based

lookup method can be used. The arbiter module is responsible for the access to the

common bus of the output FIFOs. The switch modules send the headers and

additional data to output stores. The arbiter enables them the access to the bus in a

round-robin way.

lookup

Fig. 4. Switch modules and the lookup engine

Fig. 5. Hierarchical power management

The fact that these modules are based on a CPU enables us to tune the duration of

the lookups. This is done by controlling the frequency. Reducing frequency means

power consumption reduction. In the implemented 4-port Ethernet switch, the CPU

has 4 different frequency steps, resulting 4 level of performance and 4 level of power

consumption.

3 Resource Management

The overall power requirement of a networking device can be reduced in several

ways. The most obvious method is to switch off the parts that are not used. For

example, switch off the interfaces that are not in use. Further energy can be saved by

introducing power levels in the system that can be achieved either by allowing

processors (or multiprocessor cores) to enter sleep mode or reducing the clock

frequency and core voltage [7]. Another approach is to use energy management at the

packet processing hardware level. This method requires that each module in the

pipeline has an enable pin, and each module is powered only for the time period its

operation is in need.

In a high-speed packet processing device the energy management should not

compromise the performance. Performance degradation results in additional delays,

which lead to traffic burstiness, jitter and increased end-to-end delays.

Our platform is designed to provide line-rate throughput on all interfaces. This

means, that although there is buffering for the payload and header, it is not necessary

to make copies of the payload, only the headers. Of course buffering may occur at the

output interfaces caused by traffic aggregated from different interfaces, but the

routing/switching must be designed to handle line-rate traffic from all input

interfaces. In other words, while a whole packet is received on an interface, the

routing/switching process should find the egress port to avoid delays on the output

port, even if there are packets at other interfaces that need to be serviced with priority.

In worst case scenario, 3 packets in other queues must be serviced before the round-

robin scheduler services the new packet. Thus, the processor speed should be always

selected according to the number of packets actually received.

The optimal energy management solution has the following requirements:

a) power up hardware components only for the time required

b) provide maximum energy efficiency by selecting the processing power

according to the traffic conditions

c) do not compromise the line-speed forwarding at any time

On the other hand, selecting the speed of a processor or starting/halting cores is not

practical and may not be feasible on a packet arrival basis (e.g. ~700ns on a 1Gbps

link vs. ~10�s change of the state of an StrongARM CPU [11]). Therefore we must

predict the traffic load for longer time period and make energy management decisions

on a larger time scale.

In our framework, we propose a hierarchical power management with two levels: a

central power manager that is connected to several local power managers. The local

power managers are responsible for the power management in their own domain,

called “power island” (see Fig. 5).

The central power manager provides user-manageable functions like disabling the

input/output port module and makes global decisions, while the local power managers

optimize the power dissipation micro-managing the units in the power island.

3.1 Lower level – packet processing line

Each module has a chip enable pin which is connected to a local power manager.

The different ports and port handling modules are connected to this local power

manager, forming several power islands. The enable signal of the local power

managers is collected in levels of hierarchy, and the upper level power manager is

responsible of handling the enable signal of the power islands.

Within a power island the local manager is responsible of enabling the modules of

the packet processing pipeline. Each module is powered only for its job, and it is

powered down after completion, keeping consumption at an optimal level. The PHY

layer is handled by a chip and is always on. These analogue and digital circuits are

responsible for the line coding and physical requirements of the different physical

layer standards. At a packet arrival they immediately inform the local managers that

packet processing starts, following modules in the pipeline need to be powered up.

Each module in the pipeline should be operating until the packet leaves the module

and the end-of-packet signal notifies the local power manager to switch it off. The

operation of the manager is optimal, as they micro-manage the pipeline to achieve

maximum performance and maximum power saving.

3.2 Higher level – administrative and power control

At a higher level, two main functionalities are performed: power management and

load-sensitive frequency scaling of lookup processors. The central manager presents a

power management interface for the management. Power management decisions such

as disabling interfaces are performed at this level. When the operator decides to

disable an interface or even a subsystem, the central power manager commands all

power islands related to the disabled subsystem to enter low power state.

Besides the resource management interface the central manager is also optimizing

the power management by managing the power of lookup/routing CPU cores. Setting

processing speed or waking up/shutting down CPU cores is performed according to

the offered load. In our model the CPU speed is modeled in 5 power states: the sleep

mode and 1..4× frequency mode (see Fig. 6.).

The maximum performance can be achieved running at 4× speed but of course it

also means higher dissipated energy. The network load is estimated according to the

Fig. 6. Processor power management

Fig. 7. Buffer Thresholds

input buffer utilization. We have defined 3 thresholds (Fig. 7.) for buffer utilization

and the CPU speed is increased or decreased whenever a threshold is crossed.

The two power management modes together provide a nearly optimal usage of

available resources while keeping the system performance nearly unaffected.

4 Simulations

The modeling framework has been implemented in SystemC 2.2.0. The simulated

hardware is a 4 port Ethernet switch model. The packet processing pipeline consists

of a filter for own MAC address, header processing and switch module. The switch

module uses a CPU based lookup where the CPU has 4 levels of speed. The switch

has low buffering capabilities: each port can buffer only 4 packets. This is a realistic

scenario for a Xilinx Spartan 3 FPGA without external RAM. The processing pipeline

has been designed with line-speed forwarding in mind, with bottlenecks only at the

egress ports, where traffic from different directions is mixed. Therefore the input

queuing permits 2 headers only. The simulations were performed using traffic

generators and sinks. To each port a traffic generator & sink is connected. Each traffic

generator generates traffic to all other sinks, with equal probability.

In the simulation we used 100Mbit Ethernet ports. The simulated traffic was

characterized by exponentially distributed inter-arrival times with expected values

from 2�s to 1ms. In each simulation the packet size was fixed 64, 128, 256, 512, 1024

or 1500 bytes. During the simulations we estimated the power saving and delay for

each module. As expected, the switch is capable of line speed processing, on all ports,

without blocking. Header processing is performed while the packet payload is still

received, and egress lookup should also be fast enough not to hold the processing

pipe.

4.1 Results

To assess the power savings realized by locally managing the enable pins of

different subsystems, we performed simulations with increasing traffic. To observe

the effect of packet sizes, we repeated the simulations for different typical packet

sizes. The obtained results are expressed as relative values compared to the “always

on” scenario which is considered 100% uptime. Fig. 8. shows the uptime of the

forwarding module in percentage compared to the “always on” scenario. This module

needs to be “on” the longest time in the pipe as it must wait the result of the lookup.

As expected, the gain decreases with the load on the network, but it is considerable

even for high loads. In an extreme case the active link without traffic can save 99% on

this module because it is powered off most of the time. Another example, the uptime

of the destination MAC address filter is shown on Fig. 9. This module performs a

simple operation; it can be “off” most of the time as it works on the headers only. The

higher the packet size the higher the energy gain. At least 60% can be saved on this

module.

Fig. 8. Uptime of a characteristic module in

the pipeline depending on packet size

Fig. 9. Uptime of the destination MAC

address filter depending on packet size

Fig. 10. Power saved with frequency tuning

on CPU depending on packet size
Fig. 11. Latency values for packets of 128

bytes

Then we simulated the gain of managing the power levels of the switching

processor. In order to keep the delay at minimum, we should only reduce the speed to

a level where it is not delaying packets. The processor is entering lower power mode

when the overall buffer utilization drops below a threshold. Scaling down the CPU

speed comes at a price: the CPU speed cannot be changed as often as the load

changes. Thus, the first packet(s) of a burst will be served at a lower speed,

introducing delays for the upcoming packets.

Again, simulations are repeated for different load levels and packet sizes. Besides

the power saving, we also show the mean and maximum delays introduced.

Fig. 10. shows the power saving achieved at the lookup processor as a percentage

of the always at highest performance scenario. The gain increases as the load

decreases, as expected. Also, the gain increases as the packet size decreases,

providing maximal gain when the overall utilization is the lowest. The gain can be as

high as 50%. An example for latency at 128 byte packet-size is shown on Fig. 11,

although the maximum delay is doubled, the average latency is close to the minimum,

meaning that only a few packets get delayed. As the load gets higher, the CPU is

running on higher performance step most of the time, handling small burst with

higher speed, and delay is still not increased. As the traffic further increases, the

buffers saturate, and some frames have to wait more, increasing the maximum delays.

5 Conclusions

In this paper we have presented a generic packet processing framework that can be

a background for different packet processing applications like switching, routing

filtering, monitoring etc. The framework is modular, which provides a scalable and

composable system. For design verification a simulation environment is used, which

provides cycle-accurate models for the components.

Using the simulation environment, we have designed an example switch

application, with modular input and output filtering pipeline. The energy efficient

operation is ensured by a hierarchical energy management. Results show that the

hardware is capable of packet processing at the line rate, still achieving up to 60%

gain in power for the simple modules, and in idle periods we can achieve a power

saving of up to 99%, depending on traffic. For more complex modules like the

forwarding module there is small gain at high loads, but again very high gain at low

loads. We have also shown that with CPU scaling we can get considerable gain at a

price of small increase in the traffic jitter.

Even further energy savings are possible by using dedicated hardware accelerators

for specific lookup and other CPU-intensive operations.

6 References

1. D. Antos, V. Rehak, J. Korenek: Hardware Router’s Lookup Machine and its Formal

Verification, ICN'2004 Conference Proceedings, 2004.
2. M. Ciobotaru, M. Ivanovici, R. Beuran, S. Stancu, Versatile FPGA-based Hardware

Platform for Gigabit Ethernet Applications, 6th Annual Postgraduate Symposium,

Liverpool, UK, June 27-28, 2005.

3. J. Ou, V. K. Prasanna, Rapid Energy Estimation of Computations on FPGA-based Soft

Processors, IEEE System-on-Chip Conference, 2004.

4. Werner M., Richling J., Milanovic N., Stantchev V.: Composability Concept for

Dependable Embedded Systems, Proceedings of the International Workshop on

Dependable Embedded Systems at the 22nd Symposium on Reliable Distributed Systems

(SRDS 2003), Florence, Italy, 2003.

5. OSCI SystemC 2.2.0 Documentation: User’s Guide, Functional Specifications, Language

Reference Manual. Online: http://www.systemc.org/

6. D. Teuchert, S. Hauger: A Pipelined IP Address Lookup Module for 100 Gbps Line Rates

and beyond, The Internet of Future, pp. 148--157., ISBN 978-3-642-03699-6 (2009)

7. Intel White Paper: Enhanced Intel SpeedStep Technology for the Intel Pentium M

Processor, Online: ftp://download.intel.com/design/network/papers/30117401.pdf, March

2004.

8. Liberouter project homepage, http://www.liberouter.org/

9. Nick Possley, Traffic Management in Xilinx FPGAs, White Paper, April 10, 2006

10. A. Kennedy et. al., Low Power Architecture for High Speed Packet Classification,

ANCS’08, November 6–7, 2008, San Jose, CA, USA.

11. A. Iranli and M. Pedram: System-level power management: An overview, In: The VLSI

Handbook Second Edition, Edited by W-K. Chen, Taylor and Francis, December 2006

