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Abstract. Modern packet processing hardware (e.g. IPv6-supported routers) 

demands high processing power, while it also should be power-efficient. In this 

paper we present an architecture for high-speed packet processing with a 

hierarchical chip-level power management that minimizes the energy 

consumption of the system. In particular, we present a modeling framework that 

provides an easy way to create new networking applications on an FPGA based 

board. The development environment consists of a modeling environment, 

where the new application is modeled in SystemC. Furthermore, our power 

management is modeled and tested against different traffic loads through 

extensive simulation analysis. Our results show that our proposed solution can 

help to reduce the energy consumption significantly in a wide range of traffic 

scenarios. 
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1 Introduction 

The future communication systems must meet several, often conflicting 

requirements. Such requirements are the ever-growing processing power while 

keeping the energy consumption down. Scalability is required without increasing the 

complexity. Flexibility of the software at the speed of the hardware is a requirement 

as well. And of course all of this at low price. 

Requirements for the increased complexity of hardware design lead to a way of 

designing chips, where Composability, Predictability and Dependability need to be 

taken into account. Composability enables the development of stable software for 

very large systems by ensuring that parts of the software can be developed and 

verified separately. Predictability is the ensuring of real-time requirements on a 

device. Tools that calculate the timing behavior enable the correct design and scaling 
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of systems need to be used to ensure that the real-time conditions are met. Last but not 

least, dependability relates to the behavior of the system in case of errors and 

problems during operation. 

FPGAs are used in the prototyping of the devices but as the price of larger FPGAs 

become accessible, they are considered as a design alternative. For special functions 

that are not deployed in large quantities in the network, and which require very fast 

processing such as network monitoring applications, firewalls etc. an FPGA based 

design provides flexibility and the required performance at reasonable price. 

Power consumption is also of major concern in future packet processing 

architectures. We address this topic with a hierarchical power management that 

minimizes the energy consumption at chip level. 

The aim of our work is to provide a toolchain which accelerates the development 

process of network applications on FPGA. The toolchain will provide a set of 

hardware modules which builds up a variety of network devices. Key use-cases are 

switching, routing devices, a NAT device, a firewall/deep packet inspector, and a 

traffic loopback device. 

For design space exploration and to validate the design, a SystemC [5] based 

modeling environment is used. The results of the SystemC modeling can be used to 

construct the final hardware models and the corresponding software. The available 

hardware components will also be available in generic hardware description language 

(Verilog/VHDL) making possible the synthesis of the hardware. The toolchain will 

also provide the top-level hardware model. The modules required for the generic 

networking applications have been selected by identifying the most important use 

cases. 

This paper is structured as follows. Section 2 we describe the generic architecture 

and its power efficiency considerations are detailed in Section 3. The simulation and 

results obtained from it is shown in Section 4. Section 5 concludes the paper. 

2 Packet Processing Architecture 

The development of the new applications is also assisted by a number of available 

hardware component models that can be used for generic networking application 

development. The already available components define a generic packet 

processing/forwarding mechanism with extensible filtering and processing properties. 

Networking applications can be composed from predefined modules and custom 

modules. Example predefined modules are e.g. MAC-layer input and output, 

switching fabric, and packet scheduler. The behavior of the network devices can be 

further customized by adding custom modules that apply application-specific 

operations at different stages of packet processing. For easy integration well defined 

interfaces are used. 

The packet processing framework provides the background for new application 

development. Its extensible, modular structure is designed to allow easy integration of 

application-specific header operations at the ingress and egress. A method for 

buffering the packet payload is also provided. 



2.1 Background 

In the literature, we have found similar work dealing with packet processing on 

FPGA-based systems. Notably, we would mention the work of D. Antos et al. [1] on 

the design of lookup machine of a hardware router for IPv6 and IPv4 packet routing 

with operations are performed by FPGA, since FPGA-based implementations are an 

attractive option for implementing embedded applications. In this framework, part of 

the packet switching functionality is moved into the hardware accelerator, step by 

step. This allows keeping the complete functionality all the time, only increasing the 

overall speed of the system during the whole development process. D. Teuchert et al. 

[6] also dealt with FPGA based IPv6 lookup using trie-based method. Another 

interesting application of FPGA-based design is Gigabit Ethernet applications [2] due 

to the fact that FPGA-based implementations offer the possibility of changing the 

functionality of the platform to perform different tasks and high packet-processing 

rate capabilities. In particular, the authors of [2] proposed a versatile FPGA-based 

hardware platform for Gigabit Ethernet applications. By introducing controlled 

degradation to the network traffic, the authors provided an in-depth study on real-

application behavior under a wide range of specific network conditions, such as file 

transfer, Internet telephony (VoIP) and video streaming. However, in those previous 

works, energy-efficiency of the system is not yet properly dealt with. As energy 

efficiency has become a key performance metric, techniques that can quickly and 

accurately obtain the energy performance of these soft processors are needed. In [3], 

this issue is addressed and methods for rapid energy estimation of computations on 

FPGA-based soft processors are provided. The authors propose a methodology based 

on instruction level energy profiling by analyzing the energy dissipation of various 

instructions with an energy estimator is built using this information. The paper deals 

with the estimation of energy consumption of computations on FPGA platforms, but 

does not propose any methods to manage and optimize it. Kennedy et al. [10] provide 

a frequency scaling based low power lookup method, but they optimize only the 

lookup function. We would also mention NetFPGA platforms that are largely in use 

in academic research to test for ideas and implement them on flexible hardware. 

Given that background, in this paper, we propose a practical energy management 

module on FPGA platform and validate our proposed solution through simulation 

analysis by using SystemC. 

2.2 Packet processing pipeline 

The packet processing pipeline is similar to the model recommended by Xilinx [9] 

and the model used by the Liberouter project [8]. The packet headers are processed in 

the pipeline while the packet payload needs to be buffered as shown on Fig. 1. In our 

initial work the buffering of packets is realized using the on-chip RAM referred as 

Block RAMs or BRAMs available in the FPGA. In the final design the packets will 

be buffered in an external DDR RAM. Since the memory access can be the bottleneck 

in our packet processing pipeline, we tried to avoid copying the packet. We have 

decided to use the shared-memory packet forwarding model, this way avoiding 



unnecessary copying of data. The model has a further advantage: even 

multicasting/broadcasting can be done without actually copying the data. 

The arriving packets are buffered, while their header is processed in the input 

block. The input block applies the input filtering rules and sends the header to the 

forwarding module. The routing/switching module is responsible to decide on which 

interface the packet leave should. For flooding, broadcast and multicast multiple 

interfaces may be selected. For different application types, different routing/switching 

modules can be designed. After the decision, the packet can be output filtered, and the 

header will go to an output header buffer at the egress port. The packet will be 

assembled during transmission: when scheduled, the header will be sent from the 

header buffer, while the payload will be read from the payload buffer. 

����� ���������� �
�
�

 

Fig. 1. Generic packet processing framework 

Each block has a local power manager, and together with the central power 

manager an efficient power management solution is provided. 

This packet processing pipeline illustrates an example packet forwarding design. 

However, the design possibilities for new applications using the framework are 

endless; based on the existing modules monitoring, firewall, routing and switching 

applications can be created easily, while designing new modules any hardware-

assisted packet processing application can be developed quickly. These models are 

generic, and planned for easy customization and implementation in other FPGA-based 

platforms. Furthermore, their scalability is also taken into account. For most models 

the scalability is ensured by design, providing cycle-accurate model of the hardware. 

Some of the simulation models however require high processor usage and long 

programming cycle. Their model is approximate. 

2.3 Input and Output blocks 

The incoming frames of data are to be stored in BRAMs available on the FPGA 

during processing the header information. For receiving the information, we use input 

modules (Fig. 2.). These per-port modules get the frames from the PHY. The bit-

stream is deserialized and then it is forwarded both to the input buffer and header 

filters. The input filters perform the filtering action before reaching switch/router 



module. Before new frames are received, buffer reservation is checked, whether there 

are free slots available or not. A module called BRAM manager is responsible for the 

management of the BRAM buffers associated to an input. 

Fig. 2. Input port module Fig. 3. Output port module 

The output module (Fig. 3.) is responsible for sending out the routed/switched 

frames. To do this, the upper level modules (switches, routers) send the new packet 

header with payload buffer information. The ingress port and BRAM address is 

required to fetch the associated payload. The header information is stored in the 

header buffer, which is processed in a FIFO basis. This buffer plays the role of the 

output buffer, but since we do not want to copy the payload, only the headers are 

queued. The header/payload multiplexer takes the headers from the FIFO, starts 

sending them, and appends the payload data from the buffer indicated. The serializer 

is preparing the packet in a format required for the PHY. 

2.4 MAC or IP lookup module 

The MAC learning and lookup module as well as the IP lookup module is designed 

to be processor based. The module receives the destination MAC address to look it 

up, and the source MAC address to learn (Fig. 4.). The IP lookup module receives the 

destination IP address to look it up only. After the lookup either module returns the 

egress port or ports in case of multicast, broadcast or flooding. The simplest models 

would use a static local forwarding table; more complex models can use centralized 

lookup tables based on CAMs (or TCAM) and for large routing tables a CPU based 

lookup method can be used. The arbiter module is responsible for the access to the 

common bus of the output FIFOs. The switch modules send the headers and 

additional data to output stores. The arbiter enables them the access to the bus in a 

round-robin way. 

lookup

 
Fig. 4. Switch modules and the lookup engine 

 
Fig. 5. Hierarchical power management 

The fact that these modules are based on a CPU enables us to tune the duration of 

the lookups. This is done by controlling the frequency. Reducing frequency means 

power consumption reduction. In the implemented 4-port Ethernet switch, the CPU 



has 4 different frequency steps, resulting 4 level of performance and 4 level of power 

consumption. 

3 Resource Management 

The overall power requirement of a networking device can be reduced in several 

ways. The most obvious method is to switch off the parts that are not used. For 

example, switch off the interfaces that are not in use. Further energy can be saved by 

introducing power levels in the system that can be achieved either by allowing 

processors (or multiprocessor cores) to enter sleep mode or reducing the clock 

frequency and core voltage [7]. Another approach is to use energy management at the 

packet processing hardware level. This method requires that each module in the 

pipeline has an enable pin, and each module is powered only for the time period its 

operation is in need. 

In a high-speed packet processing device the energy management should not 

compromise the performance. Performance degradation results in additional delays, 

which lead to traffic burstiness, jitter and increased end-to-end delays. 

Our platform is designed to provide line-rate throughput on all interfaces. This 

means, that although there is buffering for the payload and header, it is not necessary 

to make copies of the payload, only the headers. Of course buffering may occur at the 

output interfaces caused by traffic aggregated from different interfaces, but the 

routing/switching must be designed to handle line-rate traffic from all input 

interfaces. In other words, while a whole packet is received on an interface, the 

routing/switching process should find the egress port to avoid delays on the output 

port, even if there are packets at other interfaces that need to be serviced with priority. 

In worst case scenario, 3 packets in other queues must be serviced before the round-

robin scheduler services the new packet. Thus, the processor speed should be always 

selected according to the number of packets actually received. 

The optimal energy management solution has the following requirements: 

a) power up hardware components only for the time required 

b) provide maximum energy efficiency by selecting the processing power 

according to the traffic conditions 

c) do not compromise the line-speed forwarding at any time 

On the other hand, selecting the speed of a processor or starting/halting cores is not 

practical and may not be feasible on a packet arrival basis (e.g. ~700ns on a 1Gbps 

link vs. ~10�s change of the state of an StrongARM CPU [11]). Therefore we must 

predict the traffic load for longer time period and make energy management decisions 

on a larger time scale. 

In our framework, we propose a hierarchical power management with two levels: a 

central power manager that is connected to several local power managers. The local 

power managers are responsible for the power management in their own domain, 

called “power island” (see Fig. 5). 

The central power manager provides user-manageable functions like disabling the 

input/output port module and makes global decisions, while the local power managers 

optimize the power dissipation micro-managing the units in the power island. 



3.1 Lower level – packet processing line 

Each module has a chip enable pin which is connected to a local power manager. 

The different ports and port handling modules are connected to this local power 

manager, forming several power islands. The enable signal of the local power 

managers is collected in levels of hierarchy, and the upper level power manager is 

responsible of handling the enable signal of the power islands. 

Within a power island the local manager is responsible of enabling the modules of 

the packet processing pipeline. Each module is powered only for its job, and it is 

powered down after completion, keeping consumption at an optimal level. The PHY 

layer is handled by a chip and is always on. These analogue and digital circuits are 

responsible for the line coding and physical requirements of the different physical 

layer standards. At a packet arrival they immediately inform the local managers that 

packet processing starts, following modules in the pipeline need to be powered up. 

Each module in the pipeline should be operating until the packet leaves the module 

and the end-of-packet signal notifies the local power manager to switch it off. The 

operation of the manager is optimal, as they micro-manage the pipeline to achieve 

maximum performance and maximum power saving. 

3.2 Higher level – administrative and power control 

At a higher level, two main functionalities are performed: power management and 

load-sensitive frequency scaling of lookup processors. The central manager presents a 

power management interface for the management. Power management decisions such 

as disabling interfaces are performed at this level. When the operator decides to 

disable an interface or even a subsystem, the central power manager commands all 

power islands related to the disabled subsystem to enter low power state. 

Besides the resource management interface the central manager is also optimizing 

the power management by managing the power of lookup/routing CPU cores. Setting 

processing speed or waking up/shutting down CPU cores is performed according to 

the offered load. In our model the CPU speed is modeled in 5 power states: the sleep 

mode and 1..4× frequency mode (see Fig. 6.). 

The maximum performance can be achieved running at 4× speed but of course it 

also means higher dissipated energy. The network load is estimated according to the 

 
Fig. 6. Processor power management 

 
Fig. 7. Buffer Thresholds 



input buffer utilization. We have defined 3 thresholds (Fig. 7.) for buffer utilization 

and the CPU speed is increased or decreased whenever a threshold is crossed. 

The two power management modes together provide a nearly optimal usage of 

available resources while keeping the system performance nearly unaffected. 

4 Simulations 

The modeling framework has been implemented in SystemC 2.2.0. The simulated 

hardware is a 4 port Ethernet switch model. The packet processing pipeline consists 

of a filter for own MAC address, header processing and switch module. The switch 

module uses a CPU based lookup where the CPU has 4 levels of speed. The switch 

has low buffering capabilities: each port can buffer only 4 packets. This is a realistic 

scenario for a Xilinx Spartan 3 FPGA without external RAM. The processing pipeline 

has been designed with line-speed forwarding in mind, with bottlenecks only at the 

egress ports, where traffic from different directions is mixed. Therefore the input 

queuing permits 2 headers only. The simulations were performed using traffic 

generators and sinks. To each port a traffic generator & sink is connected. Each traffic 

generator generates traffic to all other sinks, with equal probability. 

In the simulation we used 100Mbit Ethernet ports. The simulated traffic was 

characterized by exponentially distributed inter-arrival times with expected values 

from 2�s to 1ms. In each simulation the packet size was fixed 64, 128, 256, 512, 1024 

or 1500 bytes. During the simulations we estimated the power saving and delay for 

each module. As expected, the switch is capable of line speed processing, on all ports, 

without blocking. Header processing is performed while the packet payload is still 

received, and egress lookup should also be fast enough not to hold the processing 

pipe. 

4.1 Results 

To assess the power savings realized by locally managing the enable pins of 

different subsystems, we performed simulations with increasing traffic. To observe 

the effect of packet sizes, we repeated the simulations for different typical packet 

sizes. The obtained results are expressed as relative values compared to the “always 

on” scenario which is considered 100% uptime. Fig. 8. shows the uptime of the 

forwarding module in percentage compared to the “always on” scenario. This module 

needs to be “on” the longest time in the pipe as it must wait the result of the lookup. 

As expected, the gain decreases with the load on the network, but it is considerable 

even for high loads. In an extreme case the active link without traffic can save 99% on 

this module because it is powered off most of the time. Another example, the uptime 

of the destination MAC address filter is shown on Fig. 9. This module performs a 

simple operation; it can be “off” most of the time as it works on the headers only. The 

higher the packet size the higher the energy gain. At least 60% can be saved on this 

module. 



 
Fig. 8. Uptime of a characteristic module in 

the pipeline depending on packet size 

Fig. 9. Uptime of the destination MAC 

address filter depending on packet size 

 
Fig. 10. Power saved with frequency tuning 

on CPU depending on packet size 
Fig. 11. Latency values for packets of 128 

bytes 

Then we simulated the gain of managing the power levels of the switching 

processor. In order to keep the delay at minimum, we should only reduce the speed to 

a level where it is not delaying packets. The processor is entering lower power mode 

when the overall buffer utilization drops below a threshold. Scaling down the CPU 

speed comes at a price: the CPU speed cannot be changed as often as the load 

changes. Thus, the first packet(s) of a burst will be served at a lower speed, 

introducing delays for the upcoming packets. 

Again, simulations are repeated for different load levels and packet sizes. Besides 

the power saving, we also show the mean and maximum delays introduced. 

Fig. 10. shows the power saving achieved at the lookup processor as a percentage 

of the always at highest performance scenario. The gain increases as the load 

decreases, as expected. Also, the gain increases as the packet size decreases, 

providing maximal gain when the overall utilization is the lowest. The gain can be as 

high as 50%. An example for latency at 128 byte packet-size is shown on Fig. 11, 

although the maximum delay is doubled, the average latency is close to the minimum, 

meaning that only a few packets get delayed. As the load gets higher, the CPU is 

running on higher performance step most of the time, handling small burst with 

higher speed, and delay is still not increased. As the traffic further increases, the 

buffers saturate, and some frames have to wait more, increasing the maximum delays. 



5 Conclusions 

In this paper we have presented a generic packet processing framework that can be 

a background for different packet processing applications like switching, routing 

filtering, monitoring etc. The framework is modular, which provides a scalable and 

composable system. For design verification a simulation environment is used, which 

provides cycle-accurate models for the components. 

Using the simulation environment, we have designed an example switch 

application, with modular input and output filtering pipeline. The energy efficient 

operation is ensured by a hierarchical energy management. Results show that the 

hardware is capable of packet processing at the line rate, still achieving up to 60% 

gain in power for the simple modules, and in idle periods we can achieve a power 

saving of up to 99%, depending on traffic. For more complex modules like the 

forwarding module there is small gain at high loads, but again very high gain at low 

loads. We have also shown that with CPU scaling we can get considerable gain at a 

price of small increase in the traffic jitter. 

Even further energy savings are possible by using dedicated hardware accelerators 

for specific lookup and other CPU-intensive operations. 
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