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Enabling P2P Gaming with Network Coding
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Abstract. The popularity of online multiplayer games is ever-growifigadi-
tionally, networked games have relied on the client-semvadel for information
sharing among players, putting a tremendous burden on thersend creating
a single point of failure. Recently, there have been effartsmploy the peer-to-
peer paradigm for gaming purposes, however, latencytsanaction games still
pose a formidable challenge. The main contribution of thisey is the design of
a novel peer-to-peer gaming framework based on randonr livetevork coding.
We evaluate the performance of this framework, and show hawn@chanism
achieves a significant reduction in network latency with albaata traffic over-
head. We believe that our approach can be the foundationrafyapeer-to-peer
communication architecture for networked games.

1 Introduction

Playing computer games is the favorite pastime of hundrédsltions of people. The
population of players is very diverse, men and women, caildmd grandparents, con-
struction workers and university professors all have aéany to use their computer
for entertainment purposes. In the past decade, onlineggaired popularity; specif-
ically, multiplayer online games are the most successtudhss Call of Duty (a first-
person shooter) or World of Warcraft (a role-playing ganid) Designing an archi-
tecture which meets the strict requirements of online ggpiffers a good quality of
experience for the users, and proves to be efficient undartpeedictable conditions
of the current Internet is a challenging task.

Traditionally, networked games have relied on the cliearissr architecture: play-
ers’ home computers act as clients, with (one or) multipteess situated in the higher
tiers of the network. As an alternative, some games allovh&mting a server at suffi-
ciently equipped home computers, making multiplayer ggnpiossible in a local net-
work (LAN) setting. Either way, massively multiplayer gasnean put a tremendous
burden on a single server, both from the traffic and compartatiload viewpoint. This
can result in inefficient network resource utilization aebeacreates a single point of
failure. The notion of a peer-to-peer gaming architectunerges naturally, however,
only a small nhumber of role-playing games use this conceginm games are more
sensitive to network delays, as lags may render the gamepfmrience unsatisfactory.

On the other hand, the recently proposed network codingiptan[2] could open
new avenues for packet switched networks. While networknzplas been proven to
be effective in a wireless environment [3] and also in corgvoeks, it's usefulness in



Fig. 1. Network coding in the butterfly topology

traditional P2P applications like file-sharing and vide®aming has been widely de-
bated [4] [5] [6]. Multiplayer gaming from a networking padiof view shares similari-
ties with both content distribution applications, and ashstould benefit from network
coding.

In this paper we present a practical network coding apprée@achultiplayer gam-
ing over a peer-to-peer overlay. We replace the standagésifiorwarding mechanism
with a random network coding solution. Since home computsgecially ones used
for gaming, are powerful, coding and decoding packets enflthis feasible. Our ini-
tial performance evaluation shows encouraging resulesage latency of player state
updates is reduced in a wide range of scenarios. Specificatywork coding outper-
forms unicast by more than 30% when participating peers etrerbgeneous in terms
of access bandwidth. The cost for this improvement is a pialesverhead regarding
generated data traffic; however, this extra traffic is propoally marginal in a number
of scenarios, and its absolute volume is always low. We attgateapplying random net-
work coding in this context is an extremely promising reshatirection, as it has the
potential to be the foundation of a truly peer-to-peer decture for networked games.

The remainder of this paper is structured as follows. SeQigives an overview
on network coding techniques and online games. Our main itleaapplication of
network coding for peer-to-peer online gaming is preseirteégection 3. We evaluate
the performance of the proposed method in Section 4. Firfadlgtion 5 identifies open
issues and concludes the paper.

2 Reated Work

Network coding. Network coding was proposed to be used for improving packet-
switched network throughput by Ahlswede et al. in [2]. Thsibédea of network cod-
ing can be best explained with the help of the “butterfly” tlogy (see Figure 2). In
a classical routed approach packets are transmitted witti@nge from data sources
to destinations. On the contrary, in a system implementatg/ark coding, nodes are
allowed to combine and transmit new packets with inforrmatiom multiple received
packets.

In the butterfly example a source (1) wants to send two messafgeformation to
both node 6 and 7. Each edge can carry only a single value (wéhazk of an edge



transmitting a bit in each time slot). With no network codifaur messages has to share
the minimum cut of three edge® (~ 6,4 — 5 and3 — 7). The problem can only
be solved by increasing the capacity of lilk— 5. On the other hand, application of
network coding (e.g., using bitwise+ b) at node 4 and 5 allows bottleneck lidk— 5

to carry the combined information of the two messages. Witbrmation decoded at
node 6 and 7 (e.g., using bitwiée + b) — a and vice versa), network coding achieves
a throughput of 4 messages.

In [2] it was proven that with network coding the informaticate from a source
to a set of nodes can reach the minimum of the individual maw-fiounds. In [7]
a constructive proof was given that the theoretical maxinwf@rmation rate can be
achieved by linear network coding. In linear network codew$l are broken into vec-
tors over a field. Each node in the network can linearly comb@cttors to create a new
message. Giving a method for constructing optimal netwardes using only linear
transformations opened the way to the application of nékwoding when topology is
available and changes are seldom.

In dynamically changing networks, advertising networkradies and rebuilding the
coding infrastructure creates a large overhead. Insteadstdtic coding scheme, ran-
dom linear network coding (RLNC) has been proposed in [8hd®an codes differ
from traditional linear codes in that linear combinations generated by each node on
the fly. Transmitted packets contain the combination of imgss and the coefficients
associated with each source vector present in the messagjgord showed that the
performance of RLNC exponentially approaches that of limedwork coding. By do-
ing so, RLNC can provide a solution as good as any networkngpsicheme making
use of the network topology. RLNC makes the application ¢fwoek coding possible
in ad hoc networks and networks with a high churn rate, wittcewtral authority or
strong distributed computing required to design and maimteatwork coding schemes.
Benefits of applying RLNC in P2P applications were studied5infor file transfer
applications. An implementation of a P2P media system uBbNyC was proposed
in [6].

Chiu et al. [4] showed that applying network coding aloneesrp in an overlay net-
work will not result in improved throughput, which questiothe effectiveness of net-
work coding in a file-sharing scenario. However, our focusripeer-to-peer gaming,
where reducing network latency is a first order concern,evbéndwidth consumption
is not critical.

Networ ked games. Games can be seen as discrete interactive simulationathe g
model is evaluated and changed periodically in a game logprdJinteract with the
game model through avatars. The avatar control mechanismtisvent based, user
input is scanned at a specific point of the ever-running gamp and processed based
on the state of the avatar. In present networked multiplgseres each player maintains
alocal copy of the game model. Input generated by all playasgo be available to each
player in order to keep these copies synchronized. Thishieeaed through periodical
player state update messages.

The client-server architecture has the benefit of a centridoaity that maintains
the game model and broadcasts both player state and ganceésibje updates. Servers
can implement security features, e.g., filtering out malisiplayers based on their in-
game or network activity. A central server can also optinfiaadwidth consumption



and eliminate some cheats by sending player state upddiefs@am those players and
objects that may be visible to a certain player. Servers eaoperated by the game’s
publisher or a company dedicated to host online games, ististhot always necessary:
in a number of games any player can act as a server. The digades of both solutions
are obvious: dedicating resources to host multiplayer gaisexpensive, as servers
must be localized to maintain low response times, and gaatktitoconcentrated to the
evening hours [9]. On the other hand, making one of the psatgdee up the server's role
will consume the player’s local resources and reduce hefduredto limited bandwidth)
other players’ gaming experience. Moreover, this way alsipgint of failure exists,
hence a connectivity problem at the server can preventapdhnticipants from playing.

As a response to the above-defined problems, some massiudtiplayer online
games (MMOG, mostly role-playing and adventure) are miggato P2P networks.
MMOGs are played by thousands of players contributing tosdwme huge and de-
tailed virtual environment. This virtual world is permanewith players joining and
leaving. In these games player state updates can be leseifriegnd the emphasis is
on dispatching game object state updates to all players.akemsuch games easier to
scale, P2P overlay based games were proposed in [10], facasithe partitioning of
the game-space to optimize communication by separating irs® groups. The pro-
posed techniques are not fast enough for first person vieveganch as action games,
shooters (FPS) and simulators. Authors of [11] proposegseals, a framework which
utilizes efficient object location and speculative prdfigtg besides game-state parti-
tioning to deal with latency requirements. Another reléysdace of work is the Donny-
brook system [12]: it uses a sophisticated method to estinvaich objects and other
players are important to a given player, thereby reduciadréquency of state updates.
Additionally, updates are disseminated via overlay ma#tic While the achievements
of these works are valuable, real-world games requiringy higgponsiveness are still
server-based.

In this paper we concentrate on the efficient communicatidrequent player state
updates (synchronization). We believe that reducing nettvaffic and latency through
limiting recipient lists, clustering based on game statg seculative prefetching are
important ingredients of a peer-to-peer gaming framewbdwever, an efficient dis-
semination scheme for frequent in-game updates is eskemtgapractical system. The
nature of such kind of traffic is multicast, therefore we ectpghat overlay-based net-
work coding could significantly help in such a scenario [13].

3 Overlay Network Coding for P2P Gaming

In a multiplayer gaming scenario, latency of player statédates comes from two fac-
tors, the one-way trip time of the packet and available badthaBoth are dependent of
factors like home networking equipment, cross-traffic gatesl by the end user, over-
all network load, geographical distance and traffic shapipgpment used by network
providers.

If a server-based solution is deployed, each node uploalysaosingle packet to
the server, and downloads the packets of every other peartfre server. Bandwidth
limitations are usually present only at the server, esfigcidnen the server connects to
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Fig. 3. Random network coding in action (modulo class: 13)

the Internet through an asymmetric home access link suctsaobcable. In a server-
based scenario, latency due to trip time depends only omiettéactors such as BGP
policies, load balancing mechanisms, congestion and liaKability.

Peer-to-peer gaming architectures use an overlay netveodisseminate player
state updates among peers. There are two basic characseoithe overlay which
determine overall latency: its topology and the forwardimgchanism used. From the
topology standpoint, overlays can be fully or partially nented. We restrict our inves-
tigations to fully connected overlays for the sake of simipfi

In a full mesh overlay the simplest message forwardingessats unicast, when
each peer sends its update message directly to every otbenje propose an alter-
native forwarding mechanism, network coding. The mainedéhce brought by net-
work coding is the possibility of combining available patkbefore forwarding them.
While optimal bandwidth consumption and computationalrbead can be achieved
with fixed linear coding schemes, this approach is not sldgtfaiv network gaming over
an unreliable medium. With a fixed coding scheme packetsgeoted to be present at
given nodes at a given time. In peer-to-peer gaming messaugration is indeed syn-
chronized, but message transport times vary in a wide rards way, synchronization
could only be ensured by introducing buffers, so all messagquired for decoding
are accessible. This is not desirable when overall lateasytt be reduced. Random
linear network coding can work with asynchronous messagesflany message can be
combined with any other message or combination of messagéalae at a given peer.
The tradeoff comes in the form of a larger packet headeraioing the coefficients of
the original messages that are combined to get the currer{see Figure 2). Moreover,
decoding is more computationally intensive, as a new lieg@ation system has to be
solved for every block to be decoded.

The basics of random network coding as implemented in oundveork are shown
in Figure 3. At each game step, an update message is genbya¢ath peer. Assume



that a hypothetical arrayl is composed of these messages. This array is split into
blocks of rows, denoted by;. Having smaller number of rows in a block reduces the
computation needs of the decoding process. Packets rddeama neighbors contain
the block numbei of the message it was generated from, the coefficiarged and
the resulting message Received messages are stored at each peer along with éhe loc
message in the working arrdy;. Received: coefficients for these messages are stored
in the arrays’;.

Messages to be sent are composed by generating a random fethe length of
the number of rows iB;. Now ¢’ andd’ are generated

d=fxC; and b =fxB,. (1)

Note, that
bI:fXBi:fXCiXAi:CIXAi. (2)

To retrieve original messages, the linear equation
Ai = Ci,1 X BZ (3)

has to be solved for alt blocks at each peer. Invertin@; requires at leasf? | lin-
early independent messages received for each block. ltdesshown in [14] that the
probability of selecting linearly dependent combinatibesomes negligible even for a
small code field size. This result was achieved in a streaappgication where network
coding was applied at the source where an entire block ofwiasaavailable.

In peer-to-peer gaming, data is available distributed betwall peers, and network
coding is only applied during message forwarding. In theirbg@gg of a given game
round, each peer has access only to a limited number of messagl peers in small
proximity will usually have knowledge of the same subset @ssages. This in turn
may lead to sending messages that are not independent foz tte destination peer
has already received. These irrelevant messages maytatasticonsiderable traffic
load, but may not affect overall delivery latency. Our firgttwiork coding solution,
RLNC, is the basic implementation of a linear network codingeystRLNC operates
on the full mesh, every peer sends a message periodicalfctoreeighbor. The packet
is a random linear combination of already received messales second solution,
RLNC+, implements an additional mechanism for reducing unnecg$sansmissions:
each peer maintains a message array which contains messagjésand received from
its neighbors. Subsequent outgoing messages are senooméyghbors that could be
interested in the content of the packet, this way, unnecggsacket sending could be
spared.

4 Performance Evaluation

To provide an initial performance assessment we develop@¥&-based simulation
tool. The environment consists of the configuration geeradsponsible for creating,
saving and loading network topology, the simulator and tge processing pipeline.
Our network core simulator provides delayed packet deliger point to point links.



For the proof-of-concept evaluation, peers were conneditedtly to this core, and no
computation overhead (decoding) was taken into account.

Networ k model. Our simulator was created to handle network traffic gendraye
player state updates, and didn’t considered game objengelsaWe also presumed that
addresses of the players are available, and players doawa & join during a match
as this is the case in most match-based multiplayer gameplatfed our players in the
Internet, as in LAN games connections are more reliabledWwatth is almost always
sufficient and the impact of network latency on gameplay @andglected.

Simulations were run over networks consisting of 10, 20,480and 50 peers. The
traffic generated by the user interactions was uniform iretas player updates are not
event but state based. We assumed UDP as the transportgrotaboice, since real-
time traffic does not tolerate the added latency of the feeddhmop in TCP. A typical
player state update messages size ranges from 10 to 10Q bgtkss sent to each
other player 10-60 times per second [15]. In our experimemtsised a 10 Hz update
frequency and player state update message of 50 bytesngp? bytes with IP and
UDP headers. When using random linear network coding, thesage size increases
with the coefficient. This depends on the block size, and earigom 5 bytes for 10
peers to 25 bytes for 50 peers, as we used a single block fpeatk. For coding we
used a fixed field size of 13 (modulo class).

We measured a round-trip time of 15-87 ms towards differembfean servers [16].
Based on these results we used one-way peer-to-peer kgearfd to 40 ms uniformly
distributed with a jitter of 5 ms. Since typical home broadtbaonnections are asym-
metric, we assumed that upload bandwidth would determieesffectiveness of dif-
ferent forwarding mechanisms (downlink is assumed to beniteld). Based on band-
width characteristics three peer classes were used: slerg pad an upload bandwidth
just enough to send out a single packet to each other peet kb2/s to 312 kbit/s
depending on the number of participating peers), the regudar had 624 kbit/s and
fast peers were granted a 8 Mbit/s uplink. We used four diffescenarios in terms of
participating peer distribution: regular (regular peearlyy some slow (90%regular and
10% slow), some fast (90% regular and 10% fast), and mixe@h(@@ular, 10% slow,
10%fast).

Experimental results. When processing the results, our main concern was the av-
erage latency. We defined latency as the time elapsed frofpetifiening of the game
round until the respective peer becomes aware of all otlerepd’ states. In the uni-
cast scenario this happens when a packet from every peeréved. In the network
coding scenario received packets were scanned for a solatibe linear equation cre-
ated from the received coefficients after the reception ohegmmcket. If the equation
becomes fully determined all player update packets can beddel. Other key per-
formance indicators were the maximum latency in a singlendoand the number of
packets received before decoding could be achieved. Ageailad maximum latency
measures quality of experience, while the generated dfar tmeasures network load.
Note, that all latency, maximum latency and traffic figuresareraged over 100 game
rounds.

Average latency values for different participating peepuylations can be seen in
Figure 4(a)-4(c). In a network with regular peers, netwarkling (RLNC) performs
slightly better then traditional unicast solutions, eveathwt’s larger packet size which
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reduces the packet sending rate. This is due to it’s flootlkegaehavior: packets orig-
inating from one source will find the shortest paths, whilehia unicast solution the
direct link between two peers may have a larger delay. Whemesslower peers are
also present in the overlay, network coding shows greatpramement over the tradi-
tional forwarding method. On the top of that, the heteroggrd the mixed scenario
(slow, regular and fast peers are also present in the sygteloes the highest gain for
RLNC among all scenarios. Improvement in this setting cambee than 30%.

Note, that network coding with redundancy protection (RN @erforms compa-
rably to RLNC in terms of average latency. However, its adoegefit becomes visible
in Figure 4(e)-4(f), where generated data traffic is shownhé first two scenarios traf-
fic generated by network coding mechanisms is only slighttyerihan that of unicast.
On the other hand, RLNC produces much more traffic in the mpesat setting, with
RLNC+ reducing this overhead significantly.

The next series of experiments studied the impact of fagtspmethe system. We
used a network of 50 peers, with 1 to 10 fast peers beside thédareones. Figure
5 shows how the latency benefit of network coding increaséis thie ratio of fast
peers. The amount of generated data traffic gives an exparfat this behavior: the
more peers with high bandwidth connections are presenhitfier redundancy can be
achieved in the system. This redundancy provides impraatetity figures. Note, that
RLNC+ produces considerably high maximum latency valudsgemonly a few fast
peers are present. This shows that restricting the scopipiients is more beneficial
when peer heterogeneity is higher.

Latency and data traffic results grouped by forwarding meidmas are shown in
Figure 6. It can be observed that network coding improveateeage latency in every
scenario. It is important to emphasize that 150 ms is bacérable [17], while 100
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ms is acceptable for online shooter and action games; oultsestiggest that this limit
can be met even in case of a large number of participants. dderethe overhead of
the network coding solution compared to unicast is almoatexistent if only regular
or some slow peers playing; in more heterogeneous scentmgre is some reasonable
overhead (with RLNC+ generating slightly less traffic). Blahat this overhead might
be recognizable percentage-wise, but the absolute voldieta data traffic remains
very low (20 extra packets per peer in a 50 peer scenario).

5 Conclusion and Future Work

The recently proposed technique of network coding has bleenrsto boost network
capacity compared to the traditional store-and-forwardhmeism in a variety of sce-
narios. Here, we have presented a very different use-catiesfsame method: reducing



network latency. Our promising results in this area showtearmeed for further un-
derstanding of the possible benefits and side-effects ofarktcoding.

In this work, we have introduced a practical framework foempt-peer networked
gaming based on random linear network coding. We have shieatrotir solution out-
performs traditional unicast in terms of average netwot&rlay in a wide range of
scenarios. Furthermore, the absolute traffic overheadéas froven to be low for all
settings analyzed.

Our initial performance evaluation indicates that the ps®" method is worthy of
further research. One important area is the specific codats Adso, more simulations
are needed to investigate the impact of more complex topesppgacket loss and com-
putational overhead. Moreover, a prototype implementadiod testbed measurements
with a real game are essential to fully understand the behaviour system.
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