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Abstract. Although many countermeasures have been developed for
desktop and server environments, buffer overflows still pose a big threat.
The same approach can be used to target mobile devices. Unfortunately,
they place more severe limitations on countermeasures. Not only are
the performance requirements at least as important, memory and power
consumption need to be considered as well. Moreover, processors used
in mobile devices generally are equipped with a different instruction set.
Therefore countermeasures may not be ported easily.
Multistack is an effective countermeasure against stack-based buffer over-
flows. It protects applications by using multiple stacks to separate possi-
ble attack targets from possible sources. However, its performance over-
head will no longer be negligible on the ARMv7 platform (widely used on
mobile devices) and it wastes too much memory, making it too costly for
mobile applications. We propose 3 methods to reduce memory overhead
up to 28% with only a 3.91% performance overhead.

Key words: Control flow attacks, Stack-based buffer overflow, Software
security, mobile platform

1 Introduction

Buffer overflow vulnerabilities pose a significant threat to applications written in
unsafe languages and to the devices they run on. Most of the existing buffer over-
flow attacks write past the boundary of a buffer located on the stack and modify
an interesting memory location. Function return addresses are a frequently cho-
sen target of attack. By overwriting them with the location of code inserted as
data into memory, the program can be forced to execute instructions with the
privilege level of the attacked program [1, 2].

Many countermeasures that protect desktop and server environments have
been developed. Some try to solve the problem entirely by inserting bound checks
or modifying the language itself [3–5]. Others rely on randomness and secrets
to detect or prevent modifications of data in memory. The latter have less per-
formance overhead [6–9]. Even though many more approaches exist, attackers
still find ways to attack systems successfully, for example by breaking some of
the assumptions made in the countermeasures in place, such as the fact that a
canary remains secret [10].



According to the NIST’s National Vulnerability Database [11], 563 buffer
overflow vulnerabilities were reported in 2008, making up 10% of the total 5,634
vulnerabilities reported in that period, only preceded by Cross Site Scripting
(14.0%) and SQL injection vulnerabilities (19.5%). Of those buffer overflow vul-
nerabilities, 436 had a high severity rating. As a result, buffer overflows make
up 15% of the 2,853 vulnerabilities with a high severity rating reported in 2008,
second only to SQL injection vulnerabilities (28.5%).

During the last decade, mobile devices built upon the ARM architecture, such
as smartphones and PDA’s, became ubiquitous objects. They are used for a wide
variety of tasks, ranging from surfing the web to managing important data. As
their number increases, so does the interest of attackers in the platform. Since
they are built using the same principle as desktop systems, they as well are
vulnerable to buffer overflow attacks [12, 13].

However, defending embedded devices against these attacks is more difficult
than desktop systems. To reduce costs and increase mobility, they are generaly
equipped with a less powerfull processor and limited memory. Moreover, proces-
sors used in embedded devices (i.e. ARM CPU’s) generally are equipped with a
different instruction set than desktop systems. As a results, not all countermea-
sures can be ported easily.

Multistack [14] is an effective stack-based buffer overflow countermeasure,
originally designed for the x86 architecture. It does not rely on secret values (such
as canaries), but separates buffers from possible attack targets using guard pages.
This prevents state-of-the-art attacks [10] with negligible performance overhead.
However, its memory consumption is significant, making it too costly to protect
applications on mobile devices. Moreover, it relies on the ability to add a 32-
bit constant value to a register in a single load/write instruction, an operation
not supported by ARM processors. As a result, performance degradates on this
platform.

In this paper, three techniques are proposed to port the Multistack coun-
termeasure to the ARMv7 platform. They all minimize memory consumption
while at the same time performance overhead is reduced compared to the orig-
inal Multistack method on the ARMv7 platform, making the countermeasure
efficient enough to be deployed on existing mobile devices.

This paper is structured as follows: first buffer overflows are reexamined (sec-
tion 2), followed by the original Multistack countermeasure. Section 4 presents
the different approaches, which are evaluated in section 5. Possible enhancements
are described in section 6. The proposed techniques are compared to existing
countermeasures in section 7, while section 8 presents our conclusions.

2 Buffer overflows

Buffer overflows are the result of an out of bounds write operation on an array. In
this section we briefly recap how an attacker could exploit such a buffer overflow.
Many derivative attacks exists; more complete overviews can be found in [1, 2,
15].



Buffers can be allocated on the stack, the heap or in the data/bss section
in C. For arrays1 that are declared in a function body, space is reserved on
the stack. Buffers that are allocated dynamically (using the malloc function, or
some other variant), are put on the heap, while arrays that are global or static
are allocated in the data/bss section. The array is manipulated by means of a
pointer to the first byte. Bytes within the buffer can be addressed by adding the
desired index to this base pointer.

vo id copy ( char ∗ s r c , char ∗ ds t ) {
i n t i = 0 ;
char c u r r = s r c [ 0 ] ;
whi le ( c u r r ) {

ds t [ i ] = cu r r ;
i ++;
c u r r = s r c [ i ] ;

}
}

Listing 1.1. A C function that is vulnerable to a buffer overflow.

Most C-compilers generate code that does not check the bounds of an array
and allow programs to copy data beyond their end. This behavior can be used
to overwrite data in adjacent memory space. The unprotected application can
be successfully attacked if these memory locations contain data that influence
control flow and is used after the buffer overflow.

On the stack this is usually the case: it stores the addresses to resume execu-
tion at, after a function call has completed its execution. This address is called
the return address. Manipulating it gives the attacker the possibility to execute
arbitrary code.

Listing 1.1 shows a straightforward string copy function. Improper use of this
function can lead to a buffer overflow, because there is no validation that the
destination buffer can actually hold the input string. An attacker can thus exploit
the buffer overflow vulnerability to overwrite memory that is stored adjacent to
the destination buffer.

3 Multistack

3.1 Approach

Multistack [14] is a separation-based countermeasure designed to protect appli-
cations against stack-based buffer overflows. For each data type that may be
stored on the stack, an analysis is made to determine the feasibility that 1) it

1 We will use array as a synonym for buffer throughout the paper.



can be used as a source of attack and 2) it will ever be a target of an attack. Us-
ing this information, types with a comparable source/target trade-off are placed
in the same category.

For example, an array of characters is a common source of attack, but is
rarely a target itself. Pointers on the other hand, are much more likely to be a
target. In case an attacker is able to overwrite a pointer and specify the value
written to memory by dereferencing that modified pointer, he/she can write
an arbitrary value to a chosen memory location [16]. It is clear that these types
should be separated from one another and they are placed in different categories.

This however, may not always be possible. Consider a structure containing
an array of characters as well as pointers. This type may be used as an attack
source, but may also be a target of attack. This type does not fit in either one
of the two previous categories and a new one is created.

Multistack operates by placing the categories of variables on different stacks
(see Figure 1). Guard pages2 prevent buffer overflows on one stack from reaching
another.

Note that the guard pages will not prevent arrays in structures to overwrite
the accompanied pointers. However, in most applications the usage of such struc-
tures is modest and the chance of finding a buffer overflow vulnerability in code
operating on them, is limited. Applications that do not fulfill this assumption
may apply additional countermeasures, possibly only in functions that use such
types as local variables.

By placing the separate stacks sequentially in memory, their exact location
can be calculated at compile-time. Consider a variable x that should be placed
on stack s with offset d from the stack pointer. When all stacks are assigned a
maximum length of 8 MiB3, the updated offset will be

fp − d − s · 8MiB

where fp, the frame pointer, points to the start of the stack frame.

This has another advantage; it allows address space layout randomization
(ASLR) (see section 7) to relocate the base of the stack each time the application
is run. Obviously, the relative distance between the stacks must be specified at
compile-time.

To address a variable on the stack, unprotected applications also have to
perform this addition, though with a different operand. Since the x86 instruction
set provides load and store instructions that are able to store an immediate
constant of 32-bits, no extra instructions need to be issued to access the variable.

Multistack can be configured to use any number of stacks. However, when
their number increases, the drawbacks of the countermeasure do as well (see
section 3.2). Some methods that will be described in section 4 limit the maximum
number of categories to four.

2 A memory page without any permission. Any attempt to read, write or execute from
this page will result in a segmentation fault.

3 1 MiB = 1 mebibytes = 220 bytes (standardized by IEC 60027-2)



Fig. 1. Multistack stack layout for 4 stacks

3.2 Discussion

Performance penalty With the exception of code to allocate the different
stacks and the creation of guard pages, no extra instructions are required. Per-
formance evaluation [14] shows an overhead between 0% and 3%, on the x86
platform.

This efficiency is reached because this platform is able to use a 32-bit offset
in a load and store instruction. On processors equipped with the ARM instruc-
tion set, multiple instructions would be required, leading to a degradation of
performance (see section 4.1).

Memory consumption By only modifying the offset used to address a stack-
based variable, performance loss remains negligible, but it also leads to wasted
memory. The corresponding locations of a variable x on the other stacks, remain
unused until the function returns. At any time in the execution of an application
with s stacks and m the combined size of all variables on the stack, (s - 1)m

MiB of virtual memory is wasted.
The situation even deteriorates in case multi-threaded applications are con-

sidered. In that case, each thread would waste that amount of memory. In sec-
tion 5 a more detailed analysis is given.

3.3 Conclusion

The multistack countermeasure has a very limited performance penalty while
providing effective protection against stack-based buffer overflows on the x86
platform. Its memory consumption and increased performance overhead on ARM
processors, however make it too costly for mobile devices.



4 Approaches on mobile devices

4.1 Original approach

The most obvious implementation of Multistack on mobile devices is using a
similar implementation as on the x86 platform. As described in section 3, a
single frame pointer is used to address stack-based variables. This poses an issue
since the ARMv7 instruction set does not support adding an arbitrary 32-bit
integer using a single instruction. A simple solution is to use multiple additions
(i.e. add instructions), however a performance penalty is expected.

The obvious drawback of this technique is its memory consumption. However,
the evaluation in section 5 will reveal that this memory overhead in some cases
is negligible.

4.2 Dedicated registers

Most applications never allocate space on the stack dynamically. Therefore the
size of the stack frame is fixed for each function and the stack pointer can be
used to address variables located on the stack. Applications that do not follow
this assumption, can be modified by the compiler to not allocate space on the
stack at runtime but on the heap instead.

ARM processors are equipped with a large number of registers to store in-
termediate results. To reduce memory consumption, three stack pointers can be
stored in specially reserved registers and used to track the top of each stack.

This can be implemented in a compiler in a straightforward way. The main

function is modified to allocate the different stacks and initialize the stack point-
ers. To each function’s prologue and epilogue, instructions are added to allocate
and free the required space on the related stacks by updating the corresponding
registers. The addressing of stack-based variables is modified to use the appro-
priate stack pointer.

By reserving save-by-callee registers to hold the stack pointers, protected
code is able to call unprotected libraries. However, the registers may not always
contain the correct value when callbacks are used to return to protected code.
Only in that case, recompilation of the library is required.

4.3 Indirection using a fixed address

The previous technique reserves three registers. This may lead to an increased
register pressure and consequently a degradation of performance. Alternatively,
the location of the stack pointers can be stored at a fixed location. Since all
instructions in the ARMv7 instruction set have a fixed length of 32 bits, it is
impossible to load an arbitrary 32-bit address in a register by specifying it as
the payload of a single instruction. However, the mov instruction is able to do
just that when certain requirements on the value are met. To be able to use this
instruction, the stack pointers are stored on a reserved page at 0xbe000000 -
0xbe000008.



Before executing any other code, the stacks are created and the page at
0xbe000000 is allocated. To allocate/deallocate memory on stack 2 to 4 or ad-
dress a stack-based variable, the location of stack pointer 2 is loaded in a register
first. The subsequent load or store instruction adds the required offset to access
the relevant stack pointer. Note that by storing the stack pointers at a well cho-
sen location, no register has to be reserved and only one extra instruction needs
to be executed before each memory access related to stack 2 to 4.

4.4 Packed stack pointers

The previous technique assumes the increased register pressure to be the main
contributor to the performance overhead of the countermeasure. In order to
reduce it, stack pointers are loaded from and stored in memory when appropri-
ate. This assumption however, may not hold for all applications. The presented
“improvements” may in some cases even lead to a further deterioration of the
countermeasure’s performance.

Technological developments during the last decades resulted in a huge in-
crease of processor and memory speed. However, making inexpensive, large mem-
ory that can be accessed rapidly, proved to be challenging. Multiple levels of
caches were introduced to increase the overall performance of the system but
accessing registers remains faster than loading a value from cache.

To load instructions from memory quickly, processors are equipped with
pipelines to decode instructions. This technique works well when branches are
reduced to a minimum. Considering both optimizations, it is obvious that it may
be more efficient to execute more instructions when this avoids memory accesses.

The approach presented in this section uses another observation. The dedi-
cated register approach uses one register for each stack pointer. While theoret-
ically the stack is able to grow arbitrarily large, in practice only in extremely
rare cases more than 8 MiB is required.

By aligning the added stacks at 8 MiB, the 11 most significant bits of their
stack pointers will remain fixed for the entire execution of the program. As a
result, by allocating the stacks at a location specified at compile time, only the
23 least significant bits need to be stored. This number can be reduced to 21
when it is assumed that each variable on the stack is 4-byte aligned. Using this
approach [17], three stack pointers can be stored in only two registers. The stack
pointer of the least frequently accessed stack will be split over the two registers.

Note that even more stack pointers can be stored using less registers by
limiting the size of the stacks. Another option is to increase the alignment of
both the stacks and the stored variables to facilitate larger stacks. However, in
case a stack frame’s length is not a multiple of the alignment, memory will be
wasted.

As before, the main function is modified to allocate memory for the different
stacks, to set the guard pages and initialize the stack pointers. Allocating space
on a stack can be done without completely restoring the stack pointers. However,
care must be taken when the stack pointer that is split over two registers needs
to be updated. A carry bit may need to be added or subtracted from the most



significant part of the pointer when the least significant part wraps around zero.
By carefully choosing bit shift operations, this can be done without using any
extra registers or branches.

Since this approach requires that two registers are reserved, the same incom-
patibility with callback functions as described in section 4.2 exists and a full
recompilation of the application may be required.

5 Evaluation

During development, we focused mainly on smart phones and PDA’s. The tele-
com and consumer suite of the MiBench benchmark [18] provides representative
applications for these devices. They are used to evaluate memory and perfor-
mance overhead. The typeset application is omitted because its in-line assem-
bly uses the reserved registers. Applications that would only use stack 1 (CRC32
and adpcm) do not benefit from the countermeasure and are not considered.

5.1 Security evaluation

Two of the presented approaches store the stack pointers in registers. This has
the advantage that an attacker is not able to modify this control data, before a
successful code execution attack. In case the stack pointers are stored in memory
(section 4.3), they are an interesting target of attack. Additional countermea-
sures need to be installed. However, a simple solution is to modify the location
of stack 1 so it contains the memory locations where the pointers are stored.

With the exception of the packed stack pointers approach (section 4.4), the
presented techniques have an additional advantage: they allow the locations of
the stacks to be randomized, also relative to each other.

In all other aspects, our proposed approaches are as secure as the original
Multistack countermeasure [14].

5.2 Memory consumption

The question how much physical memory can be gained by applying one of the
proposed techniques for a specific application, is difficult to answer because many
factors must be considered. The core of the problem is that when a virtual page
remains unused, there is no need to store the corresponding physical page.

To determine the likelihood of this situation, we ran the telecom and con-
sumer suite of MiBench, protected with the original Multistack implementation.
Memory usage of each application was tracked, as well as the number of physical
memory pages that were referenced.

These measurements relied on two assumptions. First, we assumed that in
any function, the stack variables on stack 1 were placed closest to the base of
the stack. Variables on stack 2 came next and so on. Note that the C standard
does not specify the exact order of these variables in memory. Second, each stack,
including stack 1, started at the beginning of an empty page. This is a worst case



scenario. Applications with maximum stack sizes smaller than a single page, will
not waste physical memory. In practice, memory may be wasted much sooner.

Table 1 displays the result of the test. Using these figures, the number of
pages that will be gained by the proposed approaches, can be calculated easily.
The measurements show improvements between 0% and 28% for the test appli-
cations, assuming a page size of 4,096 bytes. This large difference in potential
gain depends on several factors, being discussed next.

Number, size and type of stack variables As explained in section 3.1, the orig-
inal Multistack implementation, will result in holes of unused virtual memory.
Depending on the number, size and type of stack variables, this in turn leads to
internally fragmented, unused and/or completely used pages. Figure 2 displays
these possibilities for the lame and qsort applications.

In case pages remain unused, no physical memory is wasted. This situation
occurs when a stack is rarely used or when large arrays are allocated. When space
is allocated to hold an array larger than two pages, at least one page remains
unreferenced on the other stacks. The qsort application allocates 1.2 · 106 MiB
to hold the values to be sorted and thus is a good example of this situation.

Compacting the stacks will have a positive influence in case many pages are
internally fragmented. Consider stack 1 of the lame application. It uses 7 pages
(28,672 bytes) to store only 1,444 bytes, or 35.3% of the memory it allocated.
Figure 2 also displays the percentage of actually used physical memory to the
amount that was allocated.

Fig. 2. Depending on the number, size and other factors, physical pages may remain
unused (white boxes), internally fragmented (gray boxes) or completely used (black
boxes). Compacting the stack minimizes the number of internally fragmented pages.

Number of function calls The number of function calls also plays an important
role. Obviously, in case the number of calls is small, the combined stack size



Table 1. From the MiBench benchmark the telecom and consumer suites were selected. The different applications from these suites were
run protected with the original Multistack implementation. This table displays the maximum number of memory locations used on the
different stacks. The size in bytes is displayed together with the used physical pages. The last column displays how much memory is
saved by compacting the stacks.

stack 1 stack 2 stack 3 stack 4 Total Potential gain

application set bytes pages bytes pages bytes pages bytes pages bytes pages bytes pages %

qsort small 796 2 0 0 7,680,000 0 0 0 7,680,796 1,878 8,192 2 0.11%
qsort large 948 3 1,200,000 293 0 0 0 0 1,200,948 296 8,192 2 0.68%
FFT both 360 1 48 1 0 0 0 0 408 2 0 0 0%
IFFT both 360 1 48 1 0 0 0 0 408 2 0 0 0%
gsm (enc.) both 544 1 957 1 0 0 0 0 1,501 2 0 0 0%
gsm (dec.) both 540 1 932 1 0 0 0 0 1,472 2 0 0 0%
jpeg (enc.) both 436 1 2,960 1 132 1 257 1 3,785 4 0 0 0%
jpeg (dec.) both 480 1 1,484 1 132 1 257 1 2,353 4 0 0 0%
lame both 1,444 7 56,044 15 4 1 16,389 6 73,881 29 32,768 8 27.59%
mad small 1,216 3 7,192 1 632 1 27,674 8 36,714 15 16,384 4 26.67%
mad large 1,216 2 368 1 404 1 27,674 8 29,662 12 8,192 2 16.67%
tiff2bw both 472 1 100 1 0 0 1,104 1 1,676 3 0 0 0%
tiff2rgba both 464 1 102 1 0 0 1,024 1 1,590 3 0 0 0%
tiffdither both 1,044 1 92 1 0 0 1,104 1 2,240 3 0 0 0%
tiffmedian both 532 1 228 1 0 0 80 1 840 3 0 0 0%



may not be larger than a single page. As a result, even though the original
implementation does leave unused memory locations on the stacks, no pages can
be saved by compacting the stacks. A number of examples of this situation can
be found in the MiBench benchmark, including jpeg, tiff2bw, gsm, FFT, . . .

The number of function calls made throughout the execution of the applica-
tion and the way these calls are made, can play a role in memory usage. When
functions call each other to a great depth, the size of the stack could grow large.
As a result, multiple pages could be used to store only a few bytes.

Also, if a lot of consecutive calls are made, memory usage could degrade.
The diversity of the different calls will decrease the chances that pages on other
stacks remain unused.

Page size Consider the example that a variable is stored on a certain stack.
When this variable is larger than two pages, the corresponding location at the
other stacks may remain unused and no physical pages need to be stored. The
chances that this situation occurs increases inversibly with the size of the pages.

Small pages have a second advantage; on average only half of the pages before
and after such a hole are used. In case the pages are smaller, less physical memory
is wasted.

Our memory usage measurement on the MiBench benchmark assumes that
the stack pointer points to the beginning of a blank page when the Multistack
countermeasure is installed. In practice this may not be the case. In the worst
case, it points to the end. As a result, only a few bytes can be stored on the first
page of stack 2 to 4. However, the original implementation of Multistack could
be adjusted easily. By allocating more space on stack 1, memory consumption
on the other stacks may decrease with one page.

Programming style It is clear that the way a program is written will have a huge
impact on the structure of the stack. A programmer could opt solving a problem
iteratively instead of using recursive calls. This would prevent the size of the
stacks from growing rapidly and wasting memory.

Also by allocating large variables on the heap, more pages could be reused
on the stack with less fragmentation. This could be implemented in a compiler
as a heuristic.

5.3 Performance evaluation

To evaluate the performance of the different Multistack implementations, we
ran the telecom and consumer suite of the MiBench benchmark [18] on a Sharp
PC-z1 running Ubuntu Linux 9.04 (kernel 2.6.28). This netbook is equipped
with an ARM Cortex-A8 CPU running at 800 MHz and 512 MiB RAM. The
countermeasures were implemented in the gcc-4.3.3 revision 143643 compiler.
The benchmark was compiled with -O0 -fomit-frame-pointer flags. To receive
accurate results, each application was provided the large input set and run 500
times. Table 2 displays the results.

Explaining and predicting performance overhead is complex since there are
many factors to consider. Two of the most relevant factors are discussed next.



Increased number of instructions There are two obvious places where instruc-
tions may be added. First, all techniques, with the exception of the original
Multistack, require the prologues and epilogues to be modified to allocate mem-
ory on the stack. Obviously, this will have a negative impact on performance in
case an application makes many function calls, for example, if recursion is used.

Second, additional instructions may be required to access a variable on a
stack. Applications such as fft and ifft read and write to stack 2 very often.
Hence, the time to access this stack will have a huge impact on their performance.

In case of the original Multistack implementation, the immediate offset in
the load/store instruction can not be used to load/store a value on stack 2, 3 or
4 since this offset is too large. Therefore an extra addition is required, leading
to a performance loss of 15.1% for fft and even 19.08% for ifft. In case dedicated
registers are used to store the different stack pointers, the stack-based variables
can be accessed in only one instruction. This leads to a much lower performance
loss; 6.99% for ftt and 9.03% for ifft.

In case the stack pointers are packed, the accessed variable’s location will
have an influence as well. Acesses to stack 2 or 4 only require a few instruc-
tions. Variables on stack 3 are much harder to access since their stack pointer
is scattered over 2 registers. As a result, accessing stack 3 is slower than stack 2
or 4. With the exception of the dedicated registers approach, the same applies
for the other implementations; variables on stack 1 can be addressed by simply
specifying an offset to register sp. For other stacks, more instructions are needed.

When main memory needs to be accessed, the order wherin the instructions
are scheduled and the memory’s access time will also play an import role.

Register pressure The dedicated register approach does not require additional
instructions to access a stack-based variable. Therefore, it was able to execute
the fft and ifft applications much faster. However, by reserving three registers,
register pressure may increase, leading to a performance deterioration. To dis-
cover the impact on the selected applications, each was run unprotected with 3
reserved registers but no significant impact on performance was found.

Summary Many factors influence the performance of the different presented
techniques. On average (see table 2), all the presented techniques perform bet-
ter than the original Multistack implementation. By storing the stack pointers
at a fixed location, performance overhead is reduced from 4.91% (original Mul-
tistack) to 4.57%. Packing the stack pointers in two registers further reduces
the performance overhead to 4.39%. The dedicated register approach is on av-
erage even 1% faster (3.91%). In case for each application the best performing
countermeasure is chosen while requiring that no physical memory is wasted,
the average performance overhead is reduced to 3.30%.

6 Discussion and ongoing work

Besides the possible implementations presented in section 4, another one was
developed, but omitted due to page limits. As the technique described in sec-



Table 2. Running the telecom and consumer suite of the MiBench benchmark shows that the dedicated register approach, on average,
outperforms the other approaches.

unprot. original dedicated regs. packed sp fixed address

application sec sec % sec % sec % sec %

FFT 1.25 ± 0.01 1.43 ± 0.01 15.10% 1.33 ± 0.01 6.99% 1.36 ± 0.01 8.93% 1.36 ± 0.01 8.88%
IFFT 1.02 ± 0.01 1.21 ± 0.01 19.08% 1.11 ± 0.01 9.03% 1.13 ± 0.01 10.95% 1.13 ± 0.01 10.65%
gsm (enc.) 6.32 ± 0.02 6.33 ± 0.02 0.08% 6.32 ± 0.02 0.05% 6.32 ± 0.03 0.05% 6.33 ± 0.03 0.08%
gsm (dec.) 2.68 ± 0.02 2.68 ± 0.02 0.14% 2.68 ± 0.02 0.15% 2.68 ± 0.02 0.10% 2.68 ± 0.02 0.14%
jpeg (enc.) 0.34 ± 0.01 0.41 ± 0.01 19.31% 0.43 ± 0.01 25.53% 0.43 ± 0.01 26.19% 0.44 ± 0.01 27.12%
jpeg (dec.) 0.09 ± 0.01 0.09 ± 0.01 0.00% 0.09 ± 0.01 -0.34% 0.09 ± 0.01 0.67% 0.09 ± 0.01 0.22%
lame 26.42 ± 0.06 26.56 ± 0.08 0.53% 26.40 ± 0.07 -0.05% 26.64 ± 0.05 0.86% 26.53 ± 0.05 0.43%
mad 1.44 ± 0.01 1.48 ± 0.01 2.78% 1.50 ± 0.01 4.51% — —% 1.57 ± 0.01 8.95%
tiff2bw 0.94 ± 0.01 0.94 ± 0.01 -0.46% 0.94 ± 0.01 -0.11% 0.94 ± 0.01 -0.54% 0.94 ± 0.01 -0.27%
tiff2rgba 2.57 ± 0.02 2.56 ± 0.02 -0.13% 2.57 ± 0.02 -0.06% 2.57 ± 0.02 -0.03% 2.57 ± 0.02 0.03%
tiffdither 3.38 ± 0.02 3.46 ± 0.02 2.35% 3.41 ± 0.02 1.03% 3.42 ± 0.02 1.22% 3.46 ± 0.02 2.47%
tiffmedian 2.64 ± 0.02 2.64 ± 0.02 0.18% 2.64 ± 0.02 0.18% 2.63 ± 0.02 -0.14% 2.63 ± 0.02 -0.28%

average 4.91% 3.91% 4.39% 4.57%



tion 4.3, the stack pointers are stored in main memory but a reserved register
stores their location. This eliminates the instruction to load the location in a
register. However, its performance proved slightly worse in practice. We assume
that the processor on our test was not able to schedule the instructions as well
as the fixed address approach. More detailed information can be found in [19].

Using static analysis, many of the presented approaches can still be improved.
At compile time it could be determined that some of the stacks will never be used
by the application (see section 5.2). This knowledge could be applied to reserve
less registers for the dedicated register approach. Combining this knowledge with
a more guided estimation of the maximum size of each stack, the packed stack
pointers technique could be modified to reduce the number of registers reserved
and/or store less bits of each stack pointer.

Also a heuristic could be used in case registers are reserved to reduce the
register pressure; functions may use these registers to store intermediate values,
as long as their contents is restored before they are used by the function itself
or one that it calls (in)directly.

The main goal was to eliminate the memory usage of the original Multistack
implementation. Not only do all proposed implementations satisfy this goal,
section 5.3 showed that on average they also reduce performance overhead. The
dedicated registers approach not only outperforms all other implementations,
but it can also be adapted easily for multithreaded applications, a situation not
supported by the original approach.

7 Related work

Many countermeasures to protect applications against (stack-based) buffer over-
flow attacks have been developed during the last decades. In this section we
briefly highlight the differences between our and existing approaches to the prob-
lem. A more elaborate overview can be found in [2, 15, 20].

One obvious way to defend applications against buffer overflow attacks is
to add bound checks [3], however when implemented for C, their performance
overhead is significantly larger than other countermeasures.

Another approach uses a type system and runtime checks to create safe lan-
guages where the existence of buffer overflow vulnerabilities are prevented. There
are safe languages, referred to as safe dialects, that remain as close to C or C++
as possible. However, their performance overhead is also significant [4, 5].

The most often applied countermeasure in practice uses random data to
detect buffer overflows or try to prevent their successful execution. StackGuard
[6, 7] is an example of such a probabilistic countermeasure. It places a random
value, called canary, in front of each return address on the stack. An attacker
that overflows a stack-based buffer up to a return address, will modify the canary.
The canary check at each function’s epilogue will notice this modification and
prevent the exploit before the return address is used.

However, by overwriting a pointer, an attacker is able to write to an arbitrary
memory location, when the application dereferences the pointer for such an



instruction. In case he/she is also able to control the written value, the execution
path can be redirected to injected code, for example, by overwriting a return
address [16]. Since the canary is not modified, StackGuard is not able to detect
the attack. ProPolice [7] entangles the canary and the return address by taking
the xor function from a random value and the return address. This allows the
detection of any change to the return address.

Address space layout randomization (ASLR) [8, 9] randomizes the location of
program data and code. As a result, redirecting execution to shellcode is hard.

While these last approaches are efficient, they rely on keeping memory lo-
cations secret. However, programs could also contain “buffer overreads” [10] or
other vulnerabilities like format string vulnerabilities [21], which allow attackers
to print out memory locations. Such memory leaking vulnerabilities could allow
attackers to bypass this type of countermeasure.

Other countermeasures take advantage of hardware to protect against buffer
overflows. Francillon et. al. [22] implement a similar approach as Multistack,
but only two stacks are supported and the presence of specialized hardware is
required. The techniques presented in this paper take advantage of a Memory
Management Unit (MMU) to create guard pages, hardware that can also be
used to facilitate additional countermeasures (e.g. non-executable memory [23,
8]) and already present in many modern processors.

8 Conclusion

The Multistack countermeasure effectively protects against stack-based buffer
overflows, defeating many state-of-the-art attacks. Unfortunately, its straight-
forward port to the ARMv7 instruction set, does not reach the same efficiency
as on the x86 platform and it suffers from high memory overhead.

In this paper we presented three approaches that reduce memory overhead
up to 28%. In addition, each approach also reduces performance overhead. The
best performing has an overhead of only 3.91% and supports multi-threaded ap-
plications, a situation not supported by the original Multistack implementation.

Acknowledgments. We thank Thomas Walter and Sven Lachmund for the
discussions on this topic, and the feedback on an earlier draft of the paper. This
research is partially funded by NTT Docomo Eurolabs, by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, and by the
Research Fund K.U.Leuven.

References

1. Aleph1: Smashing the stack for fun and profit. Phrack 49 (1996)
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