
HAL Id: hal-01056054
https://inria.hal.science/hal-01056054

Submitted on 14 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

T-DOC: A Tool for the Automatic Generation of Testing
Documentation for OSS Products

Sandro Morasca, Davide Taibi, Davide Tosi

To cite this version:
Sandro Morasca, Davide Taibi, Davide Tosi. T-DOC: A Tool for the Automatic Generation of Testing
Documentation for OSS Products. 6th International IFIP WG 2.13 Conference on Open Source
Systems,(OSS), May 2010, Notre Dame, United States. pp.200-213, �10.1007/978-3-642-13244-5_16�.
�hal-01056054�

https://inria.hal.science/hal-01056054
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

T-DOC: a Tool for the Automatic Generation of

Testing Documentation for OSS Products

Sandro Morasca, Davide Taibi, and Davide Tosi

Università degli Studi dell’Insubria,
Dipartimento di Informatica e Comunicazione, Via Mazzini, 21100 Varese, Italy

{sandro.morasca,davide.taibi,davide.tosi}@uninsubria.it

Abstract. In the context of Open Source Software (OSS), the lack of
project documentation is one of the most challenging problems that slows
down the widespread diffusion of OSS products. The difficulty of provid-
ing up-to-date and reasonable documentation for OSS products relates to
two main reasons. First, documenting development activities and techno-
logical issues is viewed as a tedious and unrewarding task. Second, data
and information about an OSS project (such as source code, project
plans, testing requirements, etc.) are scattered and shared via unstruc-
tured channels such as unofficial forums and mailing lists.
In this paper, we focus on technical documentation related to testing
activities. In this context, the lack of documentation is exacerbated due
to the use of the available testing methods that drastically increase code
fragmentation. We propose T-doc, a tool that simplifies the generation of
testing documentation. In particular, T-doc supports (1) the automatic
generation of test cases documentation, (2) the generation of reports
about test case results, and (3) the archiving of testing documents in
central repositories. The automatic generation of documentation is fa-
cilitated by the adoption of built-in testing methods that simplify the
aggregation of testing data.
We apply the tool to the OSS RealEstate Java application to show the
applicability and the real benefits of our solution.

Key words: Open Source Software testing, testing documentation, test-
ing tools

1 Introduction

Open Source Software (OSS) is experiencing an increasing diffusion and popu-
larity in industrial sectors. However, this spreading is slowed down by the frus-
tration a lot of potential users have when they start evaluating an OSS product
that they would like to adopt. This is primarily due to the lack of reasonable and
up-to-date user documentation that deeply describes the intent and the technical
aspects of the project.

Most of the available OSS projects are currently released without up-to-date
user manuals and technical documents. The lack of documentation in OSS is
even more serious in the context of testing activities. It is very rare to find

2 Sandro Morasca, Davide Taibi, and Davide Tosi

well-structured documents, manuals, and reports about all the testing phases
performed during the development of OSS products. Documenting OSS projects
is a tedious and unrewarding task that is made more complicated by the scat-
tering of data and information typical of OSS projects.

In this paper, we focus on the problem of documenting testing activities and
we propose a tool (we called T-doc) that supports the automatic generation of
unit, integration, regression testing documentation, the report of test results,
and the aggregation of these data in dedicated central repositories we called
“testing tracker systems.” The automatic generation is simplified by the use of
built-in testing methodologies that put together the code of methods and test
cases in a single component to avoid the fragmentation of source code and to
simplify the aggregation of the testing data [3]. T-doc provides a three-layered
support:

– automatic generation of test cases documentation (in a java-doc like style);
– automatic generation of suggestions about integration and regression testing

activities that should be performed by each developer and for each compo-
nent of the project;

– automatic generation of reports about the results of test suites execution.

All the documents and testing data are then collected and archived in the
testing tracker system of the project to favor data discovery and data sharing.
This paper is a step towards our final goal, which is the development of a standard
framework that OSS developers can use whenever they start testing their OSS
products. In this paper, we apply an initial implementation of T-doc to the
RealEstate Java application [2] to show the simplicity, the real benefits, and the
level of automation provided by our solution.

The paper is structured as follows: Section 2 reports the analysis we con-
ducted to confirm the low availability of testing documentation, and discusses
the limits of a set of existing testing tools; Section 3 introduces the motivations
that are at the basis for adopting built-in testing in the context of OSS products;
Section 4 separately discusses the three layers of the T-doc tool, and shows how
T-doc comes into play when applied to the RealEstate Java application; and
finally we conclude in Section 5.

2 The Lack of OSS Documentation

The perception we normally have surfing the web portal of OSS products, ob-
serving OSS forums/blogs/discussions, and using OSS products in our every-day
work is that most of the available OSS projects are released without user manuals
and technical documents.

To have an empirical evidence of this perception, we conducted a two-fold
analysis: first, we interviewed 151 OSS users (end users, developers, managers,
OSS experts) and then, we analyzed the web portal of 32 well-known OSS
projects1. The first analysis aimed to identify the importance the factor ”avail-

1an extensive report of these experiences can be found in
www.qualipso.eu/node/45 and /node/84

T-DOC for the Automatic Generation of Testing Documentation 3

ability of technical documentation / user manual” has for OSS users. We dis-
covered that in a scale from 1 (negligible importance) to 8 (fundamental impor-
tance), the factor ”availability of technical documentation / user manual” took a
very high score equal to 6,5. The second analysis aimed to check the actual avail-
ability of technical documentations and user manuals related to the 32 analyzed
projects. We discovered that: 69% of the projects have up-to-date user manuals
while the remaining 31% have not updated or available user manuals; 49% of
the projects have an up-to-date technical documentation, while the remaining
51% have not an updated or available technical documentation.

This deficiency is exacerbated when we look at testing documentation: in our
analysis, only 1 product (out of 32) provides a complete documentation about
its internal testing activities. Only JBoss [www.jboss.org] exposes a detailed and
up-to-date documentation about testing plans, testing methodologies, test cases
description, and test suite results. We believe that this is primary due to three
main reasons: first, the use of classical testing methodologies that are based on
external testing (i.e., test cases are independent components that are separated
from the applicative code) drastically augment the fragmentation of data, thus
further complicating the process of documenting testing activities; second, the
lack of well-agreed best practices on how to test OSS products increases the ef-
fort required for testing applications, thus stealing effort in documenting testing
activities. Finally, the lack of tools, which support and automate the documen-
tation of testing activities, leaves too much effort to the side of developers. The
results obtained by our second exploration are in contrast with the requirements
OSS users have. This analysis confirms our intuition and demonstrates the need
for a tool that supports the automatic generation of testing documentation.

Currently, open source tools or frameworks that support the whole docu-
mentation of testing activities are not yet fully available. The famous portal
[www.opensourcetesting.org] gathers a lot of testing tools that support a spe-
cific aspect of the test life cycle, but none of them are able to manage and
create the documentation, the results report and the collection of these informa-
tion. For example, Testopia [www.mozilla.org/projects/testopia] is a test case
management extension for Bugzilla that tracks test cases and allows for test-
ing organizations to integrate bug reporting with their test case run results.
However, Testopia covers only a part of the functionalities provided by T-doc.
Fitness [http://fitnesse.org] is a software development collaboration tool, which
simplifies the management of testing documentation, test reports and the collab-
orative definition of acceptance tests. T-doc, is able to automatically generate
testing documentation and it is not limited to acceptance tests. Moreover, T-doc
is able to automatically suggest the integration and regression testing activities
that should be performed. Other tools, such as TPTP [www.eclipse.org/tptp/]
or Salome-TMF [https://wiki.objectweb.org/salome-tmf/], are complex frame-
works that cover the entire test life cycle but are not able to automatically create
testing documentation.

The next section discusses why a built-in testing method is preferred to classic
testing solutions.

4 Sandro Morasca, Davide Taibi, and Davide Tosi

1 Class c lass name {
2 // app l i ca t i on in t e r f a c e
3 Data d e c l a r a t i on ;

4 Constructor d e c l a r a t i on ;

5 Destructor d e c l a r a t i on ;

6 Methods d e c l a r a t i on ;

7

8 // t e s t i n g in t e r f a c e
9 TestCases d e c l a r a t i on ;

10

11 // app l i ca t i on code
12 Constructor ;

13 Destructor ;

14 Methods ;

15

16 // t e s t i n g code
17 TestCases ;

18 }

Listing 1.1. Code excerpt of a BIT component

3 Built-in Test in OSS

Built-in self-test (BIST) and Built-in test (BIT) approaches for software systems
originated in the context of component-based systems to simplify the integration
of third-party black-box components and enhance software maintainability [9].
A BIT component (or BIT class) is a traditional component that puts together
applicative code with testing code [3]. A BIT component can operate in a normal
mode (i.e., testing capabilities are switched off to the user) or in maintenance
mode (i.e., the user can test the component in his environment by exploiting the
built-in testing capabilities) by interacting with the application or the testing
interface, respectively. Listing 1.1 shows a code excerpt for a typical component
with built-in testing abilities, where test cases are declared and implemented
directly into the applicative class.

In the context of OSS, the heterogeneity of the developers/contributors in-
creases the fragmentation of the source code and makes unfeasible the adop-
tion of available testing methods, programming rules, and testing tools that
could favor the whole comprehension of fragmented testing activities. Simple
programming rules (as shown in Listing 1.1) may help standardize a common
programming style that can improve the testing activity, decrease the testing
effort, and simplify the generation of testing documentation. Whenever a devel-
oper/contributor of an OSS product introduces or modifies a functionality of a
component, he or she designs and codes unit tests, integration tests and option-
ally non-functional tests into the component to provide BIT abilities. Modified
components are then uploaded into the repository that stores the project and
are integrated to generate the OSS product with comprehensive BIT abilities
(as shown in Figure 1).

Putting together application code and testing code into single classes has sev-
eral advantages: (1) it improves the visibility and inheritance of test cases. Test
cases are coded as classic methods thus, when a class extends another class, the

T-DOC for the Automatic Generation of Testing Documentation 5

‐

functional methodsapplication

interface
normal

mode

application code

testing methods

testing
interface

B
IT O

S
S P

R
O
D
U
C
T

maintenance

mode

.

built‐in testing code

Fig. 1. Aggregating components into an OSS product with BIT abilities

former inherits not only the application methods but also the test case methods.
This simplifies the reuse of available test cases; (2) it favors the standardization
of testing interfaces. Test cases are developed following the coding rules of the
target programming language in use for the application, thus limiting the cre-
ativity of the developers. This improves the readability of the testing code; (3)
it increases the aggregation of data. Test cases are grouped into single classes
instead of into different packages, components, or libraries. This simplifies the
discovery of testing data and their correlation with coding elements; (4) more-
over, the documentation of test activities and the report of test case results is
made easier, thus simplifying regression testing activities. Regression testing is
made upon the availability of test cases and test results. The more test cases and
test results are not available or they are disaggregated, the more the regression
testing activity is tricky; (5) it favors run-time testing [8]: the system can be ex-
ecuted at run-time in maintenance modality [7], thus simplifying the detection
of bugs that are undetectable in a controlled testing environment. In OSS, often
components are separately tested at development time by each contributor that
develops a small unit and tests its behavior in isolation. This leaves undetected
a lot of integration failures. Moreover with BIT, the test suite can be executed
over different hw/sw platform configurations, thus simplifying system, configu-
ration and performance testing. Every time a user installs the application on his
environment, he/she becomes a new tester of the application and he/she uses
his/her hw/sw configuration as a new scaffolding of the testing activity. Hence,
the ”eye bird” ability, which is typical of OSS products (i.e., the capacity to
evaluate a product by the large glance of the OSS community), can be fully
exploited and can be complemented by testing activities.

However, BIT also introduces risks and limitations that need to be faced
when designing the T-doc tool: run-time testing can move the system in an in-

6 Sandro Morasca, Davide Taibi, and Davide Tosi

consistent state that may compromise the stability of the system. To mitigate
this risk, the test suite must be executed in background only once, during the
OSS product installation (or during critical updates). Moreover, BIT is an in-
trusive mechanism that can lead to security and privacy-related problems. To
mitigate this risk, final users must be aware that the OSS product is under BIT,
so they can block the BIT abilities if they so wish, and user-related data must
not be collected by the framework. Finally, if built-in tests are executed with-
out a control, system performance can degrade. The execution of the built-in
test suite in background, during the OSS product installation, alleviates this
problem.

To the best of our knowledge, we believe that the use of BIT abilities, in-
stead of classic testing mechanisms, is a valid way to support and simplify the
generation and the gathering of testing documentation in the domain of OSS.

4 The T-doc Tool

Here, we present the architecture of the T-doc tool and we detail its threefold
support by separately discussing: the automatic generation of test cases docu-
mentation, the automatic generation of suggestions about integration and re-
gression testing activities, and finally the generation of reports about the results
of the test suite execution. Figure 2 shows a high level architecture of T-doc.

Application

‐ method M1method M1

‐ …
‐ testCase T1‐ testCase T1

Integration Testing
‐ …

Documentationout

in

T t C h

in

Test Cases
i

li
sh

out Documentation
TESTu

b
lout

TEST

TRACKER

pT‐DOC ENGINE TRACKER

i
out

Test suite
out

results Report

Regression Testing out
Documentation

Fig. 2. High level architecture of the T-doc framework

T-DOC for the Automatic Generation of Testing Documentation 7

4.1 Test Case Documentation

This first layer of support aims at simplifying and automating test case and
test suite documentation generation. The generated documentation should in-
crease the readability of the technical aspects of each test case, and should favor
an overall comprehension of the testing activity. To allow for the automation
of this process, built-in test cases must be surrounded by doc comments (i.e.
short sentences that describe the test case, its purpose, and its behavior) and
keywords in a way similar to the way comments and block taglets surround
methods and functionalities in Java source code. Testing doc comments (T-doc
comments) and block taglets are then parsed and processed by the T-doc engine
to generate the test case documentation much the same way as the Javadoc
tool operates. Javadoc is a tool from Sun Microsystems for generating API doc-
umentation out of declarations and documentation comments in Java source
code. Javadoc produces HTML documentation describing the packages, classes,
interfaces, methods, etc. of a software system. The output format of the Javadoc
can be customized by means of doclets. Javadoc parses special tags embedded
within a Java doc comment. These doc tags are used to automatically generate
a complete, well formatted API from the source code. All tags start with a (@),
e.g., @author. The tags are used to add specific information like a method’s
parameters (@param), return type (@return), and exceptions (@exception).

 ‐

Cl AClass AClass A
Class AClass A

method M1
‐ methods‐ methods

‐ method M1

testMethod T1
‐ testMethods‐ testMethods

‐ testMethod T1
testMethods

inin

Doc1

T DOC Doc 1Doc 1
Doc1
A T1TEST SUITE outT‐DOC

B ilti TC

Doc 1A.T1TEST SUITE
BUILDER

out
Builtin TCsBUILDER

p
uu
b
l

Class TestSuite

ishh

‐ testMethod T1out
‐ testMethod T2

publish‐‐ … … publish
TEST

T DOC ENGINE
TRACKER

T‐DOC ENGINE
TRACKER

Fig. 3. Architecture of the first T-doc layer

8 Sandro Morasca, Davide Taibi, and Davide Tosi

To minimize the effort of developers and contributors in writing testing doc-
umentation, favor standardization, and avoid subjective interpretations of data,
we clearly define a set of new conventions and a set of ad-hoc tags that devel-
opers and contributors should follow whenever they add a T-doc comment. An
example of a real T-doc comment can be found in Figure 4.

In compliance with Javadoc, the conventions we defined are:

1) the first line contains the begin-comment delimiter (/**)

2) write the first sentence as a short summary of the test, as T-doc

engine automatically places it in the summary table of the test

3) insert a blank comment line between description and the list of tags

4) the first line that begins with an "@" character ends the description

5) there is only one description block per T-doc comment

6) the last line contains the end-comment delimiter (*/)

The tags, useful for commenting a test case, are listed below:

@param (name of the parameter, followed by its description)

@return (omit @return for tests that return void; required otherwise)

@succeedIf (summarize the conditions under which the test case succeeds)

@failIf (summarize the conditions under which the test case fails)

@qualityAttribute (specify the quality aspect addressed: performance, etc.)

@scope (specify the test case purpose: unit, integration, etc.)

@author (author name/surname)

@version (version number + checkout date)

@see package.Class#method(Type,...) (ref to the function under test)

Figure 3 shows a subset of the functionalities provided by the T-doc Engine.
The T-doc Engine takes in input the set of classes that are added/modified by
the developer. Each class is analyzed separately to discover and isolate the built-
in test cases and their T-doc comments. The Test Suite Builder component
aggregates all the built-in test cases into a single test suite, and the T-doc TCs

component parses all the t-doc comments to generate the complete documen-
tation of the test suite. Finally, the engine publishes the documentation to the
central repository (Test Tracker) of the project to avoid fragmentation and ver-
sioning problems of the documentation. Versioning problems are also avoided by
means of the introduction of the new tag @version.

To favor the comprehension of this layer, we exemplify the writing of a T-doc
comment for a built-in test case we derived for the RealEstate OSS Java appli-
cation [2]. The RealEstate is a Java application created at North Carolina State
University that reproduces the Monopoly game. The RealEstate application will
be used throughout the whole paper as proof-of-concept of our work. Figure 4
shows the source code of the built-in test case surrounded by a T-doc comment
and T-doc tags. The purpose of this Figure is not to present the internal code
of the test, but to highlight the structure of a T-doc comment.

T-DOC for the Automatic Generation of Testing Documentation 9

Fig. 4. A built-in test case with T-doc comments for the RealEstate application

The documentation automatically generated by the T-doc engine for this test
case looks like as follows:

ID001:: UNIT Test: testGainMoneyCardAction

V1.0.2 06-02-09

Tests the behavior of the applyAction() functionality.

Checks whether the account of the current player’s

CCard is properly updated when a gain of money is performed.

Succeeds if: getMoney() returns a value=1550$

Fails if: getMoney() returns a value!=1550$

See: edu.ncsu.realestate.MoneyCard()

The T-doc engine generates a documentation that is compliant with the
visual representation of Javadoc comments, with small differences (such as the
use of a label for each test ID00X), in order to maximize both the compatibility
and also the readability of the documentation. Currently, this T-doc module has
been fully implemented and its is fully compatible with the Eclipse IDE.

4.2 Regression and Integration Testing Documentation

This second layer of support aims at suggesting and documenting the integration
and regression test cases that OSS contributors should develop during the up-
date/maintenance of their OSS products. The generated documentation should
simplify the contributors’ task of writing these test cases. To this end, the depen-
dencies among methods and components must be detected by the T-doc engine
and visually reported to the developer. The T-doc engine uses the idea of change
points and call graphs [4] [5] to automatically detect the source code location

10 Sandro Morasca, Davide Taibi, and Davide Tosi

in which a code change has been performed, and to automatically create the
graph of calls related to the method in which the change has been detected.
These graphs are used by the T-doc engine as the starting point to create the
suggestions for integration and regression testing activities.

 ‐

Doc1
A.T1

Doc2Int
T‐DOC

Integration

Change Point

CP Call Graph:

CG: CP
in out

p
u
b
lis

T‐DOC
Regression

Doc2Reg

Class TestSuiteRegr

‐ testMethod T3

‐ testMethod T7

‐‐ … …

out

Class TestSuite

‐ testMethod T1

‐ testMethod T2

‐‐ … …
TC Call Graphs:

CG: T1

CG: T2

CALL GRAPH
TOOL

TEST

TRACKER

h
p
u
b
lish

in

publish

Fig. 5. Architecture of the second T-doc layer

Figure 5 shows the three main modules of this layer: the T-doc Integration

module, the T-doc Regression module and the Call Graph tool.

The T-doc Integration module is responsible for suggesting integration
testing scenarios that should be implemented by the OSS contributors when-
ever a new method is added or whenever an existing method is modified (i.e.,
the @version tag of the associated test case is updated). Integration testing
checks dependencies among objects of different classes. Class A uses class B if
objects of class A make method calls on objects of class B, or if objects of A
contain references to objects of B [6]. The T-doc Integration takes as input
the documentation generated by the T-doc TCs module (Doc1 A.T1) and au-
tomatically generates the call graph for the change point (CP) that is related
to the documented test case. To avoid graph size explosion, we chose to limit
the computation to the third level of method’s dependencies. We are conduct-
ing additional experiments to understand the code coverage we obtain with this
limit.

Referring to our RealEstate example of Figure 4, the OSS contributor is
working on the MoneyCard class, by modifying the applyAction() method

T-DOC for the Automatic Generation of Testing Documentation 11

and writing the built-in test case testGainMoneyCardAction(). First of all,
the T-doc Integration module computes the call graph for the change point
applyAction(), then it produces the integration testing scenario for this change.
Figure 6 shows the result of this computation (Doc2Int). The root of the graph is
the CP applyAction(), while leaves are the methods that directly or indirectly
interact with the applyAction() method. The T-doc Integration module in-
tegrates the functionalities provided by CallGraph [www.certiv.net/projects/]
to automatically create call graphs starting from a change point.

 ‐

 ‐

 ‐

Author Davide Tosi made a change to applyAction()

Please, consider the following interactions and

write ad-hoc integration tests that exploit the

suggested testing scenario:

applyAction() instance() GameMaster()S C

getCurrentPlayer() getPlayer(…)

setMoney(…)

getMoney()

Fig. 6. Generated integration testing scenario for the testGainMoneyCardAction()

The T-doc Regression module is responsible for automatically detecting
the subset of relevant test cases for regression activities whenever a change
into the code is performed. Without this support, OSS contributors are forced
to manually rerun all the test cases in the test suite for regression purposes.
This task is very expensive for contributors that are not interested in testing.
For instance, rerunning the complete test suite for the OSS WEKA applica-
tion [sourceforge.net] require 45 mins in a fully dedicated machine. Moreover,
other problems are: who runs the test suite? Where to store and collect the test
cases that should be re-executed? When must the test cases be rerun? Where are
the results of the test suite execution reported? All these problems are addressed
by the T-doc Regression module. This module takes as input the change point
and also the complete set of call graphs computed for each test case by the Call
Graph Tool module. Then, the T-doc Regression module scans all the call
graphs to detect the subset of graphs that are affected by the change point (i.e.,
the change point is present into the graph). The subset of relevant call graphs
indicates the meaningful test cases that should be re-executed with respect to
the change that has been performed. Here, we show the algorithm that the T-doc
Regression module uses to detect the subset of meaningful test cases:

12 Sandro Morasca, Davide Taibi, and Davide Tosi

Input: test cases, CP

Output: documentation of the subset of meaningful regression tests

1. derive the call graph for each test case ending at the 3rd level

of dependencies;

2. select a graph as starting entry;

3. scan the graph to detect whether the change point is present;

4 if the change point is present:

select the test case for regression;

else: jump to step 2.

5. when all the graphs have been evaluated, generate the regression

documentation as the list of test cases wrt the CP

For the RealEstate application the T-doc Regressionmodule takes as input,
from the Call Graph Tool, 30 graphs and generated the following documenta-
tion (Doc2Reg). For space reason, we do not show the complete set of graphs
computed by the T-doc engine.

Doc2Reg:

This is the set of regression test cases

for the applyAction() change point:

01) testGainMoneyCardAction()

02) testMovePlayerCardAction()

03) testLoseMoneyCardAction()

04) testJailCardAction()

05) testJailCardUI()

06) testLoseMoneyCardUI()

07) testMovePlayerCardUI()

All the data provided by this second layer (Doc2Int, Doc2Reg and the re-
gression test suite) are published into the central Test Tracker system.

4.3 Test Case Execution Report

This third layer of support aims at homogenizing and collecting all the outputs
coming from the T-doc tool and the results obtained by the execution of the
test cases. In this section, we only introduce the design of this layer since its
implementation is not yet available. This layer is composed of two main entities:
the Test Tracker system and the part of the T-doc engine that is responsible
for collecting and manipulating the test case results.

The Test Tracker system is responsible for managing: (1) the class contain-
ing all the built-in test cases that are incrementally added (or modified) to the
test suite (Class TestSuite); (2) the class of integration test cases (if avail-
able); (3) the class containing the regression test cases derived by the T-doc

Regression module. The Test Tracker system stores the documentation of
each test case (Doc1 A.T1, Doc1 A.T2, Doc1 A.Tn) and aggregates this docu-
mentation in a single document that describes the complete behavior of the test
suite. Moreover, the Test Tracker system stores the documentation related to

T-DOC for the Automatic Generation of Testing Documentation 13

integration and regression test cases (Doc2Int and Doc2Reg), and it aggregates
this documentation in a single file. Finally, the Test Tracker system provides
search abilities among all the T-doc documents that are published by the T-
doc engine. As in Bug tracker systems (such as Bugzilla [www.bugzilla.org]),
T-doc documents can be searched and filtered by means of ad-hoc keywords.
These keywords are identical to the tags we defined in Section 4.1. For example,
you can filter your search by @author (T-doc documents are grouped regarding
to the owner of the test cases) or by @scope (T-doc documents are grouped
according to the purpose of test cases).

 ‐

Report

a
T‐REPORT
Builtin TCs

Class TestSuite

‐ testMethod T1

‐ testMethod T2

‐‐ … …

Builtin TC

Results
in out

p
u
b
lis

T‐REPORT
Regression

Class TestSuiteRegr

‐ testMethod T3

‐ testMethod T7

‐‐ … …

Regression
TC Results

Profile
MANAGER

HW/SW
Configuration

Report

b

EXECUTION
ENVIRONMENT

interact

in
out

Builtin TS
TEST

TRACKER

h
p
u
b
lish

Fig. 7. Architecture of the third T-doc layer

As mentioned in Section 3, built-in test cases favor the execution of run-time
testing [7]. The T-doc engine exploits this feature and it is able to collect the
results of the run-time execution of the test suite. Figure 7 shows the modules
involved in this task. The two T-Report modules collect the results of the test
cases execution. Hence, the two modules correlate these results with the run-time
HW/SW configuration of the execution environment in which test cases have
been executed. The output of these correlations are two reports (Report a and
Report b) that document the results of the run-time testing activity. Currently,
we are working on the identification of the profile information that should be
collected by the Profile Manager module (such as log files, active processes,
hw/sw capabilities, etc.), and we are implementing this third T-doc layer to
support the testing documentation of Java OSS projects.

14 Sandro Morasca, Davide Taibi, and Davide Tosi

4.4 Validation Remarks

Though the RealEstate demo application has shown the feasibility and the ben-
efits of the T-doc tool, we are extending the validation of the tool with addi-
tional case studies. For example, in our labs, we are implementing a complex
OSS project to validate the approach and to understand its potentialities. The
project (we called MacXim) is a static-analysis tool (15000 LOC in 118 classes)
that exploits the solution presented in this paper [1]. The MacXim test suite
(composed of acceptance, unit, integration and regression tests) has been de-
signed with in mind the guidelines proposed in this paper, and each test case
has been documented with a T-doc comment that describes the purpose of the
test.

This controlled project will provide important feedbacks about the potential-
ities and the weaknesses of the T-doc tool, and will be the basis for developing
a stable tool that will be fully exploited in real-life OSS projects and in uncon-
trolled development environments.

5 Conclusions and Future Work

In this paper, we proposed T-doc, a tool that simplifies the generation of testing
documentation in the context of OSS projects. We showed how T-doc supports
the automatic generation of test cases documentation, the generation of reports
about test case results, and the archiving of testing documents in central reposi-
tories. The automatic generation of documentation is facilitated by the adoption
of built-in testing methodologies that simplify the aggregation of testing data.
To understand the T-doc working in practice, we applied the tool to the OSS
RealEstate Java application.

Currently, we are integrating all the modules of the T-doc tool and we are
validating T-doc with the real-life Java application MacXim.

6 Acknowledgments

The research presented in this paper has been partially funded by the IST project
QualiPSo (http://www.qualipso.eu/), sponsored by the EU in the 6th FP (IST-
034763); the FIRB project ARTDECO, sponsored by the Italian Ministry of
Education and University; and the projects ”Elementi metodologici per la de-
scrizione e lo sviluppo di sistemi software basati su modelli” and ”La qualità
nello sviluppo software,” funded by the Università degli Studi dellInsubria.

References

1. MacXim: a static code analysis tool. Web published: blinded. Accessed: December
2009.

2. The RealEstate demo application. Web published:
http://agile.csc.ncsu.edu/SEMaterials/realestate/. Accessed: December 2009.

T-DOC for the Automatic Generation of Testing Documentation 15

3. S. Beydeda. Research in testing COTS components - built-in testing approaches.
In Proceedings of the ACM/IEEE International Conference on Computer Systems
and Applications (AICCSA), pages 101–104, 2005.

4. C. Mao, Y. Lu, and J. Zhang. Regression testing for component-based software via
built-in test design. In Proceedings of the ACM Symposium on Applied Computing
(SAC), pages 1416–1421, 2007.

5. A. Orso, M. J. Harrold, D. S. Rosenblum, G. Rothermel, M. L. Soffa, and H. Do.
Using component metacontent to support the regression testing of component-based
software. In Proceedings of the IEEE International Conference on Software Manin-
tenance (ICSM), pages 716–725, 2001.

6. M. Pezzè and M. Young. Software Testing And Analysis. Process, Principles, and
Techniques. Wiley, 2007.

7. D. Suliman, B. Paech, L. Borner, C. Atkinson, D. Brenner, M. Merdes, and
R. Malaka. The MORABIT approach to runtime component testing. In Proceedings
of the International Computer Software and Applications Conference (COMPSAC),
pages 171–176, 2006.

8. J. Vincent, G. King, P. Lay, and J. Kinghorn. Principles of built-in-test for run-
time-testability in component-based software systems. Software Quality Control,
10(2):115–133, 2002.

9. Y. Wang, G. King, and H. Wickburg. A method for built-in tests in component-
based software maintenance. In Proceedings of the IEEE European Conference on
Software Maintenance and Reengineering (CSMR), pages 186–192, 1999.

