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Abstract. Future ambient intelligence environments will embed power-
ful multi-core processors to compose various functionalities into a smaller
number of hardware components. This makes the maintainability of in-
telligent environments better because it is not easy to manage massively
distributed processors.

A composition kernel makes it possible to compose multiple function-
alities on a multi-core processor with the minimum modification of OS
kernels and applications. A multi-core processor is a good candidate to
compose various software developed independently for dedicated pro-
cessors into one multi-core processor to reduce both the hardware and
development cost. In this paper, we present SPUMONE which is a com-
position kernel for developing future smart products.

1 Introduction

Multi-core processors are being increasingly adopted for embedded systems be-
cause they improve performance, power consumption and lower development
cost. Composing multiple operating systems on a multi-core processor enhances
the reusability of software when developing rich functional embedded systems.
For example, a new product may require to use the new version of an operating
system, but to ensure the compatibility with legacy software, the old version
may also need to be present. Multiple OS environments enable the product to
use two versions of an operating system at the same time. In order to build mul-
tiple OS environments, a virtualization layer specialized for embedded systems
is necessary, since most of processors for embedded systems support only two
protection levels, and there is no hardware support for virtualization. In tradi-
tional approaches, an OS kernel runs at the user level to isolate the respective
OS kernels, but this approach requires heavy modifications to the guest OSes.
Especially, device drivers need to be rewritten and may degrade the performance
significantly. Therefore existing solutions is not preferred by the embedded sys-
tem industry.

In this paper, we propose a composition kernel where multiple OS kernels
are running on top of a very thin hardware abstraction layer. The hardware ab-
straction layer multiplexes underlying physical processor cores into virtual cores



which can be dynamically migrated among the physical cores. A composition
kernel can reduce the engineering cost of developing an embedded system by
reusing existing OS kernels and application with minimum modification. It also
supports real-time interrupt responsiveness, a feature that is difficult to support
for large and highly functional monolithic OS, like Linux and Windows. In ad-
dition, flexible virtual core migration can help reducing the power consumption
of the processor.

Our project is developing SPUMONE which is a composition kernel for em-
bedded systems, and currently focuses on the following three issues.

— Mapping and scheduling of virtual cores on physical cores dynamically to
balance the tradeoff among real-time constraints, performance and energy
consumption.

— Reducing interrupt latency without degrading real-time performance in a
single and multi-core processor.

— Detecting the integrity violations in OS kernels, and repairing them by re-
booting the kernels independently.

SPUMONE offers a scheduling algorithm to execute a general purpose OS
without affecting the timing constraints of real-time OSes. Also, the execution
of general purpose OSes should utilize the maximum performance of multi-core
processors. However, when the system load becomes low, SPUMONE reduces the
number of used physical cores by migrating virtual cores to a small number of
physical cores. The unused physical cores can be turned off to reduce the power
comsumption. The overview of multi-core resource management is described in
Section 4.1.

For satisfying timing constraints of real-time OSes, SPUMONE carefully co-
ordinates interrupt handling to reduce the effect of disabling interrupts in a
single processor case. However, in a multi-core processor case, SPUMONE mi-
grates a virtual core that executes a general purpose OS on another physical
core when a real-time OS becomes runnable. Also, lock holder preemption is
a serious problem to run an SMP OS kernel on SPUMONE. The migration of
virtual cores can solve the problem as described in Section 4.2.

A monitoring service increases the security and reliability of the entire sys-
tem. On SPUMONE, each OS kernel can be rebooted independently when the
kernel is crashed. The monitoring service enables a kernel to be rebooted proac-
tively. When the monitoring service detects an anomaly in the kernel by checking
the integrity of some of its data structures, it tries to restore the integrity of these
data structures. If the anomaly cannot be fixed, the monitoring service will re-
boot the OS kernel to recover its integrity completely. This approach can be used
to remove kernel rootkits that modify the behavior of operating system kernels.
The overview of reliability and security issues in SPUMONE is described in
Section 4.3.



2 Motivation

In the near future, a variety of daily objects near us will become smart products.
These artifacts are connected to the Internet and enhance our daily activities.
In our research group, we have enhanced various daily objects such as chairs,
tables, toothbrushes, and mirrors [12]. These products have the surfaces to en-
courage people to motivate desirable behavior [6,7], or provide the economic
incentives [10]. This offers us a big opportunity to make traditional products
more attractive.

There are two characteristics to develop these future smart products. The
first is to offer a huge amount of functionalities that need to satisfy diverse re-
quirements to offer various attractive services. These diverse requirements cannot
be implemented on only one operating system. Current smart products adopt
various types of operating systems to satisfy different requirements. For example,
products controlling a variety of devices have used small operating systems that
include only a real-time thread scheduler and some device drivers. The operating
systems usually do not support memory protection domains, but are suitable for
implementing highly responsive services with tight timing constraints.

Diverse hardware platforms are the second characteristic. Especially, future
smart products will need to use a multi-core processor dynamically to save en-
ergy consumption. As described in the previous paragraph, multiple operating
systems should be executed on a multi-core processor. Each operating system
allocates a suitable number of CPU cores according to the current workload.
Let us assume a mobile phone that uses a multi-core processor. While a user
does not use the mobile phone, only one CPU core is used to execute several
background application services on multiple operating systems simultaneously.
In this case, it is easy to satisfy all real-time requirements of these activities on a
single CPU core by migrating all operating systems on the core. However, when
a user starts watching a TV program, multiple CPU cores become active and
most of them are used to process the TV program. The mapping the execution
of operating systems and physical CPU cores should be flexible according to the
current workload.

Dependability is one of the most important requirements in future smart
products. Crashing or hanging of a service on an appliance will degrade user
experience significantly. For example, if the service is hung, a user needs to find
a reset button and push it to restart the appliance. Usually, a user interacts with
information appliances for a short time. Although some errors inside a kernel
may damage the kernel, the appliance can usually be avoided to crash while a
user is interacting with it by repairing a small amount of damaged kernel’s data
structure. The kernel will be restarted for achieving a complete repair after a
user stops to use the appliance.

3 Composition Kernel: SPUMONE

Multi-core processors will become more and more common for future information
appliances. Composing multiple OS functionalities is a promising approach to use



multi-core processors effectively. As the number of functionalities increases, the
system requires more computation power to execute them without violating their
performance requirements. Since different functionalities are often implemented
on different operating systems, an underlying software platform needs to execute
multiple operating systems without having to reimplement them on one single
operating system. This approach enables a sytem to reuse existing application
and operating system code. Thus, it allows to develop smart products with rich
functionalities easily and at a low cost.

There are several traditional approaches to execute multiple operating sys-
tems on a processor in order to compose multiple functionalities. Microkernels
execute guest operating system kernels at the user level. In this case, various
privileded instructions, traps and interrupts need to be virtualized by replacing
their code. Also, since operating system kernels are to be executed as user level
tasks, application tasks need to communicate with the operating system kernel
via inter-process communication. Moreover, when emulating Unix-based operat-
ing systems, implemeting signals using this approach is very hard. Therefore, the
operating system needs to be modified to a significant amount. Virtual machine
monitors are another approach to execute multiple operating systems. If a pro-
cessor offers a hardware virtualization support, all instructions that need to be
virtualized trigger traps to the virtual machine monitor. This makes it possible
to use the operating system without any modification. But, if the hardware virtu-
alization support is incomplete, some instructions still need to be complemented
by replacing some codes to virtualize them.

Most of processors used for embedded systems only have two protection lev-
els, and MMU cannot usually be used in the kernel address space. So, when
operating system kernels are located in the kernel address space, they are hard
to be isolated. On the other hand, if the operating system kernels are located
in the user address space, the kernels need to be modified siginificantly. Most of
embedded system industries prefer not to modify a large amont of the operating
systems’ code, so it is desirable to put them in the kernel address space. Also,
the virtualization of MMU requires significant overhead if the virtualization is
implemented by software!. Therefore, we need altenative mechanisms to ensure
the security and reliability of the kernels.

In a traditional virtual machine monitor, handling I/O devices causes a sig-
nificant problem. When isolating device drivers from operating systems, the en-
gineering cost is very serious. I/O ports can be emulated by virtual machine
monitors, but such an approach causes serious performance degradation. If mi-
crokernels are used, device drivers can be implemented in user-level OS kernels.
In this case, it is possible to allow the OS kernels to access kernel memory
through DMA. Although device drivers can be separated from the OS kernels,
the drivers need to be re-implemented with a significant engineering cost. Finally,
device drivers can be implemented inside virtual machine monitors or microker-
nels, but this approach decreases the reliability and security due to potential
bugs in device drivers.

! Xen incurs 30% overhead if MMU is virtualized using the shadow paging



In order to execute multiple operating system kernels on a multi-core proces-
sor, the assignment of OS kernels to physical cores should be taken into account.
The underlying platform offers virtual cores to OS kernels. Virtual cores are used
to schedule all activities in the OS kernels, and the mapping between physical
cores and virtual cores should be completely transparent to OS kernels without
increasing engineering cost.

In [11], Armand and Gien present several requirements for hardware virtu-
alization for embedded systems:

— Run an existing operating system and its supported applications in a virtual-
ized environment, such that modifications required to the operating system
are minimized (ideally none), and performance overhead is as low as possible.

— It should be straightforward to move from one version of an operating system
to another one; this is especially important to keep up with frequent Linux
evolutions.

— Reuse native device drivers from their existing execution environments with
no modifications.

— Support existing legacy often real-time operating systems and their applica-
tions while guaranteeing their deterministic real-time behavior.

In our project, we are developing a composition kernel called SPUMONE.
SPUMONE (Software Processing Unit, Multiplexing ONE into two or more) is
a thin software layer for multiplexing a single physical CPU core into multiple
virtual ones. In this section, several characteristics are shown as follows.

Virtualization Strategies

Unlike typical hypervisors or virtual machine monitors, SPUMONE itself and
OS kernels are executed in the privileged mode as mentioned in the previous sec-
tion. Executing SPUMONE and OS kernels in the privileged mode contributes to
minimize the overhead introduced to and the amount of modifications required
to the OS kernels. Furthermore it makes the implementation of SPUMONE itself
simple. Executing OS kernels in the user mode is known to complicate the im-
plementation of the virtualization layer, because various privileged instructions
need to be emulated. In our approach, the majority of the kernel and appli-
cation instructions, including the privileged instructions, are executed directly
by the real CPU core, and only a minimal set of instructions are emulated by
SPUMONE. These emulated instructions are invoked from the OS kernels using
simple function calls. Since the interface has no binary compatibility with the
original CPU core interface, we simply modify the source code of OS kernels, a
method known as the paravirtualization.

For isolating multiple operating systems, if it is necessary, SPUMONE as-
sumes that underlying processors support the mechanisms to protect physical
memories used by respective operating systems like VIRTUS [4]. The approach
may be suitable for enhancing the reliability of the OS kernels on SPUMONE
without increasing significant overhead.

SPUMONE does not virtualize IO devices because traditional approaches
incur significant overhead that most of embedded systems could not tolerate. In
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SPUMONE, since device drivers are implemented in the kernel address space,
they do not need to be modified when the device is not shared by multiple
operating systems.

Interrupt/Trap Delivery

Interrupt virtualization is a key feature of SPUMONE. Interrupts are investi-
gated by SPUMONE before they are delivered to each OS. SPUMONE receives
an interrupt, then looks up the interrupt destination table to make a decision
to which OS it should be delivered. The destination virtual core is statically
defined for each interrupt when the kernels are built. Traps are also delivered to
SPUMONE first, then are directly forwarded to the currently executing virtual
core.

The interrupt delivery process on a multi-core platform works basically like
the one on a single-core platform. Each SPUMONE instance delivers interrupts
to their destinations. In order to deliver interrupts to a virtual core running on
a different core, the assignments of interrupts and physical cores are switched
along with virtual core migrations.

Virtual Core Scheduling

A CPU core is multiplexed by scheduling the execution of virtual cores. The
execution states of OSes are managed by a data structure that we call a vcpu.
When switching the execution of virtual cores, all the hardware registers are
stored into the corresponding vcpu’s register table, and then loaded from the
table of the next executing vcpu. The mechanism is similar to the process im-
plementation of a classical OS, but in addition, SPUMONE saves the entire
processor state, including the privileged control registers.

The scheduling algorithm of virtual cores is the fixed priority preemptive
scheduling. When the real-time OS and the general purpose OS share a physical
core, the virtual core bound to the RTOS would gain a higher priority than the
virtual core bound to the general purpose OS in order to maintain the real-time
responsiveness. This means the general purpose OS is executed only when the



virtual core for the real-time OS is in an idle state and has no task to execute.
The process or task scheduling is left up to OS so the scheduling model for
each OS is maintained as-is. The idle real-time OS resumes its execution when
it receives an interrupt. When virtual cores assigned to the general purpose
OS are migrated to execute on a shared core, those cores are scheduled with a
timesharing scheduler.

4 Highlights in SPUMONE

In the current implementation, we adopted Toppers? as a real-time OS and Linux
as a general purpose OS. Also, we modified SMP Linux to use multiple virtual
core offered by SPUMONE to exploit multi-core processors.

We have implemented SPUMONE on the Hitach/Renesas RP1 experimental
multi-core board. The processor contains four SH4-A cores which can communi-
cate with a shared memory. Currently, Linux, Toppers and OKL4 are running on
SPUMONE. The modification of guest OSes is usually less than about 100 lines.
The worst case interrupt latency of Toppers is less than 35us while executing
Linux both on a single and multi-core processor.

4.1 Dynamic Multiple Cores Management

SPUMONE for multi-core processors is designed in a distributed model. A dedi-
cated instance of SPUMONE is assigned to each physical core as shown in Fig.1.
This design is chosen in order to eliminate the unpredictable overhead of syn-
chronization among multiple CPU cores. In addition, the basic lock mechanism
can be shared between single-core and multi-core version, which may simplify
the design of SPUMONE. It also enables the system to scale on multi-core and
many-core processors as discussed in [1].

As described in the previous section, SPUMONE enables to multiplex mul-
tiple virtual cores on physical cores. The mapping between physical cores and
virtual cores is dynamically changed to balance the tradeoffs among real-time
constraints, performance and energy consumption. In SPUMONE, a virtual core
can be migrated to another core according to the current situation. There are
several advantages of our approach.

The first advantage is to change the mapping between virtual cores and
physical cores to reduce energy consumption. As shown in Fig. 2, we assume
that a processor offers two physical cores. Linux uses two virtual cores, and the
real-time OS uses one virtual core. When the utilization of Toppers is high, two
virtual cores of Linux are mapped on one physical core (Left Top). When Toppers
is stopped, each virtual core of Linux uses a different physical core (Right Top).
Also, one physical core is used by a virtual core of Linux and another physical
core is shared by Linux and Toppers when the utilization of Toppers is low

2 Toppers is an open source real-time OS used in various Japanese embedded system
products. Toppers implements the uITRON interface specification that is a Japanese
standard for the real-time OS.
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(Right Below). Finally, when it is necessary to reduce energy consumption or
one of physical cores is dead, all virtual cores run on one physical core (Left
Below). This approach enables us to use very aggressive policies to balance real-
time constraints, performance, and energy consumption.

4.2 Reducing Interrupt Latency

In order to minimize interrupt delay of Toppers while sharing a physical core
by Linux and Toppers, we proposed two approaches for a single and multi-core
processor respectively.

The first approach that is for a single core processor is replacing the interrupt
enable and disable instructions with the virtual instruction interface. A typical
OS disables all interrupt sources when disabling interrupts for atomic execution.
Our approach leverages the interrupt mechanism of the processor: we assign the
higher half of the interrupt priority levels (IPLs) to Toppers and the lower half
to Linux (Fig.3: Left). The instructions enabling and disabling interrupts are
typically provided as kernel internal APIs. They are typically coded as inline
functions or macros in the kernel source code.

When the Linux tries to block the interrupts, it modifies its interrupt mask to
the middle priority. Toppers may therefore preempt Linux even if it is disabling
the interrupts (Fig.3: Right (1)). On the other hand when Toppers is running,
the interrupts are blocked by the processor (Fig.3 : Right (2)). These blocked
interrupts could be immediately delivered when Linux is dispatched.
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The second approach that is for a multi-core processor is based on virtual
core migration. As we implemented the first approach described in the previous
paragraph, we found that some paths in the Linux kernel gained a highest lock
priority unexpectedly (e.g. bootstrap, idle thread). This suggests us the possibil-
ity that some device drivers or kernel modules programmed in a bad manner gain
a high IPL and interfere with the activity in Toppers. This means that careful
coordination of IPLs requires high engineering cost. We modified SPUMONE
to proactively migrate a virtual core, which is assigned to Linux that shares a
physical core with Toppers, to another physical core when it traps into the Linux
kernel or interrupts are triggered. In this way, only the user level code of Linux
is executed concurrently on a shared physical core, which will never modify the
IPLs. Therefore, Toppers may preempt Linux immediately without separating
IPLs used in the first approach (Fig.4).

The approach can also minimize the effect of lock holder preemption. When
the lock holder in the Linux kernel is preempted by Toppers, the Linux kernel
executed on other physical cores must wait until Toppers becomes idle, and the
lock owned by the preempted Linux kernel is released. This significantly degrades
the performance of Linux. The virtual core migration ensures that the execution
of the Linux kernel is always migrated to other physical cores that do not execute
Toppers.

4.3 Security and Reliability

In SPUMONE, guest OS kernels share the same priviledged address space to
reduce the amount of modifications and performance impact as much as possible.
As a consequence, we need another approach to enhance security and reliability
without relying on familiar isolation mechanisms. The basic approach is to use
a monitoring service to detect the violation of the integrity of each kernel, and
recover by rebooting the kernel. In our approach, each guest OS kernel can be
rebooted independently even though all OS kernels reside in the same address
space.
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The monitoring service checks the integrity of several data structures in the
OS kernel periodically. The integrity is specified as constraints of each data
structures. If the monitoring service detects the violation of the constraints,
the service invokes a recovery function that is defined for each data structure to
recover the integrity. The repair procedure may not repair the system completely
- some garbage may remain in the kernel space or the repair procedure may even
fail. In this case, the guest OS kernel is rebooted proactively.

When the Linux kernel causes an error while executing the kernel, the error
can be translated to a system call error or an application signal. Of course, the
optimistic approach may leak some resources in the kernel. In this case, Linux is
rebooted when the kernel becomes idle. This approach is very effective in some
embedded systems. For example, when the user is using a mobile phone, the
Linux kernel does not need to be rebooted immediatly if some errors occur in
the kernel, but the kernel can be rebooted when the user puts the phone in his
pocket.

We are also considering an alternative approach. When the monitoring service
detects some anomalies, it saves the states of application processes. Then, the
Linux kernel is rebooted, and the states of processes are reconstructed. The
applications can continue to run even though the kernel is restarted, which is
similar to the checkpoint/recovery approach. Toppers and its applications can
be simply rebooted when some anomalies are detected. The rebooting time can
be improved by storing some important states in a persistent memory by using
a similar techniques presented in [5]. Usually, most applications on Toppers
contain a small amount of states, and rebooting the applications and Toppers is
very fast. Also, the rebooting does not affect the functionality of the embedded
system. This approach improves user satisfaction dramatically because the user
is not aware of the reboot.

In our approach, if the Linux kernel is attacked, the attacker can invade other
OS kernels. In order to attack other kernels, an attacker needs to insert code into
the Linux kernel address space. Various traditional approaches can detect the
modifications of the kernel easily. Recently, attacks tend to use kernel rootkits.
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Kernel rootkits try to stealth themselves, and various security tool cannot find
them. For example, some rootkits may modify kernel data structures that are
used to manage processes. In our approach, the monitoring service checks the
data structures that the rootkits try to modify, and repairs them to allow security
tools to detect the rootkits.

Currently, the monitoring service checks some typical data structures that
various rootkits are known to modify, and shows that our approach can remove
many well known rootkits. We are also working on the synchronization mecha-
nism between the monitoring service and the Linux kernel. Our approach uses
optimistic synchronization because we cannot modify the Linux kernel to exclude
shared data structures between the Linux kernel and the monitoring service [9].

Of course, the monitoring service should be protected from the Linux kernel.
There are various mechanisms to protect the monitoring service. For example, we
can use a co-processor or a special device to execute the monitoring service. The
multi-core processor that we are using (SH4-A) for building embedded systems
contains a local memory in each CPU core. This local memory can only be
accessed by its CPU core. In our approach, a CPU core is dedicated to execute
the monitoring service. Thus, the Linux kernel cannot access its local memory,
but the CPU core executing the monitoring service can access all the memory
used by the Linux kernel.

5 Current Status and Future Direction

SPUMONE can execute multiple operating systems without suffering a large
amount of overhead and engineering cost. Although most of processors for em-
bedded systems are not suitable to implement the virtualization layer to offer
the complete isolation between guest OSes because it requires a large amount of
overhead without virtualization hardware supports. Since SPUMONE and OS
kernels run in the same privileged space, our approach increases the possibil-
ity of the kernel corruption, but a monitoring service detects the corruption in
SPUMONE and guest OSes and heals them by rebooting. Also, introducing the
virtualization layer in embedded systems offers additional advantages. For ex-
ample, proprietary device drivers can be mixed with GPL codes without license
violation. This solves various business issues when adopting Linux in embedded
systems.

We are currently enhancing our implementation to support various policies
to consider the tradeoff among power consumption, performance and timing
constraints. The monitoring systems should be enhanced in the near future.
Especially, we are interested in using Daikon [2] to detect the invariance inside
the kernel automatically.

Asymmetric multicore processors are a promising approach to reduce the
power consumption [3]. In SPUMONE, we are considering to hide the hetero-
geneity inside the SPUMONE and offer virtual homogeneous multicore proces-
sors to operating systems. However, it is not easy to hide the heterogeneity
completely. We are also considering to develop the MapReduce-based applica-
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tions on SMP Linux [8], and coordinate the middleware and SPUMONE to hide
the heterogeneity completely.
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