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Abstract. A positioning middleware benefits the development of loca-
tion aware applications. Traditionally, positioning middleware provides
position transparency in the sense that it hides low-level details. How-
ever, many applications require access to specific details of the usually
hidden positioning process. To address this problem this paper proposes
a positioning middleware named PerPos that is translucent and adapt-
able, i.e., it supports both high- and low-level interaction. The PerPos
middleware provides translucency with respect to the positioning pro-
cess and allows programmatic definition of application specific features
that can be applied to the internal position processing of the middleware.
To evaluate these capabilities we extend the internal position processing
of the middleware with functionality supporting probabilistic position
tracking and strategies for minimization of the energy consumption. The
result of the evaluation is that using only the proposed capabilities we
can, in a structured manner, extend the internal positioning processing.

1 Introduction

The development of location aware applications benefit from a positioning mid-
dleware. A number of these exist. However, existing positioning middleware has
shortcomings in their support for extending the middleware functionality and
inspecting the positioning mechanisms. The problem is that although location-
aware applications often need a neat position, with all technological details and
sensing uncertainties hidden away, often access to these details are needed. For in-
stance, for improving positioning using probabilistic tracking [1], visualizing the
positioning infrastructure [2], minimizing energy consumption of location-aware
applications [3] or adding high-level reasoning based on machine learning [4].
Therefore, a positioning middleware that gives a structured cross-level access to
the positioning mechanisms is needed.

Imagine a simple location aware application that shows the current posi-
tion as a point on a map when outdoor and highlights the currently occupied
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Fig. 1. Concrete positioning processes for the example Room Number Applica-
tion.

room when within a building. It may be implemented on a mobile phone, using
the internal Global Positioning System (GPS) receiver and WiFi-signal strength
measurements, and interfacing with a server containing an indoor WiFi posi-
tioning system [3] and a location model service for translation of the position to
a room number. A positioning middleware is used to encapsulate the positioning
systems, the location model service and the conversion between various coordi-
nate systems. The positioning process for the example is shown in Figure 1. Now,
maybe it turns out that the positioning is not accurate enough. The developer
wants to improve the positioning by probabilistic tracking implemented as a par-
ticle filter [1] that takes into account the likely user movement specific for the
application, and location models to impose restrictions on possible movements
in the environment. The following requirements for a positioning middleware can
be derived from this example.

– Adding a new kind of positioning mechanism and use this in the middle-
ware, without changing the interface, on which the application using the
positioning middleware relies.

– Allowing low-level access to the currently employed positioning mechanism
and inspection of the process behind.

– Allowing extension of the provided functionality at steps in the process that
leads to the production of a position.

Given a middleware that fulfills these requirements a particle filter can be
inserted as a new kind of positioning mechanism, without affecting the high-level
functionality and Application Programming Interface (API) of the middleware.
Necessary functions of the particle filter, e.g., for calculating the likelihood of
sensor readings can be implemented by accessing low-level sensor information
and exposing it at the correct step in the positioning process. This also enables
developers to address many of the timing issues associated with combining multi-
ple sensor readings to one measurement, which is further complicated by sensors
with different output frequency.

Particle filters are only one example of applications that require a middleware
that fulfills these three requirements. Generally, access to low-level information
and the ability of inspection and extension is needed to visualize the positioning



infrastructure when authoring location-aware applications [2], manage sensors to
minimizing energy consumption [3] or to structure the reasoning process when
determining transportation mode of a target by segmentation, feature extraction,
decision tree classification and hidden-markov model post processing [4]. When
designing a middleware it is virtually impossible to foresee all the features that
will be useful in the future. Therefore, it is desirable to be able to extend core
middleware functionality.

The first requirement of adding a new kind of positioning mechanism and
using this in the middleware, without changing the interface has been fulfilled
by existing positioning middleware: MiddleWhere [5], the Location Stack [6],
and PoSIM [7]. Although some architectural issues remain, e.g., in the Location
Stack the particle filter may be plugged in as a new kind of sensor. However,
this positioning middleware use a layered architecture, with sensors in the first
layer, adaptation of sensor input to a common representation of measurements
in the second, and a fixed reasoning engine for multi-sensor fusion in the third.
This means that the new complex sensor, which incorporates sensor fusion, will
violate the architecture of the middleware as also argued by Graumann et al. [8].

In connection with the second requirement positioning middleware, such as
MiddleWhere [5] and the Location Stack [6], expose a common representation
of position information and uncertainty for all kinds of sensors. This means that
they do not support accessing information that is not part of the interface or
the process behind. PoSIM [7] allows the user to specify control mechanisms and
information that the positioning technologies must or may expose. This enables
access to low-level information, however, it does not provide the application
developer with access to the positioning process.

With regards to the third requirement, the layered architecture of the Lo-
cation Stack inappropriately restricts possible extension points and has archi-
tectural issues as argued for above. MiddleWhere [5] and PoSIM [7] do support
that new functionality is specified and implemented in sensor wrappers but not
that new features are attached to the position information at a higher level or
a later stage in the processing. In order to do this, the process that lies behind
the construction of a high-level position must be exposed by the middleware as
provided by the PerPos middleware.

The PerPos platform is a middleware for pervasive positioning that can be
leveraged when building indoor and outdoor location-aware applications. The
services provided by the middleware range from specific utility services to appli-
cation components that can be deployed in several ways. To provide translucency
and adaptation the PerPos middleware is designed around the central idea of rep-
resenting the steps of the actual positioning process explicitly as a graph based
on the flow of information from sensors to application code. This representation
constitutes a reflection mechanism [9] that allows application developers to con-
trol and extend the positioning process and for the design to fulfill the three
requirements stated above. We do not provide the functionality of a generic
reflective middleware, and in Section 4 we argue that careful design of what



is exposed through reflection decreases the conceptual overhead involved when
developers perform adaptations.

1.1 Contributions

In this paper we present our positioning middleware: PerPos. We concentrate
on how the middleware fulfills the three requirements stated above, in short,
supporting plug-in of complex positioning mechanisms and allowing structured
access to and adaptation of the actual internal positioning process.

– We present our multi-level abstraction of the position processing and explain
the programming model it provides for location-based application developers
(Section 2).

– For three examples: detecting unreliable GPS readings, a particle filter for
position improvement, and a power reduction scheme, we explain how we
have implemented them by using the adaptation programming model of
PerPos (Section 3). These examples are provided as proof of concept for
the proposed positioning processing abstractions and programming model.

– In order to compare our solution with others, we analyze what would be
needed to implement the examples in existing positioning middleware (Sec-
tion 3). In comparison with existing middleware designed for transparent use,
PerPos allows adaptation of the positioning process without access to the
code. In comparison with existing translucent middleware PerPos supports
timing information and control of the positioning process itself.

– We introduce the concept of seamful design for developers (Section 4). We
explain the needs for a translucent and adaptable middleware for positioning
and how the supported programming model make PerPos fulfill these needs.
We discuss how this relates to the concept of seamful design, and argue
that the seamful metaphor is usefull for developers of translucent sensing
middleware.

2 Design of Layered Reification and Adaptation of

Position Processes

Generally, positioning middleware encapsulates the processing of sensor mea-
surements that is necessary to obtain a position in a technology independent
format. The PerPos middleware is designed around the central idea of repre-
senting individual steps of the actual positioning process explicitly as a directed
acyclic graph based on the flow of information from sensors to application code.
Nodes in this graph represent the implementation of processing steps and are
called Processing Components. Edges in the graph represent the data that flows
between components. The notion of explicit representation of processing graphs
has previously been applied in a number of other domains, e.g., Solar [10] for
generic context fusion, PAQ [11] which supports generic queries over temporal-
spatial data and PCOM [12] which uses a component graph to compose behavior.



The PerPos positioning middleware uses the graph representation to support
inspection and adaptation of the positioning process by exposing the process-
ing graph to developers. The graph is exposed as a tree where data is traveling
from leaf nodes toward the root. The root node represents the application that
is receiving position data and the leaf nodes represent actual sensors. Internal
nodes represent discrete processing steps. Branching (or merging if viewed in the
processing direction) in the three occurs when position data from several sources
are combined. Usually, combinations of data from several sources take place in
special sensor fusion components which often is a part of positioning middle-
wares [5, 6]. However, it may also take place in other high-level data reasoning
components that also take into account other kinds of information, e.g., context
information, user input or physical constraints based on building models. In Fig-
ure 1 we see an example of two linear trees connected to the same application
providing it with WiFi data and GPS positions.

The PerPos API exposes the processing tree to developers through three lev-
els of abstraction providing increasing control of the positioning process. The
levels constitute three different views on the positioning process as it is imple-
mented internally in the middleware. The first is the positioning layer providing
the abstractions of a traditional positioning middleware. The next two layers pro-
vide inspection through reflection on two different levels. The reason for splitting
this functionality into two layers is to minimize the complexity involved when
using a general reflective programming style. Therefore, the second layer pro-
vides access to an abstract structure of the underlying positioning process. In
many cases the information in this layer will be sufficient to understand, e.g., the
component composition that produced a position, thereby avoiding the added
complexity of the more detailed layer. The third layer is responsible for reifying
the actual positioning process as a tree structure and maintaining a causal con-
nection between the positioning system and the tree. In Figure 2 we see how a
processing graph is represented at the three levels. The configuration shown in
the figure is from an application which incorporates a particle filter aggregating
measurements from a GPS and a WiFi sensor.

The primary interaction with the PerPos middleware is through a traditional
positioning API associated with the top-most layer in Figure 2. It supports both
push and pull semantics for retrieving position-based data as derived based on
input from connected sensors. The structure of the API resembles the Java
Location API for J2ME (JSR-179) [13] where applications can request a loca-
tion provider which matches a set of criteria. Position-based data can then be
obtained through this location provider in a technology transparent way. The
API provides operations for specifying functional requirements for the location
provider, retrieving position-based data, e.g., a WGS84 position, a room number
or the k-nearest targets and setting up location related notifications, e.g., based
on proximity to a point or target etc.

At the second layer the API provides access to an abstract structure of the
underlying positioning process presented as a tree consisting of tree basic node
types and the processing channels connecting them. The nodes are either: data
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Fig. 2. The three levels of abstraction on the positioning process provided by
the PerPos middleware.

sources, components that merges data sources, or the root node representing the
application. The API provides operations for inspecting the data flowing through
the processing channels as well as handles for changing the functionality of the
channels. The data processing channels provide a high-level extension model that
allow application developers to implement algorithms that reason about the data
delivered to the application.

At the third and most detailed layer the application has access to a detailed
processing graph representing each processing step of the positioning system.
At this level the API supports fine-grained control of both the structure of the
positioning process and its internal behavior.

In the following sections each layer exposed by the PerPos API is presented
in more detail. The layers are presented in increasing order of abstraction level
of the provided concepts, starting with the most detailed layer.

2.1 Process Structure Layer

The layer exposing the structure of the positioning process, the bottom layer in
Figure 2, is called the Process Structure Layer (PSL) and represents the most
detailed level of interaction provided by the PerPos middleware. This layer is
responsible for reifying the actual positioning process as a tree structure and
maintaining a causal connection between the positioning system and the tree.
Each node in the tree is a Processing Component that acts as either a producer
or a consumer of data contributing to the positioning process, or both.

Applications can manipulate the composition of components in the tree
through the API of the PSL, e.g., insert, delete and connect. Furthermore,
the API allows applications to extend the tree with new components and aug-
ment existing components with new functionality.
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Fig. 3. The two kinds of extension features in the PerPos middleware.

Processing Components consist of three main elements: input ports, output
port and implementation of functionality. A Processing Component has a single
output port and may have multiple input ports. Input ports are connected to out-
put ports of other components. These connections are established either by direct
calls to the graph manipulation API, based on explicitly defined system level con-
figurations or through dynamic resolution of dependencies between components.
To make sure that port connections are realizable Processing Components must
declare requirements for input ports and define a set of provided capabilities for
output ports. When extending a processing tree with new components devel-
opers must specifically declare these requirements and capabilities. As custom
components are added to the PerPos middleware the dependencies are resolved
and when satisfied the components are added to the processing graph appropri-
ately and the classes implementing the Processing Component functionality is
instantiated. The PerPos middleware provides the concrete implementation with
access to a set of input ports as well as a reference to the output port to which
it should deliver data.

The PSL API supports inspection of the reified processing graph includ-
ing access to all methods available on the implementing classes of the Process-
ing Components. Both the behavior of the Processing Components and the set
of available methods can be modified by attaching what we call Component
Features to them. Component Features are small code modules that can hook
into a component and augment it in three ways. Firstly, data can be manipu-
lated when flowing into or out of the component. Secondly, additional data can
be associated with the data flowing out of the component. Thirdly, component
state can be read, exposed and manipulated. Figure 3(a) illustrates a Process-
ing Component with a Component Feature attached. The input requirements of
Processing Components also include a listing of any Component Feature that
the component is dependent upon. In the following we explore the dynamics of
each of these augmentation types.

Changing Produced Data A Component Feature can intercept the flow of
data before and after it enters the component to which it is attached. This
allows the Component Feature to effectively control the external behavior of
the component. Whenever data is sent to a component the middleware calls
the consume method on every Component Feature attached to the component



which allows the Component Feature to alter the data before it is delivered to the
component. The same process is repeated for outgoing data where the produce

method of the Component Feature is called allowing for alteration of data. Note
that this type of extension cannot change the data type of the data produced.

Adding Data In addition to altering the data produced by the component,
a Component Feature is able to provide new data that may be based on both
input and output of the component. A Component Feature can call the method
produce(data) on the component to which it is attached. This will result in the
data passed to the method being propagated through the processing tree as if
it were produced by the component itself. When adding data the capabilities of
the output port is changed to include the new type of data. The generated data
is only propagated through the processing graph if the next component in the
graph explicitly declares that it accepts input from the Component Feature.

Changing Component State Lastly, a Component Feature can add state
manipulation and inspection functionality to individual Processing Components.
When doing this, the component will to its surroundings appear to implement
the functionality provided by the feature. Examples of this kind of extension are
features that expose internal state of a component like various threshold levels
used or provide access to changing parameters of component implementations.
The application developer can create complex high-level functionality by com-
bining the ability to traverse the nodes of the processing tree with this kind of
state manipulation features.

2.2 Process Channel Layer

The middle layer is called the Process Channel Layer (PCL) and it is a view of
the position processing where only data sources and merging processing compo-
nents and the data-flow between them are represented. Thus, the PCL allows
inspection of the positioning process in terms of the major processing compo-
nents. In many cases the information in this layer will be sufficient to understand
the component composition that produced the position, thus avoiding the added
complexity of the PSL. The process is presented as a tree structure where the
application is the root and the nodes are Processing Components representing
either the originating data source or components that merge input from two
or more data sources, effectively becoming a data source itself. The connection
between components in the PSL are called Channels and encapsulates the posi-
tioning process taking place between its end points. An example of the channel
abstraction is visualized in the middle layer of Figure 2. Channels are dynami-
cally created when the PerPos middleware assembles the Processing Components
involved in the positioning process. The PerPos API supports inspection of the
Channels and the methods they provide and Channels can be extended through
the use of what we call Channel Features similarly to the way that Processing
Components are extended through Component Features. Channel Features are



used to add functionality to a Channel that requires access to data at differ-
ent stages in the positioning process, especially, functionality that cannot be
achieved by connecting to a single Processing Component. Figure 3(b) shows
how a Channel Feature can depend on several internal elements of a Channel.
The functionality of a Channel Feature is often partly decomposed into Compo-
nent Features which the Channel Feature then depends on. A Channel Feature
declares its input requirements and output capabilities. Input requirements may
include Component Features, Channel Features, and Processing Components.
Output capabilities may relate to the data produced by the Channel or to the
Channel itself. From the perspective of a Processing Component or from the ap-
plication a Channel Feature is semantically equivalent to a Component Feature
attached to the last Processing Component of the Channel.

To support extension a Channel groups the output of every internal process-
ing step into logically coherent groups. For each data element produced by a
Channel it collects all intermediate data elements that logically contributed to
that element and places them in a hierarchical data structure. This grouping
is achieved by having a notion of logical time that relates to the data process
of an entire Channel. Data will always flow from the source through the pro-
cessing graph until the Channel produces a result. Therefore, it is possible for
the Channel to assign a logical time unit to every layer of the processing tree
that can be used to identify which processing steps are contributing to the fi-
nal output of the Channel. For each logical time step the Channels registers all
corresponding data produced by the Processing Components in the Channel in
a tree structure representing the logical chronology. An example of a data tree
for the GPS-channel is presented in Figure 4. In the figure the data is presented
as tuples with three elements: the data, the logical time of the current layer,
the time range of the data used to generate the element. The example shows
data produced by the GPS sensor, the Parser and the Interpretor components
respectively. In the example several strings from the GPS sensor is needed to
produce one NMEA4 sentence, and the first NMEA sentence did not contain
a valid position, therefore another is needed before the Interpretor produces a
WGS845 position.

A Channel Feature is required to implement the apply(dataTree) method
and update its internal state when it is called. The method is called by the mid-
dleware every time the Channel delivers a data element. Through this method
the Channel Feature has access to the concrete data tree that was used to pro-
duce the Channel output. The exact structure of Processing Components in the
Channel is not known at implementation time. Therefore, the feature must han-
dle the complexity of not knowing for example the number of layers in the data
tree or the number of data chunks of each kind. For example, when implementing
a Likelihood feature for the GPS Channel, the feature specifies that it depends

4 National Marine Electronics Association is a standard data format for produced by
GPS receivers.

5 World Geodetic System dating from 1984 is the predominant coordinate system for
encoding global coordinates.
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on a Processing Component that provides the Component Feature which can
access Horizontal Dilution of Precision (HDOP) information. Because, the In-
terpretor is implemented so that it only returns a value when a valid position
is produced several National Marine Electronics Association (NMEA) sentences
will be available in the data tree related to one output of the Channel. Compo-
nents that filter according to certain rules may be inserted in the Channel, and
the Channel Feature must implement strategies to cope with this fact.

In summary, the PCL contains a representation of the major flow of data in
the position data process. The Channel tree exposes how single strained source-
to-sink-flows connect the components as well as the features they provide. Fur-
thermore, it supports adaptation of functionality that depends on several steps
in the process, by allowing definition of a Channel Feature.

2.3 Positioning Layer

The top layer of the PerPos middleware exposes high-level position data and
we call this the Positioning Layer. It presents a view of the position data pro-
cessing that contains the Channel end-points including their features. All the
features originally implemented in the PerPos middleware are visible as well as
all available Channel Features. It is especially in the ability to access middle-
ware adaptations in the high-level interaction, where details are abstracted away,
that the PerPos middleware distinguishes itself from existing positioning mid-
dlewares. We consider the logical timing functionality of the Channels to be an
important part of this ability. Even though, interactions with features take place
at this abstract level, the middleware takes care of the coupling to the details
that were actually a part of the high-level position in question.

At this level the PerPos API exposes the middleware functionality that is
also part of a traditional closed positioning middleware. This includes push and
pull semantics for retrieving positions from currently available sensors; definition
of tracked targets, which may have several sensors attached to them; and a
selection of services that can be leveraged for the development of location-aware
applications [14]. To summarize, the combined effect of providing the specific
extension mechanisms, presented here, is that the high-level API of the PerPos
middle can be effectively extended without requiring changes to the middleware
itself.



3 Middleware Adaptations Enable Development of Detail

Demanding Applications

In this section we support the utility of our design by explaining a number of
concrete use-case examples that exploit the flexible API of the PerPos middle-
ware. The examples are based on our own work with positioning technologies
and particle filters. We will flesh out the details of the examples and include
code snippets. After each example we will muse over how the example would be
implemented in other positioning middleware.

We have for this evaluation realized the PerPos middleware in the Java lan-
guage and built it on top of the OSGi service platform [15]. The components
of the PerPos layers are mapped into the OSGi platform as service components
and the dynamic composition mechanisms of OSGi is used for connecting the
components.

3.1 Detecting Unreliable Readings by Adding Component Feature

The quality of GPS readings are greatly affected by atmospheric conditions
and satellite constellation properties. GPS devices usually continue to produce
measurements even if they loose sight of the satellites. Therefore, as argued
in [8], filtering positions delivered by a GPS receiver according to the number
of satellites available for the measurement can be used as a technique for in-
creasing the reliability of readings. We have implemented this functionality by
creating a new filtering Processing Component and inserting it into the process-
ing tree. The Processing Component depends on a Component Feature named
NumberOfSatellites which provides access to the concrete number of satellites
available in each measurement. We insert the filter component after the Parser
component. NumberOfSatellites is implemented as a Component Feature that
is attached to the Parser component and adds a new data element to its out-
put. The filter component extracts the number of satellites and forwards only
measurements based on a satisfactory number.

In the Universal Location Framework (ULF), an implementation of The Lo-
cation Stack [8], the problem is solved by adding the satellite information to the
position format used by the middleware. This means that satellite data is part
of the position information for other kinds of positioning technologies as well. A
resembling solution would be needed for MiddleWhere. Implementation of the
extension of the position format requires access to the code for the middleware.
In PoSIM [7] an info could be specified and implemented in the Sensor Wrapper
in order to obtain the number of satellites. However, PoSIM does not focus on
filtering and it is unclear how a policy that tested the number of satellites would
be used to delete an already obtained position from the system.

3.2 Integrating a Particle Filter Using Channel Feature

The particle filter we have implemented requires access to a number of low-level
properties of the positions used in its calculations. In particular, the implementa-



Likelihood

GPS

GPS

Particle
Filter

Interpreter

HDOP

Parser

Particle
Filter

consume(inputChannel, position) {

  likelihoodFeature = inputChannel.getFeature

                         (position, Likelihood.class)

  for each particle {

    likelihood = likelihoodFeature.getLikelihood(particle)

    particle.updateProbability(likelihood)

  }

}

apply(dataTree) { // Method is part of Channel Feature specification

  for component,nmeaSentence : dataTree.getData(NEMASentence.class){

    hdopFeature = component.getFeature(HDOP.class)  

    hdop = hdopFeature.getHDOP()

    hdopList.add(hdop)

  }

}

getLikelihood(particle){ // Method is defined in custom interface Likelihood

  return complexCalculation(hdopList, particle)

}

parser.produce(nmeaSenctence.HDOP)

1

2

3

Fig. 5. Code snippets used to provide the particle filter with a likelihood estimate
based on HDOP values. The code is shown as pseudo code for clarity, the actual
code is Java.

tion of the filter depends on functionality that can provide a value indicating how
likely it is that the current sensed position represents the actual true position.

Using the PerPos middleware we have implemented this likelihood functional-
ity as a Channel Feature that calculates the probability based on HDOP values
associated with the raw GPS reading. The HDOP values are extracted by a
Component Feature from an intermediate parsing components in the position-
ing tree. This construction is visualized in Figure 5 and involves three different
code artifacts, labeled by numbers in the figure. 1) Shows the key input handling
parts of the Particle Filter implementation. Upon reception of a new position the
Channel Feature called Likelihood is retrieved from the current input port and
applied to each particle. 2) Shows how the Likelihood feature is implemented.
The apply(dataTree) method is called by the middleware each time the Chan-
nel produces data. The method implementation collects the HDOP values from
the data tree and uses it to update the internal state of the feature. When the
method getLikelihood(particle) is called by the Particle Filter it calculates
the likelihood estimate based on the collected HDOP values. 3) shows how the
HDOP value is extracted and added to the output of the Parser component.

For testing this approach, we used some previously recorded sensor data and
fed it into our PerPos middleware implementation of the particle filter. This
was done using an emulator component that reads sensor data from a file and
presents itself as a sensor. The emulator was plugged into the processing graph,
taking the place of the sensors. Using this approach we were able to produce a
refined trace as shown in Figure 6.

In the Location Stack [6] or MiddleWhere [16] the HDOP information is
not available through a public API. The information is, therefore, not accessible



Fig. 6. Example run of a particle filter implemented using the PerPos middle-
ware. Red dots indicate particle positions, the blue line indicates the evaluated
trace, and white lines indicate walls.

to application developers. It may of course be accessed by circumventing the
middleware, but then the timing functionality that connects the information
to the correct position must be implemented as well. Another possibility is to
extend the middleware’s representation of a position with the information. This,
however, requires access to the source code of the middleware. Furthermore, it
would mean that this information is propagated up to highler levels always, even
though most middleware uses does not need it. In PoSIM [7] a HDOP info may
be specified and a wrapper for the GPS that extracts the information and make
it available for higher levels may be written. However, when questioned it will
always return the latest HDOP value, which may correspond to a new position.

3.3 Power Efficiency

In previous work we have created a power efficient solution for tracking mobile
targets called EnTracked [3]. The EnTracked system targets mobile clients that
report positions to a server for further processing. In short, the system minimizes
the amount of data sampled at the mobile device according to a motion model
and thereby reducing the number of power consuming data transmissions made
to the server. As part of the validation of the PerPos middleware design we have
reimplemented key parts of the EnTracked system using the processing graph
abstractions.

The processing graph of the reimplemented version of EnTracked is shown
in Figure 7. The actual GPS sensor is located on a mobile device along with
an instance of the PerPos middleware. The Processing Component called Sensor
Wrapper in the figure is running on the mobile device while the Parser and
Interpreter components run on a server. The application is supplied a position
provider that delivers positions provided by the Channel with end-point after
the Interpreter component. This channel is illustrated as the “tube” wrapping
the components.

The original EnTracked system contains a client-side updating scheme that
dynamically determines when to activate and deactivate the GPS device. The
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Fig. 7. Processing graph for the implementation of EnTracked using the exten-
sible PerPos API.

operation mode of this scheme is controlled by a server-side component. To ob-
tain the same behavior using the graph abstractions we have implemented this
updating scheme as a Component Feature, called Power Strategy, attached to
the Sensor Wrapper component. The Power Strategy feature provides methods
for controlling the operation mode of the updating scheme. In the EnTracked
system the server-side component is controlling the updating scheme based on
threshold levels for the maximum distance between two consecutive position up-
dates. This behavior is implemented in the Channel Feature labeled EnTracked
in the figure. This Channel Feature continuously monitors the output of the In-
terpreter component and calls the appropriate methods on the Power Strategy
feature.

As stated earlier the PerPos middleware is realized in the Java language and
built on top of the OSGi service platform [15]. Because, OSGi supports trans-
parent distribution of services through the D-OSGi specification the processing
graph can span several hosts with little added configuration overhead.

As MiddleWhere [16] provides a Position middleware containing a World
Model, where all available position information is stored, this scenario does not
apply to their domain. Configuration of sensors is not discussed. Likewise, The
Location Stack [6] places obtained Measurements in a database and does not
discuss sensor configuration. How to implement a power consumption scheme
using PoSIM is discussed in [7]. They suggest to define a PowerConsumption
PoSIM control feature and allow it to be set to for example low and high. Again,
a Sensor Wrapper that implements the feature must be defined. A policy of when
to invoke the feature can be written. It will then be evaluated along with other
policies in order to reason on the dynamic management of the positioning.

3.4 Concluding on the Examples

We have seen that in traditional positioning middleware as The Location Stack [6]
and MiddleWhere [16] we need access to the code in order to propagate extra
information up by extending the position data format. This solution does not
scale well; if there is a large variance in the needed information for different
applications and positioning technologies, as we expect, this is problematic.



For translucent positioning middleware as PoSIM [7] extra information may
be accessed and devices controlled. Nonetheless, PerPos is superior in its retain-
ment of timing information connecting low-level and high-level information and
in the ability to controll the positioning process itself.

4 Translucent Middleware Guided by the Notion of

Seamful Design for Developers

In this section we discuss the need for a positioning middleware that provides
both transparency and translucency. Moreover, we introduce the notion of seam-
ful design for developers and argue that designing for seamful use is a usefull
metaphor for developers of translucent middleware.

In the reflection community it is common to refer to the dichotomy of trans-
parent and translucent middleware. For example in this quote: “A desirable
middleware model provides transparency to the applications that want it and
translucency and fine-grain control to the applications that need it” [9, p. 37].
Positioning middleware designed for the traditional goal of transparency aims
for the widely recognized principle of information hiding [17] and hides all as-
pects of positioning from the application developer to provide a transparent
experience when working with heterogeneous technologies. This means that it
abstracts away imperfections in technologies and hides uncertainty for the de-
veloper [13, 18]. In some cases, as in the examples presented in Section 3, this
leaves the application developers at a loss, because the middleware they employ
does not provide adequate support for handling imperfections of the underlying
technologies.

The concept of translucency may advocate a generally open middleware with
full access to change functionality. However, a designed reification that focus on
certain aspects of the middleware may be easier to understand and use than a
full and only allowing specific adaptations gives a safer although less powerful
development model. In our work we have been inspired by the notion of seamful
design for developers, which we will now introduce.

In Weiser’s seminal paper: The computer for the 21st century [19], seamless
design is presented as a goal for how computers should be integrated into the
world. A seamless design will allow computers to disappear from our awareness.
This will enable us to focus on the goal for which we use the computer, instead
of focusing on the computer itself. Such seamless designed systems should make
the computerized infrastructure components they depend on disappear from
the focus of the user. In the positioning domain, this means that the concrete
positioning systems and their characteristics are hidden for the user who employ
the position information.

However, due to the inherent imperfection of sensing technologies, in prac-
tice, it is hard to hide the characteristics of positioning in order to provide
transparency. For instance, positioning technologies do not provide pervasive
coverage because buildings, humans, and walls might block signals used for po-
sitioning. The positions delivered can be erroneous due to signal noise, delays, or



faulty system calibration. Motivated by the imperfection of sensing technologies
used in ubiquitous computing, several authors such as Chalmers and Galani [20],
and Benford et al. [21] have argued for contrasting the goal of seamless design
with one of seamful design. They define seams as “[. . . ] the places where [com-
ponents and technologies] may imperfectly connect to one another or to the
physical environment.” [21, p.126]. The goal of seamful design is to make the
seams available in a designed manner, but not in focus at all times, so “one can
selectively focus on and reveal [seams] when the task is to understand or even
change the infrastructure.” [20, p. 251].

Previously, seamful design has been directed towards the end user. Nonethe-
less, our focus is on the developer which has to face the same technology im-
perfections, only they occur during application development. For the developer
of position based applications, imperfect connections might both occur within
software components and between the positioning technology and the physical
environment.

Instead of only focusing on position transparency, a seamful positioning mid-
dleware should expose and internalize key aspects of the positioning process in
a designed manner. Thus, the developer can access both the imperfections of
sensing technology to capture reality and the “imperfections” in the processing
of position data, namely the design of the encapsulation and the abstracting
away details. The set of seams a developer might be interested in cannot be
determined uniquely. Therefore, a seamful middleware must provide means for
the developer to extend the set of exposed seams.

To apply seamful design to the domain of positioning developers have to
identify that the seamless design of the middleware is problematic under specific
circumstances. Furthermore, they must posses some knowledge of the seams of
the positioning technologies or in the position calculation process, and they must
know how to use information about seams to improve their application. It is clear
that seamful use of a positioning middleware requires expert domain knowledge.
Therefore, a positioning middleware should be designed for both seamless and
seamful use, with concepts for both seamless and seamful positioning. The seam-
ful middleware should not only support one type of developers, but developers
with different skills, short and long schedules, and different types of applications.

The PerPos middleware supports both seamless and seamful interaction in
that is delivers technology independent positions at a high-level layer while al-
lowing for structured inspection and adaptation of the internal processing that
lead to the high-level positions. Thus, to the extend that sensors and processing
elements contains information that may be used to deduce for example, current
coverage, accuracy, and signal noise, this information, which is usually hidden
for the sake of transparency, can be used to expose the seams.

Concretely, in PerPos we reify the actual processing in a graph of processing
components and flows of data and allow adaptation of processing components.
Moreover, the processing is reified in a position source view, where the pipeline
from one source to either a merge or the application is abstracted to a data



channel. Through this view we allow adaptations that depend on data produced
at several intermediate steps of the positioning process.

Our experience in developing services for positioning based on the PerPos
middleware shows that it is the seams that calls for extra functionality in the
middleware. This is concordant with the experience reported by Graumann et
al. [8]. The inherent position uncertainty called for the development of a like-
lihood feature. The poor performance of GPS in indoor environments coupled
with the device strategy of continuing to send positions called for the number of
satellites feature. The limited battery capacity called for the power conservation
feature. The approach of exposing and allowing adaptation of the processing
components and the positioning process is especially suited to support the de-
veloper to choose when to access and possibly propagate to a higher level the
information that is abstracted away in a seamless approach.

The concept of seamful design for developers has inspired the design of Per-
Pos. It is a powerful metaphor when designing middleware for sensing domains,
because it focuses the design of how to develop the handles available in a translu-
cent and adaptive middleware to allow representation and improvement of the
imperfections.

5 Related Work

In this section we will cover related work with respect to existing positioning
middleware and to reflective middleware.

MiddleWhere by Ranganathan et al. [5] is a general purpose middleware for
building location based applications. The primary purpose of MiddleWhere is
to provide location information to applications in a technology agnostic way.
The Location Operating REference model (LORE) [22] focuses on providing
high-level location data together with sensor fusion and intelligent notification.
Cascadia by Welbourne et al. [23] is a middleware for detecting location events
from RFID-based events. The middleware implements probabilistic fusion for
detecting location events from raw RFID events. It provides both a declarative
approach and an API that facilitates the development of applications which
rely on location events. However, in all three systems the functionality (e.g.,
location models or sensor fusion) are statically implemented into the system and
cannot be extended by application developers. Furthermore, there is no support
for allowing application developers to extend the systems with functionality for
handling cross-cutting concerns.

Location Stack by Hightower et al. [6] is a generic software engineering model
for location in ubiquitous computing. The model is intended to be both a con-
ceptual framework as well as a high-level layered architecture for implementing
location based systems. However, the only true implementation of the Location
Stack, the Unified Location Framework (ULF), has shown that the fundamental
principles of the model cannot be followed in practice [8]. According to the re-
port on the ULF, actual location based applications tend to require some level
of access to low-level details of the positioning process. In the Location Stack



this translates to creating cross-layer functionality which breaks the fundamental
assumptions of the model.

PoSIM by Bellavista et al. [7] is a middleware for positioning applications de-
signed to mediate access to heterogeneous positioning systems. The middleware
is designed to provide application developers with some level of visibility into the
internal workings of the underlying positioning systems. Operations for handling
cross-cutting concerns are executed by adding or removing behaviors to the sys-
tem expressed as declarative policies. The policies are written in a declarative
language and the set of operations for conditions consists of simple comparison
of data values while actions are limited to passing values to operations of the
sensor wrapper.

There also exist more general context provision middlewares. An example is
Contory proposed by Riva [24] that based on a query abstraction allow applica-
tions to request context information including spatial information.

In comparison, PerPos is a positioning middleware that supports a designed
inspection and adaptation of the internal position processing. The middleware
facilitates both seamless use of high-level positions and seamful use of details in
the form of extraction of low-level information and adaptation of the position
data processing, along with exposure of seams in the high-level interaction.

Traditional middleware are not well suited for dealing with dynamic aspects
such as device-sizes and network availability. Given information about device
types or network infrastructures the handling of such dynamic aspects can be
optimized, e.g., by selecting protocols that better fit the underlying network in-
frastructure. To address this problem, reflective middleware has been proposed,
as described by Kon et al. [9], to provide traditional transparency coupled with
translucency and fine-grain control. Reflective middleware provides inspection of
their internal state using reflective meta interfaces. In a mobile context Carisma
is a middleware proposed by Capra et al. [25] that support reflection by allowing
programmers using policies to specific how the middleware should handle context
changes for the provided services. PCOM proposed by Becker et al. [12] provides
adaptation for pervasive component-based systems by contracts that specify
dependencies between components and resources. PAQ [11] supports adaptive
persistent queries over temporal-spatial data in dynamic networks. The system
provides reflective programming abstractions to support the construction of ap-
plications that dynamically evaluate the cost of executing a query in the current
environment and adjust the query’s processing according to the application’s
needs. In comparison, PerPos is also a reflective middleware but provides a de-
signed inspection and adaptation of the internal positioning process.

6 Conclusion and Future Work

In this paper we presented the design of PerPos a middleware for pervasive
positioning that supports a designed inspection and adaptation of the internal
position processing. The middleware facilitates both seamless use of high-level
positions and seamful use of details in the form of extraction of low-level in-



formation and adaptation of the position data processing, along with exposure
of seams in the high-level interaction. We have demonstrated the utility of the
design by demonstrating how three example applications that all required ac-
cess to internal details of the positioning process can be implemented using the
adaptability of the middleware. Furthermore, we have argued for the potential
of an adaptable positioning middleware. Finally, we have introduced the concept
of seamful design for developers and discussed how the concept may focus the
notion of translucent middleware.

In the future, we plan to research how traditional software qualities can be
supported by the model based approach to translucency, e.g., reliability, scala-
bility and performance. Furthermore, we will conduct user studies to validate
the concept of translucency provided through seamful design.
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