
HAL Id: hal-01055201
https://inria.hal.science/hal-01055201

Submitted on 11 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards an Integrated Model for Functional and User
Interface Requirements

Rabeb Mizouni, Daniel Sinnig, Ferhat Khendek

To cite this version:
Rabeb Mizouni, Daniel Sinnig, Ferhat Khendek. Towards an Integrated Model for Functional and
User Interface Requirements. Third IFIP WG 13.2 International Conference on Human-Centred Soft-
ware Engineering (HCSE), Oct 2010, Reykjavik, Iceland. pp.214-221, �10.1007/978-3-642-16488-0_19�.
�hal-01055201�

https://inria.hal.science/hal-01055201
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards an Integrated Model for Functional and

User Interface Requirements

Rabeb Mizouni1, Daniel Sinnig2, Ferhat Khendek3,

1 College of Information Technology, UAE University, Al-Ain, UAE.

mizouni@uaeu.ac.ae
2 Faculty of CS and Elec. Engineering, University of Rostock, Germany.

dasin@informatik.uni-rostock.de
3 Dept. of Electrical & Computer Eng., Concordia University, Montreal, Canada.

khendek@encs.concordia.ca

Abstract: Despite the widespread adoption of UML as a standard for modeling

software systems, it does not provide adequate support for specifying User Interface

(UI) requirements. It has become a common practice to separately use UML use cases

for specifying functional requirements and task models for modeling UI requirements.

The lack of integration of these two related models is likely to introduce redundancies

and inconsistencies into the software development process. In this paper, we propose an

integrated model, consisting of use case and task models, for capturing functional and

UI requirements. Both artifacts are used in a complementary manner and are formally

related through so-called Anchors. Anchors are use case steps that require further

elaboration with UI-specific interactions. These interactions are explicitly captured in

associated task models. The formal semantics of the integrated model is given with

finite state automata.

Keywords: Functional Requirements, UML Use Cases, User Interface Requirements,

Task Models, Integrated Requirements Model, Finite State Automata.

1 Introduction

UML has become the de-facto standard for software systems modeling. However,

UML’s support for User Interface (UI) development is deemed insufficient [1]. While

UML diagrams are well suited for object-oriented analysis and design, the HCI

community argues that a set of specialized models is needed to effectively specify

users’ characteristics and tasks, UI dialogue structures and layouts.

This divergence has been addressed by many researchers. Most attempts either

define extensions for UML to capture HCI related information [2, 3] or, conversely,

extend HCI models to cope with object-oriented features [4, 5]. An effective

integration, however, is not simply a matter of expressiveness and the ability to

convert or embed a model into another one. Instead, as Paternò [1] points out,

specialized notations should be used in a complementary manner to efficiently

support software engineers and UI designers in their work.

In this paper, we define an integrated model for capturing functional and UI

requirements. It is composed of two heterogeneous, yet interrelated parts: UML use

cases and HCI task models. Use cases are the medium of choice for capturing

functional requirements whereas task models are commonly used to specify the

detailed user interactions with the system. Within our integrated model, use cases and

task models are used according to their intended purposes establishing clear

separation of concerns.

The research reported here builds upon our earlier work [6, 7] where we described

a two-phase integrated development methodology for use cases and task models. In

the first phase, an initial coarse grained use case model is developed, which, without

delving into details, documents the primary interactions that actors will perform with

the system in a step-by-step format. Additionally, for each use case, the software

engineers identify a set of use case steps that require further elaboration with UI

details. These steps are called anchors. In the second phase, each anchor is associated

with a corresponding task model capturing UI-specific interactions. Concurrently, the

coarse-grained use case model is further refined by taking into account alternative and

failure cases that thus far have been considered only marginally.

In this paper we focus on the definition of an integrated model for functional and

UI requirements to support such a methodology, including its syntax and semantics.

The latter is defined by providing a formal mapping to the semantic domain of finite

state automata.

2 Syntax of the Integrated Functional and UI Requirements Model

In this section we define the syntax of our integrated model for functional and UI

requirements. As aforementioned, the model consists of two heterogeneous parts, a

use case model and a set of task models, interlinked by a set of anchor points. Each

individual use case corresponds to the structure portrayed in Fig. 1. The main success

scenario as well as each extension consist of a sequence of use-case steps, which can

be of six different kinds. Atomic steps are performed either by the system or a

secondary actor. They contain a textual description, but do not consist of any sub-

steps. Anchors are also atomic, but are performed by the primary actor and as such are

related to the user interface. Anchor steps additionally contain a reference to a

refining (UI-specific) task model. Choice steps provide the primary actor with the

choice between several interactions. Each such interaction is (in turn) defined by a

Fig. 1. Use Case Model Syntax with Anchor

sequence of steps. Concurrent steps define a set of steps which may be performed in

any order by the primary actor. Goto steps denote jumps to steps within the same use

case. Include steps denote invocations of sub-use cases.

 To illustrate our approach, let us consider a “Process Contact Request” use case. It

depicts the interactions involved in processing contact requests, as it is typical in

social networks such as LinkedIn and Facebook. The main success scenario describes

the situation in which the primary actor directly accomplishes his goal of confirming a

contact request. We also define two extensions to specify alternative scenarios, which

occur when the primary actor fails to authenticate himself or refuses a contact request,

respectively. The textual description of the use case is shown on the left hand side of

Fig. 2.

The use case contains two UI-related steps 1 (“Authentication”) and 4

(“Identification of Contact Request”) which are defined as anchors and as such are

related to refining task models. Both steps do not detail how the step-goals are

achieved. These interactions are UI-specific and are captured in the corresponding

task models. For example, the authentication step (CuAu) may require that the user

enters his/her name and password in any order (Desktop UI), or that the user dictates

his/her login information (Text-Free Voice UI). Both possibilities are expressed by

the binary choice operator ([]) in the corresponding task model (CuAu-TM). In a

similar manner, use case step 4 (ConfReq) is associated with a task model (ConfReq-

TM), specifying UI interactions for confirming a contact request.

3 Semantics of the Integrated Functional and UI Requirements

Model

This section defines a formal semantics for our integrated model. We start by defining

the well-known semantic domain of finite state automata. We then portray how the

use case and task model parts of the integrated model are mapped separately into the

Fig. 2. Integrated Functional and UI Requirements Model of the “Process Contact Request” Use Case

semantic domain. Finally, we define a merging procedure that integrates the various

individual semantic representations into a common behavioral model.

3.1 Semantic Domain

The semantics for our integrated model is given by a mapping to a finite state

automaton.

Definition 1 (Finite state automaton). An automaton is defined as a 5-

tuple(S,s0,Sf,L,E) where S is the set of states, s0 is the initial state, Sf is the set of final

states, L is the set of labels, and E⊆S×L ×S is the set of transitions.

Definition 2 (Trace). A trace of an automaton A is a sequence of transitions

e=q0.q1.q2….qn-1 where q0=(s0,l0,s1) ∈ E such that s0=s0 , ∀i, 1≤i<n-1 qi=(si,li,si+1) ∈

E, and , qn-1=(sn-1,ln-1,sn) ∈ E where sn ∈Sf

Informally, a trace is a word of the language accepted by the finite state automaton

when it starts from its initial state and ends in one of its final states for the trace. In

what follows, we use operational semantics for our definitions. Equations of the

following form
;

()
a b

Cond
c

denote that a AND b IMPLY c. Cond is the condition for

the applicability of the rule.

3.2 Semantics for Use Cases and CTT Task Models

This section outlines the separate mappings of the use case and task model into the

semantic domain. For the sake of conciseness, only a high-level overview will be

given while the full details can be found in [8].

The semantic mapping from a use case model into an automaton is defined in a

bottom-up manner, starting with the mapping of individual use case steps. Each of the

six kinds of use case steps enumerated in Fig.1 has its own specific mapping to an

FSM. Atomic steps and Anchor steps map to elementary FSMs consisting of only an

initial state and a set of final states, connected by a transition that represents the use

case step. A Choice step maps to a composite FSM consisting of the initial states of

each choice’s FSM. A Concurrent step is the product machine of its constituent

FSMs. Goto steps map to an FSM with a single state defined to be equivalent to the

initial state of the FSM representing the target of the jump. The complement FSM of

an Include step consists of two states: one identified with the initial state of the FSM

of the main success scenario of the invoked sub-use case, and the other identified with

all final states of the sub-use case’s FSM.

Now that individual use case steps can be formally represented by automata, we

can link arbitrary sequences of steps using sequential composition, by unifying the

final states of the first operand with the initial state of the second one. In the next step,

we map the main success scenario and each extension of the use case to a set of

automata, each being the result of the sequential composition of the automata

representing the individual use case steps. Finally, the entire use case is mapped into

an automaton, by merging the automata representing the main success scenario and all

its extensions.

Similar to the semantic mapping of use cases, the mapping of CTT task models to

automata is performed in a bottom-up manner. Each atomic task is mapped into an

atomic automaton. Composite tasks are represented by more complex automata,

which result from the composition of the automata representing sub-tasks. We have

defined the following composition operations: sequential composition (•), choice

composition (#), parallel composition (), and iterative composition (∗). The full

details of the mappings are given in [8].

3.3 Automaton of the Integrated Model

In this section, we elaborate how the individual use case and task model automata are

merged into a single automaton, representing the behavioral semantics of our

integrated requirements model.

Intuitively, the behavior of the integrated requirements model can be summarized

as follows: At first, the integrated model adopts the behavior of the use case model up

until an Anchor step is encountered. At this point, the integrated model adopts the

behavior of the associated CTT model depicting how the primary actor may

accomplish the step-goal using a particular UI. Thereafter, the integrated model again

resumes with the behavior of the use case model. This alternating continues until the

scenario comes to an end.

The behavioral merge of finite state automata has been addressed in many research

projects [6, 9-11]. Since in our integrated model use cases and task models are

utilized in a complementary −non-overlapping− manner we choose one of the existing

explicit automata composition techniques [6, 10, 11] to merge the respective use case

and task model automata. Similar to our work presented in [6], the merge of use case

and task model automata is based on imperative expressions. Each expression

specifies (1) the use case and the CTT automata to be merged, (2) the anchor where

the merge is performed, and (3) a Refine operator that specifies how the actual merge

is performed. The evaluation of the expression yields a new automaton where the use

case transition representing the anchor step has been replaced by the corresponding

CTT automaton. We define Refine operator semantics next.

Let A=(S,s0,Sf,L,E) be an automaton and let tr(A)={e | e is a trace of A} be its set

of traces. We define the set tr(A, ep) to be the set of traces of A passing through the

anchor ep as: tr(A,ep)={e ∈ tr(A), e= q0.q1.q2….qn-1,∀0≤i≤n-1 qi∈E | ∃ qi =ep}. It

represents the set of traces where ep appears as a transition in the trace. Additionally,

we define Pref(A,ep) (respectively postfixes Post(A,ep)) as the set of prefixes

(respectively postfixes) of the traces of the automaton A passing through ep. More

formally, let e=q0.q1.q2….qn-1 be a trace of automaton A. u= q0.q1….qi-1 ∈ Pref(A, ep)

if (qi = ep) (respectively, r=qi+1….qn-1 ∈ Post(A, ep) if (qi = ep)}. Consequently, a

trace e ∈ tr(A,ep) can be written as: e=u.ep.r where u∈ Pref(A,ep) and r ∈

Post(A,ep).

Definition 4 (Refine Operator): Let A=(S1,s
0

1,S
f
1,L1,E1) and B=(S2,s

0
2,S

f
2,L2,E2)

two automata, and C=(S3,s
0

3,S
f
3,L3,E3) be the resulting automaton by applying the

Refine operator at the anchor t=(s,a,s'). Furthermore, let tr(A) and tr(B) be the traces

of automata A and B, respectively. Then, the set of traces tr(C) of the resulting

automaton C is constructed using the following rules:

(1)
)(

)),(/)((

Ctre

tAtrAtre

∈
∈

(2)
)(..

))());,(),,(Pr..|,());,((

Ctrreu

BtretAPostrtAefuwherertuerutAtre

b

b∈
∈∈∈=∃∈

Equation (1) shows that all traces of A not passing through the anchor point are

traces of the automaton C. Equation (2) shows that for all traces of A passing through

t, the transition t is replaced by the traces of B.

The construction the final merged automaton is an iterative process, where the

resulting automaton from a composition is used as an input to a subsequent

composition until a fixpoint is reached (i.e., all anchors have been replaced by

respective task model automata). At the end of the composition, the derived

automaton is the semantic representation of the integrated requirements model. Fig.3

portrays the various automata involved in our "Process Contact Request" example.

The automaton representing the use case is given in Fig. 3 (a). The task model

automata representing the refinements of the "authentication step" and the "confirm

contact" step are given in Fig. 3 (b) and Fig. 3 (c). Finally, Fig. 3 (d) illustrates the

resulting automaton representing the integrated model.

4 Related Work

Since UML was developed with little attention to UI related issues, several proposals

have been put forward to close this gap. Most of them fall into one of the following

categories: (1) Extensions to UML for the purpose of capturing HCI-related

information [2, 3], (2) extensions to HCI models for capturing object-oriented features

[4, 5] and (3) development methods promoting the integration of HCI and OO models

[12].

Paternò [1] proposes a method for integrating use case diagrams and task models.

Use cases denote core functionalities offered by the system which are refined by a set

of task models. However, the scenario descriptions entailed in each use case are not

taken into account. Another approach that falls under the first category is presented by

Noberga et al. [2]. Motivated by the fact that the current UML standard provides

insufficient support for modeling interactive systems, a mapping from CTT task

models to UML activity diagrams is proposed. The mapping is complemented by an

extension of UML with high-level syntactic constructs related to task modeling.

Da Silva and Paton [5] propose UMLi as a modeling language for interactive

systems. UMLi extends UML with UI diagrams for describing abstract interaction

objects. According to their eight-step methodology, use cases are employed to define

high-level functionalities which are further refined by a set of user tasks captured in

extended UML activity diagrams. A set of logical links, placed between the various

use cases and the activity diagrams, establishes traceability between UI details and the

corresponding functional requirements.

Rosson [13] proposes a scenario-based approach to object-oriented analysis and

design. In order to integrate usability concerns with functional modeling, a system is

modeled by a set of instance scenarios. In a bottom-up approach the various scenarios

are processed and serve as a basis for the creation of the object model. Nunes and

Conha [4] point out that UML provides inadequate support for modeling architectural

concerns of interactive systems and propose their Wisdom framework to fill this gap.

While mainly based on existing UML models, Wisdom introduces a CTT-like

notation to capture the dialogue between users and the application.

5 Conclusion

In order to overcome the insufficient support for UI modeling in UML, we have

proposed an integrated model to capture functional and UI requirements. This

integrated model is the outcome of a larger undertaking, first discussed in [7], that

investigates methods for efficient collaboration between software engineers and UI

designers while preserving clear separation of concerns. The integrated model is

comprised of two well-established models − UML use cases and CTT task models –

interrelated through a set of Anchors. We have defined a formal syntax and semantics

for the integrated model. The latter is given in terms of a finite state automaton.

As future work, we plan to carry out comprehensive case studies and to apply our

approach and notation to industrial-strength projects. We are currently developing

tool support for authoring and validating the integrated model. We envision that our

Fig. 3. Composition Example

tool will support the reuse of task model specifications (either within the same project

or among different projects). In many cases, the interactions specified by task models

are independent from the application domain and consequently can be reused across

projects. Other future avenues are related to the extension of the integrated model to

encompass other UI-related artifacts such as user and dialogue models and the

generation of integrated test cases.

References

1. Paternò, F. and C. Santoro, Support for Reasoning about Interactive Systems

through Human-Computer Interaction Designers' Representations. Comput. J.,

2003. 46(4): p. 340-357.

2. Nobrega, L., N.J. Nunes, and H. Coelho, Mapping ConcurTaskTrees into UML

2.0. Gilroy, S.W., Harrison, M.D. (eds) Interactive System, 2006. 3941.

3. Bastide, R.e., An Integration of Task and Use Case Metamodels. HCI

International, San Diego, CA, USA, 19/07/09-24/07/09, 2009.

4. Nunes, N.J. and J.o.F. o e Cunha, Towards a UML profile for interaction design:

the Wisdom approach. 2000.

5. de Paula, M.i.G., B.S. da Silva, and S.D.J. Barbosa, Using an interaction model as

a resource for communication in design. CHI '05: CHI '05 extended abstracts on

Human factors in computing systems, 2005: p. 1713-1716.

6. Mizouni, R., et al., Merging partial system behaviors: composition of use-case

automata. IET Software, 2007. 1(4): p. 143-160.

7. Daniel, S., M. Rabeb, and K. Ferhat, Bridging the gap: empowering use cases with

task models, in Proceedings of the 2nd ACM SIGCHI symposium on Engineering

interactive computing systems. 2010, ACM: Berlin, Germany.

8. Sinnig, D., Use Case and Task Models: Formal Unification and Integrated

Development Methodology. 2008, Department of Computer Science and Software

Engineering, Concordia University, Montreal.

9. Chechik, M., et al., Partial Behavioral Models for Requirements and Early

Design. MMOSS, 2006. 06351.

10. S.Leue, L. Mehrmann, and M. Rezai, Synthesizing ROOM Models from Message

Sequence Chart Specifications. Technical Report 98-06, ECE Dept., University of

Waterloo, Canada, october 1998.

11. Uchitel, S., J. Kramer, and J. Magee, Behavior Model Elaboration using Partial

Labeled Transition Systems ESEC/FSE 2003, 2003.

12. Lu, S., et al., Generating UML Diagrams from Task Models. 2003.

13. Rosson, M.B., Integrating development of task and object models. Commun.

ACM, 1999. 42(1): p. 49-56.

