
HAL Id: hal-01054977
https://inria.hal.science/hal-01054977

Submitted on 11 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Differentiated Replication Strategy in Data Centers
Tung Nguyen, Anthony Cutway, Weisong Shi

To cite this version:
Tung Nguyen, Anthony Cutway, Weisong Shi. Differentiated Replication Strategy in Data Centers.
IFIP International Conference on Network and Parallel Computing (NPC), Sep 2010, Zhengzhou,
China. pp.277-288, �10.1007/978-3-642-15672-4_24�. �hal-01054977�

https://inria.hal.science/hal-01054977
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Differentiated Replication Strategy in Data Centers

Tung Nguyen, Anthony Cutway and Weisong Shi

{nttung,acutway,weisong}@wayne.edu

Wayne State University

Abstract. Cloud computing has attracted a great deal of attention in both academia

and industry. We envision the provisioning of differentiated services as being one

of the key components to the success of cloud computing. Unfortunately, this is-

sue has not been fully addressed in the past. Realizing that different users might

have different requirements regarding availability, reliability, durability, response

time and so on, we conjecture that providing flexible replication mechanism is the

right approach to service differentiation. In this paper, we propose Differentiated

Replication (DiR), which allows users to choose different replication strategies by

considering both the user requirements and system capability. We implemented

a system that offers four differentiated storage services with DiR. The experi-

mental results show that this service actually provides different availabilities and

execution times for different service types with the same request traces, failure

traces, and workload. In addition, we also show that in comparison to the regular

uniform replication, DiR can further improve resource utilization, which will in

turn provide a better user experience with regards to cloud computing.

1 Introduction

Recently, cloud computing has been a hot research topic. In fact, it may shape the

future of the computer industry [1–3]. With cloud computing, companies can reduce

their overheads regarding the buying, installing, and maintaining computer resources.

With cloud computing, they can register necessary services from the Internet, allowing

them to focus on the core aspects of their business.

It is clear that many users of cloud computing services have different requirements

for the service. Some require optimal performance, while others seek data redundancy

and reliability. In general, users may demand different properties from services, such as

availability, reliability, durability, and performance. One, several, or all of these proper-

ties may be under consideration for any given request. This possibility demands differ-

ential services. Most available cloud services today do not take this fact into account.

Often times, they only provide one type of service for all of their users. For example,

Windows Azure and Amazon S3 maintain a fix number of replicas (3) for data stored

in it. Both Microsoft Windows Azure and Amazon S3 guarantee in their service level

agreement (SLA) that the availability of customer’s data is always greater than 99.9%.

This may lead to poor resource utilization from the provider or an inefficient usage

from the user. We also find that all of these properties relate to replication. Differen-

tiated replication strategies can provide different availabilities, reliability, durabilities,

and performances. Therefore, we propose a new strategy called Differentiated Replica-

tion (DiR) to address this problem.



To demonstrate the concept of DiR, we built a prototype system providing storage

services capable of providing data at different rates of availabilit. Users are provided a

simple interface that allows them to store and later fetch their data with their expecta-

tion. The current version of DiR provides four replication types.

This paper comes in three core parts . First, we propose the idea of differentiated ser-

vices for data centers and design a set of simple but powerful APIs for high level users.

Second, we propose four different replication strategies on the server side, enabling

differentiated services in terms of data availability. Third, we implement a prototype

of DiR and evaluate the four proposed replication strategies in a comprehensive man-

ner in terms of availability using both synthetic and real failures traces. The evaluation

results show that the last replication strategy, which takes both user requirements and

system behavior into consideration, is capable of providing different availabilities and

execution times.

The rest of the paper is organized as follows. Section 2 exhibits the design of DiR,

Section 3 describes the implementation, and Section 4 presents the experiment and

results. The related work and conclusion are covered in Sections 5 and 6 respectively.

2 System Design

2.1 Assumptions and Requirements

The goal of DiR is to build a read/write only (not modified) storage system that pro-

vides different types of replication services to the user with better resource utilization.

We target read/write only storage system for the sake of simplicity in term of data con-

sistency. However, this is also practical because the data in the Cloud is often very huge

and should not be modified. This assumption is often made in the area of data intensive

computing like HDFS of Hadoop [4].

We mainly focus on differences in: (1) replication strategies; (2) search algorithms;

(3) network topology; and (4) availability. Hence, in our case better service may mean

higher availability or faster or less communication cost. The idea for a user to request

other properties such as durability, reliability, and performance is almost similar and

will be introduced later. The system is heterogeneous with different hardware, software,

computational ability, etc. Each member can join or leave the system or fail at any time.

Given the requirement of read/write only service, the system does not need to maintain

consistency between replicas. Therefore, the only two methods we need to provide are

store and fetch. In addition, the failure we consider is of a fail-stop type rather than the

Byzantine failure type. This means that when the machines are alive, they are supposed

to have correct behavior. Finally, reasonable load balance, fault-tolerance, scalability

and reliability are also important requirements of the system.

2.2 APIs

Users of our system are not terminal application users but developers of front-end appli-

cations. They are not supposed to know replication techniques in detail. The interface

component is required to be simple enough so that it can easily be used in applications.

2



Table 1. The DiR APIs.

Function name Description

fetch(filename) retrieve a file from the DiR system

fetch(filename,service-type) retrieve a file from the DiR system with specific

service type

store(filename) insert a file from local file system to DiR

store(filename, service-type) insert a file from local file system to DiR with

specified service type

Therefore, we only need to add one more parameter, called service-type, to the current

APIs of Chord/DHash [5] to indicates which type of service the user requires. These

methods merely call new methods with a default service-type, as illustrated in Table 1.

The user will notice that the service-type of a fetch needs to match that of the store for

a certain file.

2.3 Availability Analysis

Basically, there are two ways to provide different levels of availability: change the num-

ber of replicas, or change the location of them. Higher availability of an object can be

achieved by increasing the number of its replicas or by placing its replicas onto more

“available” machines. Intuitively, more replicas on more reliable nodes will produce

higher availability. Even so, we cannot tell which method provides better availability in

some situations. The system has to decide the availability under the resource constraints

to guarantee the load balance. If we do not handle this correctly, we may introduce extra

overhead to highly available nodes. The problem is formalized as follows.

Given an expected availability A of a certain object/file, and a set of nodes with their

own availability, we need to find the number of replicas, and the specific nodes in which

to store them. It is noteworthy that the availability of an object stored on a machine is

equal to the availability of that machine, also under the fail-stop assumption.

Let M be a set of nodeIDs and corresponding availabilities of N nodes.

M = {(ni, ai)|ni is the ID of node i and 1 ≤ i ≤ N}

Let

σ =







{(nxl
, axl

)}
l=1,k

∣

∣

∣

∣

∣

∣

(nxl
, axl

) ∈ M,

nxi
6= nxj

, 1 ≤ i, j ≤ k,

1 ≤ xi, xj , k ≤ N







The solution of the problem is in σ set.

Assuming {(ny1
, ay1

), (ny2
, ay2

), . . . , (nyl
, ayl

)} is one specific solution, the following

approximation should be satisfied

A ≈ 1 − (1 − ay1
)(1 − ay2

) . . . (1 − ayl
)

= f(ay1
, ay2

, · · · , ayl
). (1)

3



Note that in Equation (1) while A represents the user’s expectation, {ay1
, ay2

, · · · , ayl
}

represents the availability of the system. With a certain value of A, we may have several

solutions.

One way to completely solve this is: For every member mi of σ, compute A′ =
f(mi), if A′ ≈ A then mi is a solution. Unfortunately, this method is O(2N ), in which

N is the number of nodes.

The second method is to calculate the average of all the availabilities

a =

N
∑

i=1

ai

and use the formular in [6]:

l =
log(1 − A)

log(1 − a)
(2)

to derive the number of replicas l. This approach may create a resource utilization prob-

lem in the next step of choosing proper nodes to store replicas.

The third method is shown in the following algorithm

1: Sort M in decending order of availability

2: F ⇐ (1 − M [0].a)
3: i ⇐ 1
4: while (i < N)and(A′ < A) do

5: F ⇐ F ∗ (1 − M [i].a)
6: A′ ⇐ 1 − F

7: inc(i)
8: end while

This method may cause an overload in the high availability nodes.

Finally, since this problem is of a constraint programming type, another regular way

to solve it is to use an existing C(L)P solver.

As a result, no matter what method we use, from the system design point of view,

the system is required to have a monitor server to provide the availabilities of all nodes

in the system. This leads to the need for OPERA.

2.4 OPERA

OPERA stands for OPEn Reputation Architecture, which is a general framework to

compute the reputation of nodes in the system. OPERA allows users to define how to

calculate reputation, and it returns the reputation of nodes based on that definition. It

employs a traditional master-slave model in its communication, since we need to obtain

the global reputation of the system. OPERA clients communicate to each other in reply-

ing to the rate request from the server. Design and implementation of OPERA are not

detailed here due to page limitation. Basically, OPERA employs Ganglia (a monitoring

tool) to collect information about nodes in the system and calculates reputation for each

node based on this information.

4



2.5 Utilization Analysis

We argued that DiR also provides better resource utilization. This is rather obvious and

straightforward. Let’s define

the utilization of a system =
Resreal

Resneed

in which, Resreal are the resources that really used to provide the services and Resneed

are the resources that can satisfy user needs.

The following analysis compares the resource utilization of DiR and that of uni-

form replication, which is a very widely used technique today. We assume both systems

have n requests r1, r2, · · · , rn and ci is the correspondent number of replicas to satisfy

ri. The total number of replicas of DiR (idealy) and uniform method is
∑n

i=1
ci and

∑n

i=1
Max{ci|0 ≤ i ≤ n} respectively. Note that, in the uniform repication system,

we need to choose l large enough to satisfy the highest quality requests. For example,

with n = 4, c1 = 2, c2 = 3, c3 = 2, c4 = 4, the resource utilization of ideal DiR

and uniform system is 1 and 4×4

2+3+2+4
= 1.45. As a result, this analysis proved that

DiR used resources more efficiently. From another aspect, with the same resource, DiR

(better utilized system) can satisfy more requests as well.

2.6 DiR System Architecture

The overall system architecture is shown in Figure 1. The user uses the DiR Interface to

ask for service. Depending on the request, the DiR interface decides which replication

strategy to use. There are, in total, four replication strategies available (represented by

four blocks in the figure) that can offer all required differences. In fact, there are many

other options to choose to construct a strategy. For example, we can choose random

walk search algorithm [7], CAN [8] or Pastry [9] to build a new type of service. Such

openness is expressed by the lowest block with “three dots” in the figure. Finally, the

rightmost circle with small squares inside represents the physical underlying network

connecting the machines of the system.

D
iR

 I
n

te
rf

a
c

e

Regular Uniform

Underlying Network

Uniform + DHT

Uniform + DHT + 

OPERA

...

Non-uniform + DHT + 

OPERA

Fig. 1. The DiR system architecture.

Our system can also support the differences in the durability/reliability of objects

stored in it by modifying the policy being used in the monitoring server, OPERA, to

define how to calculate them. The nodes that are more durable/reliable have higher

reputation scores. By doing this, the OPERA server returns the durability/reliability of

all nodes in the system. The remaining problem is how to calculate these values.

5



Table 2. The summary of available service types

Service type Description

Sd Regular uniform replication, unstructured network

Sd Uniform replication, DHT, ring-based

Sd+o Uniform replication, DHT, ring-based, OPERA

Sd+o+a Non-uniform replication, DHT, ring-based, OPERA

3 Implementation

We implemented our system by extending Chord/DHash [5]. The architecture of an

individual node (peer) derived from our previous design is shown in Figure 2. The

rightmost block is the OPERA client. This block is in charge of rating other nodes and

responding to the request from them as well as from the OPERA server. The highest

level in Figure 2 is the DiR interface that offers the APIs to the user and chooses an

appropriate handler. The two leftmost blocks (File Transfer and breadth-first search)

correspond to the “Regular Uniform” handler of Figure 1. “File Transfer” is used to

receive files sent from other nodes. ”Breadth First Search” is used to find a replica.

The last three middle blocks (DiR Manager, DHash and Chord) correspond to the final

three handlers in Figure 1. The lowest block, Chord, is a replica lookup service. The

upper block that uses the Chord lookup service is DHash, a block store service. This

layer is responsible for storing/retrieving blocks of data into/out of storage devices. The

DiR Manager is located on top of the block store layer (DHash). It is used to provide

the store/fetch file functions to the DiR interface, communicate to OPERA and

calculate the appropriate number of replicas as well as their locations.

DHash

Chord

DiR Manager

O
P

E
R

A
 C

li
e

n
t

DiR Interface

Breadth 

First 

Search

File 

Transfer

Fig. 2. An augmented node in DiR implementation.

We have implemented a prototype of a DiR storage system and OPERA using C++

on Linux. The DiR prototype has implemented all parts of the previous design. It of-

fers several types of differences: in the network topology (unstructured or structured),

communication model (message and aRPC), search algorithm, replica location and ex-

pected availability. These differences are implied in the following four service types

(corresponding to the four handlers in the Section 2.6) and are summarized in Table 2.

Type Sr indicates that a user wants to use a normal uniform replication with a tradi-

tional search algorithm. Nodes communicate with each other by sending and receiving

6



messages. Although this strategy is popular, we built it from scratch since we could not

find any open source implementation available online. To handle this type, each node

has two servers. The first one, (called searchserver), waits to receive a file request and

looks for the file in the system. This server is the “Breadth First Search” block in Figure

2. To make the search process workable, we apply the TTL (Time To Live) technique to

each request. The second server, (called filetransferserver), is used to receive actual files

sent from searchservers. It is worth noting that since we use failure traces in the exper-

iment, these servers have to be implemented to tolerate failure at anytime. Therefore,

we also apply a timeout technique in the communication.

Type Sd represents the uniform replication, using Chord as a DHT lookup algo-

rithm. In fact, this type is the original version of Chord/DHash.

Type Sd+o utilizes the same lookup algorithm as Sr but with a different replica

location. With this service type, DiR first calls Chord to get the successor nodes of the

hash value of the filename and contacts OPERA to ask for their availabilities. Based

on this information and the predefined number of replicas, DiR chooses nodes with the

highest availability to host the replicas of that file. The thing worth being noticed here

is that in this prototype, these first three types have the same number of replicas.

Type Sd+o+u means the user only cares about the availability, not the number of

replicas. This version of DiR fixes the target availability to 3 “nines” as in Amazon

S3 storage service, but this can easily be changed to the desired values. DiR calculates

the necessary replicas using equation (2) with the average availability of the successor

list of the file ID. In the step of choosing host machines to store the replica, we sim-

ply choose the sets randomly, recalculate the availability accordingly of each set, and

choose the one that is close to the expected availability. Although this way may not

provide the best solution, it is faster and helps to balance the load.

4 Experiment and Results

To evaluate our system, we deployed DiR onto a cluster of 21 nodes. The first 20 nodes

had DiR installed. The 21 node was dedicated to the OPERA server with a guarantee

not to fail during the experiment.

 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u
m
b
e
r
 o
f f
a
il
u
r
e
s

Node ID

Synthetic failure trace Real failure trace

Fig. 3. Number of failures.

7



To prepare for the experiment, first, we need to have a files generator and distributor

to create and distribute files randomly to 20 nodes. The total number of files in the

synthetic trace is 400, and that of the DZero trace [10] is 25,951 files.

Second, for request and failure traces, we used both synthetic traces and modified

real traces. Figure 3 shows the detailed number of failures in both synthetic and real

failure trace. The total failure duration time of each node is displayed in Figure 4. The

simulation time for the synthetic traces is 50 minutes. The real failure trace is from the

availability information of the first 20 nodes of Microsoft PCs trace [11] measured dur-

ing 35 days since July 6, 1999; and the real request trace is from a physical application

of the DZero experiment [10] on April 2004. Since it was not practical to conduct the

experiment for an entire month, both real failure and request traces are scaled down to

one day only. In scaling down the request trace, we encountered the problem of conges-

tion. This is because the request trace was forced to request too many files at the same

time. As a result, we modified the trace so that the time to ask for the file is slightly dif-

ferent if they are the same in the original trace. The availability results returning from

600

800

1000

1200

40000

50000

60000

70000

80000

0

200

400

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Real failure trace Synthetic failure trace

Fig. 4. Failure duration time in the failure trace.

the OPERA server are shown in Figure 5.

0.8

1

1.2

it
y

Synthetic failure trace Real failure trace

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
v
a
il
a
b
il

Node ID

Fig. 5. The availability of the system.

In this section, we measure two main metrics: execution time and availability of

different service types.

8



Table 3. The availability of DiR under synthetic and real traces.

Service-type Sr(2) Sr(3) Sd Sd+o Sd+o+u

Availability (synthetic trace) 44.62% 86.40% 61.62% 70.06% 98.13%

Availability (real trace) 28.02% 29.32% 82.17% 89.79% 99.95%

Table 3 shows the availability of the system using the synthetic traces and the mod-

ified real traces. From the synthetic results, we can see significant improvement in the

availability of the Sr with different configurations of the neighbor list (two or three

neighbors). In addition, we also found that the availability of Sd+o is better than that

of Sd. This means we can improve the availability of Chord/DHash with the aid of

OPERA. The table also shows that we cannot tell which type is “better” generally. One

can argue that Sr(3) (with 3 neighbors) is the best. However, this statement is true for

the availability only. It is easy to see that, the Sr(3) strategy costs more resources (in

term of link number and bandwidth) than the others. From the real results, the avail-

ability of Sd+o is also better than that of Sd. The availabilities of Sr are poor because

the real request trace requests several hundred files at the same time; and together with

the failure trace, it crashed some of our search servers and hence, produced those poor

availabilities.

Another experiment was about Sd+o+u alone. Figure 6 shows the availability of

10 different files of random size. The horizontal line in the figure represents the ex-

pected availability that was set to three nines by default. The result was measured in 50

minutes.

 

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

1 2 3 4 5 6 7 8 9 10

A
v
a
il
a
b
il
it
y

File IDs

Availability (service‐type 3) Expected Availability

Fig. 6. Availability of files using Sd+o+u.

To measure the performance of DiR, we created files with various sizes, inserted

them into the system and then retrieved them. We only measured the response time of

the successful requests. Assuming that there was no failure, we got the results shown in

Figure 7.

9



 

0

100

200

300

400

500

600

700

4 8 16 32 64 128 256 512 1024

T
im

e
 (m

s)

File size (KB)

Store Sd Store Sd+o Store Sd+o+u

Fetch Sd Fetch Sd+o Fetch Sd+o+u

Fig. 7. DiR performance of Sd, Sd+o and Sd+o+u.

5 Related Work

Differential service is one of the key aspects of DiR, encompassing flexible availability,

reliability, durability, file placement, and search methods. Many studies are related to

and have led to the culmination of DiR. Beside Chord/DHash [5], perhaps the closest

work to ours is the Total Recall [6]. Total Recall file system of Bhagwan et al. also

provides an option to choose the availability of objects. However, their users are in fact

system administrators. They aimed at relieving administrators’ burden by maintaining

the degree of replicas automatically. Another paper of Zhong et al. [12], which also

employed the non-uniform replication, considers the optimal number of replicas of an

object for high availability to be directly proportional to the object’s popularity. How-

ever, their approach does not consider the different type of services from users. Also

related to replication strategy, Cohen [13] finds the optimal replication strategy, in term

of search size, lies between a uniform and a proportional strategy.

Different placement algorithms were introduced in [14–17]. To increase availability,

Giwon’s work in [18] is concerned with dynamically replicating objects, and Acunam’s

group uses a fixed number of replicas depending on peer availability [19]. In regard to

durability, Wang et al. focuses on the durability of data through replication [20], while

Chun’s research improves the durability of large amounts of data using a replication

algorithm [21]. Besides the breadth first search and the Chord mentioned in the previous

sections, [7] presented a search algorithm using multiple random walks to improve

performance over the Gnutella like flooding search method.

6 Conclusions and Future Work

Diversity in the requirement of services will soon be an important feature and require-

ment in cloud computing. In this work, we took the first step to address this problem.

Focusing on the replication technique, we proposed the concept of differentiated repli-

cation that can offer different types of services, and developed a prototype storage sys-

tem focusing on the availability.

Future work in this project will involve improving OPERA so it will be capable

of monitoring other metrics, such as performance, durability, and so on. In addition,

we will investigate the techniques to maintaining multiple service types in the dynamic

10



environments, e.g., large-scale data centers [1], which have many different applications

simultaneously.

7 Acknowledgments

We would like to thank the anonymous reviewers for their comments and Cole Brown

at Rochester for his editing changes on this manuscript.

References

1. Bryant, R.E.: Data-intensive supercomputing: The case for disc. Technical Report CMU-

CS-07-128, School of Computer Science, Carnegie Mellon University (May 2007)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view of cloud comput-

ing. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28

(2009)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4)

(2010) 50–58

4. : http://wiki.apache.org/hadoop/

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable

peer-to-peer lookup service for internet applications. In: ACM SIGCOMM’2001. (2001)

6. Bhagwan, R., Tati, K., Cheng, Y.C., Savage, S., Voelker, G.M.: Total recall: System support

for automated availability management. In: Proc. of NSDI’04, Berkeley, CA, USA, USENIX

Association (2004) 25–25

7. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-

to-peer networks. In: ICS ’02: Proceedings of the 16th international conference on Super-

computing, New York, NY, USA, ACM (2002) 84–95

8. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content address-

able network. In: Proc. of ACM SIGCOMM’01. (2001)

9. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large

scale peer-to-peer systems. In: IFIP/ACM Middleware 2001. (2001)

10. Doraimani, S.: Filecules: A New Granularity for Resource Management in Grids. Master

thesis in Computer Science, University of South Florida (2007)

11. Bolosky, W.J., Douceur, J.R., Ely, D., Theimer, M.: Feasibility of a serverless distributed file

system deployed on an existing set of desktop PCs. In: Proc. SIGMETRICS. (2000)

12. Zhong, M., Shen, K., Seiferas, J.: Replication degree customization for high availability.

SIGOPS Oper. Syst. Rev. 42(4) (2008) 55–68

13. Cohen, E., Shenker, S.: Replication strategies in unstructured peer-to-peer networks. SIG-

COMM Comput. Commun. Rev. 32(4) (2002) 177–190

14. Chervenak, A.L., Schuler, R.: A data placement service for petascale applications. In: PDSW

’07: Proceedings of the 2nd international workshop on Petascale data storage, New York, NY,

USA, ACM (2007) 63–68

15. Chervenak, A.L., Schuler, R., Ripeanu, M., Amer, M.A., Bharathi, S., Foster, I., Iamnitchi,

A., Kesselman, C.: The globus replica location service: Design and experience. IEEE Trans-

actions on Parallel and Distributed Systems 99(1) (2008)

16. Douceur, J., Wattenhofer, R.: Optimizing file availability in a secure serverless distributed

file system. Reliable Distributed Systems, 2001. Proceedings. 20th IEEE Symposium on

(2001) 4–13

11



17. Lian, Q., Chen, W., Zhang, Z.: On the impact of replica placement to the reliability of

distributed brick storage systems. In: ICDCS ’05: Proceedings of the 25th IEEE International

Conference on Distributed Computing Systems, Washington, DC, USA, IEEE Computer

Society (2005) 187–196

18. On, G., Schmitt, J., Steinmetz, R.: The effectiveness of realistic replication strategies on

quality of availability for peer-to-peer systems. In: P2P ’03: Proceedings of the 3rd Inter-

national Conference on Peer-to-Peer Computing, Washington, DC, USA, IEEE Computer

Society (2003) 57

19. FM, C.A., Martin, R., Nguyen, T.: Autonomous replication for high availability in unstruc-

tured p2p systems. Reliable Distributed Systems, 2003. Proceedings. 22nd International

Symposium on (Oct. 2003) 99–108

20. Wang, A.I.A., Reiher, P., Kuenning, G.: Introducing permuted states for analyzing conflict

rates in optimistic replication. In: SIGMETRICS ’05: Proceedings of the 2005 ACM SIG-

METRICS international conference on Measurement and modeling of computer systems,

New York, NY, USA, ACM (2005) 376–377

21. Chun, B.G., Dabek, F., Haeberlen, A., Sit, E., Weatherspoon, H., Kaashoek, M.F., Kubia-

towicz, J., Morris, R.: Efficient replica maintenance for distributed storage systems. In:

NSDI’06: Proceedings of the 3rd conference on Networked Systems Design & Implementa-

tion, Berkeley, CA, USA, USENIX Association (2006) 4–4

12


