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Abstract. BLAS (Basic Linear Algebra Subprograms) plays a very im-
portant role in scientific computing and engineering applications. ATLAS
is often recommended as a way to generate an optimized BLAS library.
Based on ATLAS, this paper optimizes the algorithms of triangular ma-
trix functions on 750 MHZ Loongson 2F processor-specific architecture.
Using loop unrolling, instruction scheduling and data pre-fetching tech-
niques, computing time and memory access delay are both reduced, and
thus the performance of functions is improved. Experimental results indi-
cate that these optimization techniques can effectively reduce the running
time of functions. After optimization, double-precision type function of
TRSM has the speed of 1300Mflops, while single-precision type function
has the speed of 1800Mflops. Compared with ATLAS, the performance
of function TRSM is improved by 50% to 60%, even by 100% to 200%
under small-scale input.

Keywords: BLAS; ATLAS; triangular matrix function; loop unrolling; data
pre-fetching

1 Introduction

In the contemporary scientific engineering, most of the running time is spent
on basic linear algebra functions. A lot of software related to matrix comput-
ing invokes functions in BLAS [1] (Basic Linear Algebra Subprograms). As a
consequence, it is imperative to optimize the BLAS libraries based on a specific
machine to fully utilize its hardware resource. KD-50-1 is a high performance
computer that employs China’s Loongson 2F superscalar CPU, which has the
advantage of low power, low cost and high integration. Our benchmark for high
performance computer KD-50-1 is HPL (High Performance Linpack), which is
implemented by invoking functions in the BLAS library. Therefore, the efficiency
of functions in the BLAS library can directly affect the performance of the KD-
50-1 system.

The BLAS (Basic Linear Algebra Subprograms) are routines that provide
standard building blocks for performing basic vector and matrix operations. The
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Level 1 BLAS perform scalar, vector and vector-vector operations, the Level 2
BLAS perform matrix-vector operations, and the Level 3 BLAS perform matrix-
matrix operations. In this paper we mainly aim at the optimization of functions
that computes triangular-matrix and vector in level 2, and the TRMM and
TRSM function that implement triangular-matrix and matrix operations in level
3. These functions take up about one third of the BLAS library.

On optimization of linear algebra library, contemporary research focuses on
an algorithmic level [2,3]. In a period of time that CPU reads one byte from
memory, it can execute hundreds of instructions. Consequently, the bottleneck
of optimizing functions is not computing time but memory access delay. In
order to reduce memory access delay, RA Chowdhury [4] proposed a method
that extends the cache-oblivious framework to solve The Gaussian Elimination
Paradigm (GEP); Tze Meng Low [5] provided with a high-efficiency blocking
algorithm for functions in level 3. ATLAS [6,7] (Automatically Tuned Linear
Algebra Software) is one of the matrix packages [8,9]. ATLAS is portable BLAS
software which firstly tests hardware parameters and then optimizes some dense-
matrix functions using basic optimizing techniques. ATLAS can optimize basic
BLAS functions automatically upon the parameters of cache capacity and mem-
ory access delay that ATLAS has tested. However, there still exist unknown
parameters of specific architectures, e.g. pipeline structure. Thus, there is room
for optimization of codes that ATLAS generates.

Based on ATLAS, we further optimize triangular-matrix functions in BLAS
from an algorithmic level to reduce access delay and to improve the performance
of BLAS, using general optimizing techniques (such as matrix blocking, loop
unrolling) and optimizing techniques specific on Loongson 2F (such as multiply-
add instruction, instruction scheduling, data pre-fetching).

2 Triangular-matrix Functions and ATLAS Methods

There are 8 triangular-matrix functions in BLAS, however, here we only take
the TRSM function to illustrate optimizing methods and results.

2.1 TRSM and Symbols

TRSM implements multiplication of inverse of triangular-matrix A and matrix
B, as formula(1) illustrates,

B+ aop(A)B or B < aBop(A™) (1)

where a(ALPHA, a scalar) is an extension factor, B is an M-by-N matrix, A is
an upper (or lower) triangular (or unitriangular) matrix, and op(A) can be A,
the transpose of A, or the conjugate transpose of A. If op(A) is on the left of B
(left multiplier), A is M-by-M:;if not, A is N-by-N.

The declaration of TRSM function is xTRSM (ORDET, SIDE, UPLO, TRANS,
DIAG, M, N, ALPHA, A, LDA, B, LDB), where z represents s, d, ¢ or z which
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respectively stands for single precision float data type, double precision float
data type, single precision complex data type, and double precision complex
data type.

2.2 ATLAS Methods

In terms of TRSM, ATLAS employs the solution method for linear equations.
ATLAS has made some basic optimizations toward TRSM as follows:

Matrix blocking ATLAS optimizes TRSM by blocking, setting block size of
real numbers as 4 and block size of complex numbers as 8, the same as coeffi-
cients of loop unrolling. After matrix blocking, triangular matrix A is divided
into several smaller rectangular matrices and triangular matrices, where smaller
rectangular matrices can be solved by invoking GEMM function and smaller
triangular matrices can be solved directly.

Copy and Partial Matrix Transpose Through copy and partial matrix
transpose technique, ATLAS transfers a matrix into a transposed or non-transposed
status, which changes data storage order and further improves the performance
of functions.

Loop Unrolling ATLAS has devised the trsmKL and trsmKR function that
operate on real numbers, and the CtrsmK function that operates on complex
numbers, where trsmKL and trsmKR unroll a loop by 8 x 1 x 1 and CtrsmK
unrolls all of the two inner loops.

3 General optimizing techniques

3.1 Adjusting Block Size

Matrix blocking is a widely applied optimizing technique to enhance storage
availability. It reduces local data sets to avoid conflicts. The matrix blocking
algorithm is to partition the sub-data blocks of a matrix, in order to reuse data
that are in the cache.

We adjust the size of the blocks to a proper value so that each data set
could be stored in a buffer, which reduces extra cost of blocking and ensures
relatively low conflicts. The left multiplication format of dTRSM exemplifies the
specific steps of matrix blocking. As Fig. 1 illustrates, triangular matrix Apsx s
is spitted into several smaller triangular matrices A, 5, pp(grey region in Matrix
A in Fig. 1) and several smaller rectangular matrices A%z, 5, (white region in
Matrix A in Fig. 1, where M’ is a variable and RB < M’ < M ), so each A’ can
be fully stored in L1 cache. As for A5 rp » Bamxn is split into several smaller
rectangular matrices Bl 5. n/, the counterparts of partitioned A% 5. pp is solved
by TRSM, and the counterparts of partitioned A%z, rp is solved by GEMM.
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Fig. 1. Using matrix block technique to the triangular matrix A and the matrix B

As a consequence, optimization is concentrated in the multiplication operation
of triangular matrix A% 5, pp and By, - It is clear that both A” and B’ can
be read from cache instead of memory, which avoids conflict and enhances the
performance of TRSM.

3.2 Setting Coefficients of Loop Unrolling

Loop unrolling is a common optimizing compilation technique, employed to re-
duce both cyclic variable operations and branch instructions. Besides, unrolling
the outer loop of multi-loop can make certain data reusable. We can put these
data into registers so that these data can be read directly from registers instead
of memory, which lowers the requirements of communication bandwidth between
register and cache as well as that between cache and memory.

Next, we analyze how varied coefficients affect performance of functions,
and then specific coefficient will be chosen upon Loongson 2F architecture. We
define the function ATL_dreftrsmLUNN(ref for short) that implements the upper
triangular form, non-transposed form, and non-unimatrix form of partitioned
dTRSM. As Algorithm 1 illustrates, this function shows how coefficients affect
function performance.

There are 3 layers in the loop of algorithm 1, which are denoted by R, S,
T. The ref function is attributable to the speed-up of memory access of TRSM
under limitation.

The times of memory access is (M2 4 Md)N when multiplication operation of
M x M triangular matrix A and M x N rectangular matrix B is implemented.
If layer T is unrolled for « times, the times of memory access of A and B is
respectively NM(M + 1)/2 and MN(M + 1)/2«a ; if layer S is unrolled forj
times, the times for memory access of A and B is respectively M N (M + 1)/28
and MN(M + 1)/2 . So the sum of memory access for unrolling layer T for o
times and for unrolling layer S for § times is MN (M +1)/2a+ MN(M +1)/20.

The computing complexity of dTRSM is (M? 4+ 2M)N , and memory access
speed is denoted by L(Mb/s), then the theoretical upper limit for the computing



Algorithm 1 Algorithm of ATL_dreftrsmLUNN
1: S for(j=0;j<N;j++)

{
2: T for(i=M-1;i>=0;i-)
rC=A[i][i+Bk][j];
3: R for(k=i+1;k<M;k++)
rC-=Al[i] [k]«B[K][j];
}
Bli] [j]=rC/A[][i];
}
speed is:
speed — computing complexity I
memory access
(M2 +2M)NL 2a8(M +2)L

T MN(M + 1)(o + beta)/(208)  (a+ B)(M +1) @)

_ 2apL
Ta+8

When we are deal with large-scaled data, and efficiency of ATL_dreftrsm LUNN
is limited by memory access, increasing the value of a and g could elevate this
upper limit of computing speed.

3.3 Other Optimizing Techniques

Except for transforming division to multiplication operation for ref, we have done
the same to complex data type functions, because a multiplication operation only
takes one cycle while a division operation takes tens of cycles. Taking the left
multiplication form of zTRSM for example, computing each column of matrix
B that stores complex numbers requires 2M times division operations, so the
total number of operations is 2M N. An array is necessary to place the elements
in the diagonal of the triangular matrix, whose expression is r/(r? + %) and
i/(r? +i%) where r and i respectively stand for the real part and the imaginary
part. It is not difficult to replace the former division operations by multiplication,
owing to which there is totally 2M division operations and 2M N multiplication
operations-executing time is shortened.

What’s more, after unwinding the loops in zTRSM and c¢TRSM, we also
unroll Mmls multiply-subtract instruction for complex numbers used as core of
computation to separate real part and imaginary part, so that it is easier for
further optimization with specific techniques on Loongson 2F architecture.
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4 Optimization Techniques Based on Loongson 2F
Architecture

Loongson is a family of general-purpose MIPS-compatible CPUs developed at the
Institute of Computing Technology (ICT), Chinese Academy of Sciences (CAS)
in China . KD-50-1 is a supercomputer with a total of more than 330 Loongson-2F
CPUs. Loongson’s instruction set is 64bit MIPS III compatible. It has separate
64/64 KB instruction and data L1 caches. According to literature[10], RB is
set as 60 when we block the matrices in dTRSM function in section 3.1. There
are 32 registers in Loongson 2F, so theoretically the number of times of loop
unrolling for ATL_dreftrsmLUNN can be set as 4 x 4 x 2, that is « = § = 4,
to acquire a good result speed = 4L. In the following sections, there are other
special techniques based on Loongson 2F architecture.

4.1  Multiply-add Instruction

Because the traditional multiply and add instruction is RAW (read-after-write),
it is often necessary to put other instructions between them to reduce pipeline
idling. However, Loongson 2F is compatible with a specific multiply-add instruc-
tion, using which we can combine multiplication with add operations to improve
our program.

4.2 Instruction Scheduling

Another technique is to adjust the sequence of instructions to avoid pipeline
idling. Loongson Pentium Pro Architecture has 5 execution units: 2 ALUs, 2
FPUs, and 1 address generation unit (AGU). Consequently, in each execution,
one load instruction has to be followed by two floating point instructions and one
fixed-point math instruction, so that 4-way superscalar is strictly fitted, which
is contributable to acceleration of IPC (Instructions Per Clock).

4.3 Data Pre-fetching

The prefetching instruction of Loongson instruction set can cause the reorder
queue blocked, so we employ a branch prediction technique as data pre-fetching
technique. After unrolling loops in algorithm 1(in Fig. 2)by 4 x4 x 2, we use data
pre-fetching and instruction scheduling techniques to make instructions in each
row fit for 4-way superscalar. The codes of the most inner loop are as follows:
In Algorithm 2, incA and incB respectively stands for the distance of two
continuous elements in matrix A and B. The load instruction in the first part
has acquired data required by the second part, and the data acquired in the
second part is necessary in the first part of the next iteration. It is obvious that
except rA0, rBO, rAl, rBl, rA2, rB2, rA3 and rB3, each instruction can attain
the data needed at least one cycle ahead, that is, data is pre-fetched. By renam-
ing registers and using registers in turns, dependency among instructions can be
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Algorithm 2 Using data pre-fetching in loop unrolling

1: rAO0=x pA0; rBO=x pBO;
rAl=x pAl; rBl=x pBl;
rA2=x pA2; rB2=x pB2;
rA3=x pA3; rB3=x pB3;

2: for(k=i+1; k < M-1; k+=2)
{
ra0=pAO0[incA]; rC00-=rA0* rB0; rC10-=rAlx rB0O; pAO+= incA2;
rbO=pB0[incB]; rC01-=rA0* rB1l; rCll-=rAlx rBl; pB0+= incB2;
ral=pAlfincA]; rC20-=rA2x rB0; rC21-=rA2x rBl; pAl+= incA2;
rbl=pBl[incB]; rC02-=rA0* rB2; rCl12-=rAlxrB2; pBl+= incB2;
ra2=pA2[incA]; rC22-=rA2x rB2; rC32-=rA3xrB2; pA2+= incA2;
rb2=pB2[incB]|; rC30-=rA3* rB0; rC31-=rA3«rBl; pB2+= incB2;
ra3=pA3[incA]; rC03-=rA0* rB3; rC13-=rAlxrB3; pA3+= incA2;
rb3=pB3[incB]; 1rC23-=rA2% rB3; rC33-=rA3%rB3; pB3+= incB2;

rAO=x pA0O; rC00 -= ra0* rb0; rC10 -= raO# rbl;
rBO=x pB0; rC20 -= ra0* rb2; rC30 -= ra0* rb3;
rAl=x pAl; rCOl -=ral* rb0; rC1l -= ralx rbl;
rBl=x* pB1; rC21 -=ral* rb2; rC31 -= ralx rb3;
rA2=x pA2; rC02-=ra2* rb0; rC12-= ra2x rbl;
rB2=x pB2; rC22 -=ra2* rb2; rC32 -= ra2x rb3;

decreased. For example, as algorithm 2 indicates, we employ rAQ, rAl, rA2, rA3
and ra0, ral, ra2, ra3 by rotation. The following two lines states that rA0 and
ra0 fetch data in turns and they are independent of each other, so that data is
successfully pre-fetched.

ra0 = pAO[incA]; rC00— = r A0xr BO; pA0+ = incA2;
ra0 * rb0

rAQ = xpAQ; rC00— =

5 Experimental Results and Discussion

Our experiment is implemented through the combination of repeatedly testing

using one case and testing in circles using a group of cases. Specifically, ev-

ery function is executed repeatedly under various data scale, until the average

speed is calculated as the final result. Here we use Mflops(million floating-point

operations per second) as the technical criteria. For convenience, parameters

"M”, ”N”, ”LDA” and "LDB” of function TRSM is replaced by the same value

"length”. Configurations of compilers include set open multiply-substract in-

structions (-DAdd_DStringSunStyle), Linux operating system(-DATL_OS_Linux),
not saving frame pointer at function call (-forit-frame-pointer), optimization level

(-03), and unrolling all the loops(-funroll-all-loops).
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5.1

The outcome of optimization on dTRSM will be discussed from two aspects:
influences placed on dTRSM by each techniques under small data scale and
comprehensive effect by all the techniques under large data scale.

Because implementation of functions is independently done by TRSM under
small data scale, the effect of optimization is reflected directly by performance of
TRSM. Fig. 2 shows the performance influenced by each technique under small

data scale.

Optimization Results of dTRSM

Preliminary Optimization Results of dTRSN
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In Fig. 2, Test1 stands for invoking dTRSM directly; Test2 stands for using
loop unrolling technique; Test3 for loop unrolling and data pre-fetching; Test4 for
loop unrolling, data pre-fetching, and division replced by multiplication. Test2
outperforms Testl by almost 3 times, which is close to the theoretical value;
from Test2 and Test3, it is clear that rate is doubled by instruction scheduling
technique and data pre-fetching technique on the basis of loop unrolling; from
Test3 and Test4, it is not hard to observe that executing time is shortened by
replacing division with multiplication instruction. Thus, loop unrolling, data-
prefetching, instruction scheduling, and replacing division with multiplication
techniques can all accelerate the speed of execution. After Test4 optimization,
the speed of dTRSM can be 1723.45Mflops when the threshold of blocking size
is 60-it outperforms the algorithm 1 by a factor of 7.37 and outperforms ATLAS
by a factor of 1.5.

When dealing with large-scaled data, the computation of TRSM takes up a
rather low ratio. Thus, we only discuss a comprehensive result of optimization-
opt in Fig.3 represents the result. The speed of dTRSM in the steady status is
1300Mflops, which outperforms the former function by 60%.

5.2 Performance of Other Optimized Functions in TRSM

In terms of double precision complex type function zTRSM, we acquire the
proper optimizing techniques through testing how those techniques works under
small scaled data. The function does not achieve a high performance-the speed
is only 573.56 Mflops when threshold of block size is 24, when loop unrolling and
replacing division by multiplication techniques are employed. So we unroll the
core instruction Mmls (multiply-subtract instruction for complex numbers) to
respectively compute the real part and the imaginary part, and then instruc-
tion scheduling and data pre-fetching is applied. Finally, the rate has reached
1211.57Mflops, which outperforms ATLAS by 200%.

As for single float type function sTRSM, the techniques used are the same
as that of dTRSM except the threshold of block size is set as 72. The optimizing
methods for cTRSM are similar as that of zTRSM except the threshold of block
size is set as 36. Fig. 3 presents the performance of optimized sTRSM, dTRSM
and zTRSM.

In Fig. 4, s_atlas, z_atlas, c_atlas individually represent performance of sSTRSM,
zTRSM, ¢cTRSM optimized by ATLAS, and s_opt, z_opt, c_opt stands for per-
formance of sSTRSM, zTRSM, ¢TRSM optimized by us. It is obvious in Fig. 3
that the curves titled s_opt, z_opt, c_opt are relatively smooth, and the final
rate of sSTRSM, zTRSM, ¢cTRSM are respectively 1800, 1400, 1800Mflops, which
outperforms that of ATLAS at least 70%.

6 Conclusion and Further Research

Every specific high performance computer has the necessity to be equipped with
a specifically optimized BLAS, in order to have the hardware resources fully
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utilized. In this paper, we have optimized triangular matrix functions from an
algorithmic level, based on the optimization of GEMM function and the Loong-
son 2F architecture. Here we have also employed optimizing techniques such as
loop unrolling, data pre-fetching and instruction scheduling to elevate the perfor-
mance of functions. The rate of double float functions dTRSM and zTRSM has
reached 1300Mflops, and the rate of single float functions sTRSM and ¢cTRSM
has reached 1800Mflops. In comparison with ATLAS, our optimization has ele-
vated by 50-60%, even 100-200% when dealing with small-scaled data.

At present, our research is concentrated in optimization of BLAS in single
core environment. In the future, we will start a new program researching the
optimization of BLAS in parallelism when the multi-core CPU, Loongson 3, is
put into use.
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