
HAL Id: hal-01054629
https://inria.hal.science/hal-01054629

Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Session Type Guided Distributed Interaction
K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, Patrick Eugster

To cite this version:
K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, Patrick Eugster. Efficient Session Type
Guided Distributed Interaction. 12th International Conference on Coordination Models and Lan-
guages (COORDINATION) Held as part of International Federated Conference on Distributed Com-
puting Techniques (DisCoTec), Jun 2010, Amsterdam, Netherlands. pp.152-167, �10.1007/978-3-642-
13414-2_11�. �hal-01054629�

https://inria.hal.science/hal-01054629
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient Session Type Guided Distributed

Interaction

KC Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek and Patrick Eugster

Purdue University, West Lafayette IN, USA
{chandras,knagara,lziarek,peugster}@cs.purdue.edu

Abstract. Recently, there has been much interest in multi-party ses-
sion types (MPSTs) as a means of rigorously specifying protocols for
interaction among multiple distributed participants. By capturing dis-
tributed interaction as series of typed interactions, MPSTs allow for the
static verification of compliance of corresponding distributed object pro-
grams. We observe that explicit control flow information manifested by
MPST opens intriguing avenues also for performance enhancements. In
this paper, we present a session type assisted performance enhancement
framework for distributed object interaction in Java. Experimental eval-
uation within our distributed runtime infrastructure illustrates the costs
and benefits of our composable enhancement strategies.

1 Introduction

Interaction between software components is one of the fundamental concerns
of software development, and yet precisely describing the interactions between
components remains a difficult endeavor. Real-world distributed systems involve
multiple remote components, independently communicating messages and coor-
dinating activities among one another. Web services, e-commerce applications,
and protocols like SMTP, POP3, are just some examples for structured protocols
involving multiple interacting peers. Such interactions are usually implemented
using message transfer over reliable socket communication. Unfortunately, such
low level communication neither offers type safety on messages nor the ability to
specify and statically type check communication protocols, making development
of distributed software difficult.

Session types have been proposed as a way to precisely capture complex in-
teractions between peers [14]. They describe interaction protocols by specifying
the type of messages exchanged between the participants. Implicit control flow
information such as branching and loops can also be enumerated. Session types
were originally envisioned for languages closely based on process calculi, and ini-
tially used for specifying bi-party interaction. They have since been extended to
multi-party session types (MPSTs) [10]. Explicit control flow information man-
ifest in MPSTs, opens intriguing avenues for global performance enhancement
of distributed multi-party interaction. In this paper, we present a session type
assisted protocol enhancement framework for optimizing distributed object in-
teraction in Java. To illustrate our approach, consider the example in Fig. 1,

which describes a simple protocol implemented in Java RMI, to invite co-workers
obtained from a social networking database to a party.

1 void inviteCoworkers() {
2 Event evt = me.createEvent("Party", date);
3 Employer myEmp = me.getEmployer();
4 Location myLoc = me.getLocation();
5 for (Member mbr : me.getFriends()) {
6 if (myEmp.equals(mbr.getEmployer()) &&
7 myLoc.equals(mbr.getLocation()))
8 mailSvr.sendMail(mbr.getEmailAddress(), evt);
9 }

10 }

Fig. 1: Client implementation to invite co-workers to a party

Abstractly, the client iterates through a list of friends sending an email invi-
tation to those who are employed by the same employer and work at the same
location. In this example, me, mbr and mailSvr are remote objects, therefore, all
of the method invocations on these objects are done remotely requiring a net-
work round trip. In a high latency network the client, unfortunately, would spend
most of its time stalled on responses from the server. In this manner, excessive
remote method invocations quickly lead to serious scalability and performance
concerns.

A standard technique to overcome the network delays is to structure code
based on data transfer objects (DTOs) or remote facade patterns [6]. Such pat-
terns advocate that new remote interfaces be defined in the Member class specif-
ically to invite co-workers to an event. Although such a specialized definition
can reduce the number of remote method invocations (RMI), it is neither com-
posable nor extensible, as new features would require further specialization. To
make matters worse, specialization is not even possible if an RMI call depends
on local operations. Previous work has looked at alleviating some of these costs
through various techniques, but are limited to bi-party interaction, semantically
restricted to part of the protocol [12], or require code to be written in a style
amenable to enhancement [13].

Guided by the MPST information, we introduce combined type and com-
piler driven performance enhancements. Our approach extends the previously de-
scribed bi-party enhancements to multiple participants, and, more importantly,
seamlessly composes enhancements techniques.

Fig. 2 illustrates the abstract description of the invitation protocol for the
example described in Fig. 1. The programmer defines a new global session
type [10] through the use of a protocol block. This block explicitly defines
the participants of the protocol, the types of messages exchanged between the
participants, and the order in which the messages are exchanged. Messages are
sent asynchronously between the participants. We use, client: begin to ex-
press that the client initiates the protocol. Each message in the protocol has
a syntax A->B: <T>, defining that the participant A sends to participant B a
message whose type is T. For each friend on the friends list, the infoSvr sends
the member information to the client. This is represented by a recursive type,

1 protocol invitation {
2 participants client, infoSvr, mailSvr;
3 client: begin;
4 infoSvr->client: <Employer>;
5 infoSvr->client: <Location>;
6 infoSvr:
7 [infoSvr->client: <Member>;
8 infoSvr->client: <Employer>;
9 infoSvr->client: <Location>;

10 infoSvr->client: <EmailID>;
11 client:
12 {INVITE: client->mailSvr: <EmailID, Event>,
13 NOOP: }
14]*
15 }

Fig. 2: Global session type of invitation example

infoSvr:[...]* (see lines 6 to 14). infoSvr is the loop guard in the recursive
type since it decides whether the next iteration of the loop is executed. Based
on the location and employer, the client chooses to send an email invitation (see
lines 11 to 13). Notice that the protocol is abstract in both the event and who
is invited. The actual implementation of the protocol is specified by the client.
The participants can be statically verified for conformance.

It is evident from the session type of the invitation protocol that the first two
messages from the infoSvr: Employer and Location, can be batched together
as a single message. Similarly, the first four messages in the recursive type are
batched together. However, is it possible to batch multiple iterations of the
recursive type together? This is less clear. First, we must assert that the INVITE
message sent by the client to the mailSvr does not influence the next iteration
of the infoSvr. Since MPSTs explicitly defines all remote interactions, we can
statically assert that there is no causal dependence between message sent to
mailSvr and subsequent iteration decisions of infoSvr. With this knowledge,
the code can be rewritten such that all of the friend’s information is sent to the
client in one batch. The client sends the mailSvr a batch of email addresses of
friends who are to be invited to the party. Thus the entire protocol is performed
in two batched network calls, while still adhering to the protocol specification.

In this paper, we also study the interaction, composability, and performance
of enhancement strategies for interacting distributed objects. To our knowledge
this is the first work that utilizes session types for global enhancement of inter-
action. In summary, the main contributions of the paper include:

– A Java extension that integrates MPSTs (Sec. 2).

– A detailed study of performance enhancements in the presence of a global
interaction protocol (Sec. 3).

– An empirical analysis of optimization strategies in a prototype framework
(Sec. 4).

2 Programming with Session Types

Global session types [10] in a multi-party session provide a universal view of
the protocol involving all of the participants. For every properly defined session
type, there exists a local view of the global session type, called the local session

type. A projection from a global session type to such a local session type is well-
defined. Local session types for the invitation protocol projected from the global
session types in Fig. 2 are shown below. The local types are, indeed, very similar
to global types except that only those actions which influence the participant
appear in the participant’s local session type. Message sends and receives are
explicit in the local session type as is the order in which they are performed.

In our system, the programmer defines the global session types, and the
coresponding local session types are automatically generated. The programmer
implements each participant code such that they conform to their corresponding
local types.

protocol invitation@infoSvr {
client: ?begin;
client: !<Employer>;
client: !<Location>;
![client: !<Member>;
client: !<Employer>;
client: !<Location>;
client: !<EmailAddr>]* }

protocol invitation@mailSvr {
client: ?begin;
infoSvr:
?[client:
?{INVITE: client: ?<EmailAddr,

Event>,
NOOP: }]* }

protocol invitation@client {
!begin;
infoSvr: ?<Employer>;
infoSvr: ?<Location>;
infoSvr:
?[infoSvr: ?<Member>;

infoSvr: ?<Employer>;
infoSvr: ?<Location>;
!{INVITE: mailSvr:!<EmailAddr,

Event>,
NOOP: }]* }

Fig. 3: Local session types for client, infoSvr and mailSvr

The local type for the infoSvr is given in protocol invitation@infoSvr.
client:?begin indicates that this protocol is initiated by the client. Message
sends are represented by A: !<T>, defining that the local participant sends to
participant A a message of type T. Conversely, B: ?<T> shows that the local
participant waits to receive a message of type T from participant B. The syntax
![...]* represents that this participant controls the loop iteration while all the
participants with A: ?[...]* execute the next iteration of the loop only if A
chooses to execute the next iteration. Similarly, syntax !{L1:T1,...} states
that this participant chooses one of the set of labels {L1,...} to execute and
other participants with A: ?{L1:T1’,...} also execute the same label.

The protocol keyword is used to define the global session type, which is reg-
istered with the session registry (similar to an RMI registry). After the protocol
has been registered, a host can register as a participant by creating a session

socket. A session socket allows a host to act as a participant and communi-

cate with other participants as dictated by the protocol. Communications on
the session socket are type checked using the corresponding local type to ensure
that the participant adheres to the protocol. The programmer can create a new
protocol instance using the instantiate command, with a string representing
the instance name. This name must be unique for each instance of the protocol
in a session registry. Thus multiple instances of the same protocol can execute
concurrently.

SessionRegistry.instantiate(invitation, "i");

The session registry prepares session sockets for each participant. A host
wishing to participate in the invitation protocol as a client would request the
session registry as shown below. Here we create a new session socket ss reflecting
the type invitation@client for the invitation protocol for the instance i:

SessionSocket ss=SessionRegistry.lookup(invitation,"i","client");

Once a session socket has been created, the programmer uses a session API

to implement the actual communication and control structures. We adopt a Java
syntax for session API similar to what has been described in SessionJava [11].
Fig 4 shows the mapping between protocol description syntax and session API.
We extend the send and receive syntax to explicitly denote the participant who
performs the matching communication. Previous work on multi-party session
types explicitly creates channels for communication between the peers [10]. We
assume that each participant has a unique channel to every other participant.
We also assume that the participants are single-threaded. This ensures that all
communication over channels is linear.

!begin
A: ?begin
A: !<T>
A: ?<T>
!{L:T, ...}
A: ?{L:T, ...}
![T]*
A: ?[T]*

ss.begin()
ss.awaitBegin()
ss.send(A, obj)
ss.receive(A)
ss.outbranch(L){}
ss.inbranch(L){}
ss.outwhile(bool_expr){}
ss.inwhile(A){}

//initiates protocol
//waits for protocol begin
//obj is of type T
//received obj is of type T
//body of case L of type T
//body of case L of type T
//body of outwhile of type T
//body of inwhile of type T

Fig. 4: Protocol description syntax and their mapping to session API

Using the session API described above, the client described in Fig. 1 would
be expressed as outlined in Fig. 5. As per the protocol description, only one
participant initiates the protocol by invoking begin, while all other participants
wait for this notification by invoking awaitBegin. In this example, the client
initiates the protocol while the infoSvr and mailSvr wait for the request from
the client. The inwhile loop runs an iteration if the corresponding outwhile

loop at the infoSvr is chosen to run an iteration. The label choice made at
the outbranch is communicated to the peers who wait on the corresponding
inbranch. The peers then execute the code under the chosen label.

In order to type check the participants for protocol conformance, we assume
that the protocol description is available at every participant during compilation.

1 void inviteCoworkers() {
2 SessionSocket ss =
3 SessionRegistry.lookup("invitation", "client");
4 ss.begin();
5 Employer myEmp = ss.receive("infoSvr");
6 Location myLoc = ss.receive("infoSvr");
7 Event evt = me.createEvent("Movie", date);
8 ss.inwhile("server") {
9 Member m = ss.receive("infoSvr");

10 if (myEmp.equals(ss.receive("infoSvr")) &&
11 myLoc.equals(ss.receive("infoSvr"))) {
12 EmailID eid = ss.receive("infoSvr");
13 ss.outbranch(INVITE) {
14 ss.send("mailSvr", eid); ss.send("mailSvr", evt);}}
15 else {ss.outbranch(PASS) {}}
16 }}

Fig. 5: Client implementation of invitation protocol using session API

Exceptions might be raised while instantiating protocols from the registry if the
instance name is not unique or if a program tries to create multiple session sockets
for the same participant. Exceptions are also raised if any of the participants
of the protocol fail. A node failure results in the termination of the protocol,
though we could envision a system where a participant replica could be assigned
the task of continuing the protocol.

3 Performance Enhancement Strategies

We classify the enhancements into two categories based on the information re-
quired to perform them – (1) type driven enhancements and (2) compiler driven
enhancement (see Fig. 6). Type driven enhancements are performed by the type

inspector, based only on the information provided by the session types. Our com-
piler performs static analysis on the remote interaction code in combination with

session types. Such enhancements are classified as compiler driven enhancements.

3.1 Type Driven Enhancements

Batching sends. Multiple consecutive sends to the same participant are batched
together, provided there are no intervening receives by the sender. For example,
in the session type shown in Fig. 2, the two sends at the beginning are batched
together by the type inspector. These batched sends are represented in the op-
timized session type as:

server->client: <Employer, Location>

When the runtime system encounters the first message send of type Employer,
instead of eagerly pushing the message out, it waits for the second message of
type Location. A batch is created with both of these messages and sent to
the server. The runtime at the server decouples the messages and passes them

individually to the program. Batching, therefore, remains transparent to the pro-
gram. The type inspector also batches sends in a recursive type if the participant
acting as the loop guard does not perform any receives in the body of the loop.

server: [server->client1: <String>;
client1->client2: <int>]*

is optimized to

server->client1: <String>*
client1->client2: <int>*

where all of the messages from server to client1 and from client1 to client2
are sent in individual batches. Notice that the optimized session type does not
have a loop. The sends occurring in a loop pattern are often resolved during
batch data update, when objects belonging to a collection are updated. If the
loop guard performs a receive in the body of the loop, sends in the loop cannot
be batched since the decision to run the next iteration of the loop might depend
on the value of the message received. Consider

client: [server->client: <bool>]*

where a possible client implementation could be

ss.outwhile(ss.receive("server"));

Here, sends should not be batched as every receive depends on the previously
received value.

Choice lifting. Choice lifting is an enhancement by which label selection in a
choice is made as early as possible so that more opportunities for enhancements
are exposed. Consider the following snippet of protocol description:

B->A: <bool>;
A: [A->B: <int>; A: {L1: A->B: <String>, L2: A->B: <bool>}]*

The number of messages sent in the above protocol is 1+2∗num iterations.
Participant A is the guard in both the recursive type and the choice. Since the
boolean conditional at the choice can only depend on the last received message
at A (which is the receive of a bool at line 1), the choice can be lifted as far as
the most recent message reception. The choice can be lifted out of the recursive
type since the label choice at A is made independent of the looping decision made
at B. The result of the enhancement is

B->A:<bool>;
A: {L1: A: [A->B: <int, String>]*, L2: A: [A->B: <int, bool>]*}

We can further optimize the above type by batching the loop sends as de-
scribed earlier. The optimized session type is given below. Notice that the opti-
mized session type needs to perform just 2 message sends; a bool from B to A

and a batch from A to B.

B->A:<bool>;
A: {L1: A->B: <int,String>*, L2: A->B: <int,bool>*}

3.2 Compiler Driven Enhancements

Data flow analysis. In client/server systems, often we encounter a pattern
where a client requests items in a collection and based on some property of the
item, chooses to perform an action on a subset of the items in the collection.
This is analogous to the update statement of SQL where the where clause
describes the subset to be updated. The example described in Fig. 2 falls into
this category where, based on the employer and location of the member, the
client chooses to invite the member to the party. The following snippet shows
the optimized local type at the server.

1 protocol invitation@server {
2 client: ?begin;
3 client: !<Employer, Location>;
4 ![client: !<Member, Employer, Location>;
5 client: ?{INVITE: client: ?<Event>,
6 PASS: }]*
7 }

The server is the loop guard in this example, deciding whether to execute
the next iteration of the loop. At every iteration, the server might receive a
value of type Event from the client (line 5). Session types do not tell us whether
such a received value influences the boolean conditional at the loop entry or the
sends in the loop. Session types gives us the control flow information, but no
data flow information. Hence, we implement a flow sensitive data flow analysis
in the compiler which determines whether the loop conditional or the sends are
dependent on any of the receives in the loop body. This analysis is similar to the
one described in remote batch invocation [12]. Session type information allows
us to precisely determine the scope of the analysis. In the above example, the
data flow analysis shows that neither the loop conditional nor the sends are
dependent on the receives. Hence, we can optimize the session type as below, in
which all of the sends are batched, followed by a second batch with all receives.

1 protocol invitation@server {
2 client: ?begin;
3 client: !<Employer, Location>;
4 client: !<Member, Employer, Location>*;
5 client: ?{INVITE: client: ?<Event>, PASS: }*;
6 }

Exporting continuations. Let us reexamine the example in Fig. 1. The client
just examines the location and employer of the member profiles — all of which
are located on the server — to decide on invitations. Importantly, our flow
sensitive data flow analysis shows that none of the client operations depend on
the local state of the client, except for the date and the type of event, which is
created before any of the remote operations. In such a scenario, we execute entire
client code on the server. However, this enhancement requires the corresponding
fragment of the client’s code to be available at the server. Such exportable pieces

of code are called first-class continuations. Java does not offer language support
for capturing, passing, or utilizing such continuations.

Luckily, full-fledged continuations are not necessary. Instead, we leverage
compiler support to statically move the continuation code to the destination. We
assume that during compilation process, the whole program code is available.
Thus, when our compiler determines that the invitation protocol at the client
could be executed in its entirety at the server, it compiles the server with the
readily available client code. Since our enhancements are performed statically,
we are able to compile the remote code into the local code.

By exporting code to where the data is instead of the other way around, we
can make immense savings on the data transferred over the network. This is es-
pecially beneficial for clients connected to a slow network. However, continuation
exporting is impossible if the code to be exported depends on local state. Con-
sider an extension to the invitation example of Fig. 1, where along with checking
if a member works for the same employer and location of the person hosting the
party, we also require user confirmation before sending out each invitation. The
user intervention required at each loop iteration makes continuation exporting
impossible. But batching as discussed earlier still applies since the computation
is performed at the client. Continuation exporting can also hamper performance,
since the computation is offloaded to a remote node. For a compute-intensive
task, offloading all the computation might overload the server and thus bring
down the overall performance. Our experimental results show that continuation
exporting benefits thin clients and fat servers (see Sec. 4.2).

Chaining. Chaining is a technique to reduce the number of cross site RMIs.
Chaining can significantly reduce end-to-end latency in a setting where the par-
ticipants are Geo-distributed [13]. Consider a user shopping for music online over
a 3G network. The user requests an album and buys songs with ratings higher
than 8 from that album. The user then transfers the songs to his iMac. Assume
that the desktop machine is connected to the Internet. The following snippet
shows the pseudo code for the phone written in an RMI style.

1 void onlineShopping() {
2 Album a = Vendor.album ("Electric Ladyland");
3 for (SongInfo si : a) {
4 if (si.rating() > 8) {
5 Song s = si.buy();
6 iMac.put(s);
7 }}}

The corresponding session type for this protocol is given below.

1 protocol onlineShopping {
2 participants vendor, phone, iMac;
3 phone: begin;
4 phone->vendor: <String>;
5 vendor->phone: <Album>;
6 vendor:

7 [vendor->phone: <SongInfo>;
8 vendor->phone: <int>;
9 phone: {BUY: vendor->phone: <Song>;

10 phone->iMac: <Song>;
11 PASS: }]*
12 }

Our type inspector performs batching sends enhancement on the loop with
vendor as the loop guard, thereby sending all the SongInfo in a batch to the
phone. Based on the rating, the phone downloads the song and puts it on an
iMac desktop machine. Observe that songs are transferred to the iMac through
the phone connected to a high latency, low bandwidth network. Chaining allows
the songs to be directly transferred to iMac. Let us observe the local type of
onlineShopping protocol at the phone. The following code snippet shows the
local type under BUY label of the choice.

!{BUY: vendor: ?<Song>; iMac: !<Song>, PASS: }

The type inspector observes that the phone performs a reception of a mes-
sage of type Song from the vendor before the sending of a Song. When such a
potential forwarding pattern is encountered, the compiler is informed to inspect
the intermediate code block to find if the intermediate computation depends on
local state. If the intermediate computation is stateless, we export the continu-
ation to the original sender, so that the data can directly be forwarded to the
destination. In this case, the phone chooses to forward the song based on the
rating received from the server. Hence, we export this continuation from phone
to vendor, which makes the forwarding decisions and forwards the song to the
desktop machine in one batch. Notice that instead of two transfers of the songs
on a slow 3G network, we transfer the songs once over high-speed Internet.

One of the key advantages of our system is the ability to seamlessly combine
various enhancement strategies. Notice that, the example just described effec-
tively combines batching sends (to send songs in one batch), chaining (to skip
the phone in the transfer) and continuation exporting (the logic to only choose
the song with rating of at least 8).

3.3 System Design

Our system architecture is depicted in Fig. 6 – the compiler is a combination of a
type inspector and Java compiler, whereas the runtime is a veneer on top of JVM.
The compiler is utilized to analyze the program, discover enhancement potential,
pre-generate code for enhancements, and provide an object model amenable
to marshaling and serialization. Thus, the compiler generates specialized code
based on our optimizations and decisions to utilize the optimizations are made
at runtime.

!"#

$%&'()*+&',-./
0'++1.*
2.3&14'/

5&-1316'7
+'++1.*(1*8.

0-1*9
:;*-13'

5&-1316'7
+'++1.*(1*8.

<%-',.7'
0'++1.*(
$%&'

!=>=(
+.;/,'(
,.7'

!"#$%"%&'(

0-1*9(2.3&14'/

Fig. 6: System design with enhancement strategies.

4 Evaluation

We evaluate the performance gains of our optimizations from experiments that
characterize typical scenarios in distributed systems. The experiments were con-
ducted on Emulab [16] which emulates network bandwidth and latency. We used
a two node setup for the batching experiments with 1Mbps link bandwidth and
RTT values of 40, 80 and 150ms, inspired from ping latencies seen on the Inter-
net. For the chaining experiments, we used 3 nodes, one of which was assigned to
be the client machine with low bandwidth and high latency to the servers. The
servers have Gigabit links with LAN latency interconnects. Sun Java 1.6 was
used for running all our client and server Java programs. The Emulab machines
were 850MHz Pentium 3 with 512MB RAM.

4.1 Batching

We study the benefits of batching sends and receives through an experiment
conducted using a client-server scenario with 2 nodes. We define an operation
where the client sends a cryptographic signature to the server, which verifies the
signature using the public key and returns a boolean indicating success, following
the session type:

client:
[client->server: <Signature>;
server->client: <boolean>]*

This is implemented both using a basic send and receive, and in our frame-
work. We vary the signature size, the number of successive calls (which can be
batched) and network RTT and measure the time required to complete the entire
operation. As expected, the results showed that batching improves performance
linearly with batch size. Batching performed better with increasing latency as
the number of network round trips were reduced.

4.2 Exporting Continuation

We define two remote operations fetchStockPrice and tradeStock, which are
used to fetch the current price of a stock, and trade a given amount of stock with
the broker respectively. The client first obtains the price of the stock, performs

algorithmic trading computations on the prices and intimates the broker with
the decision to buy or sell. This essentially depicts a situation where we have
two remote interactions surrounding a fairly compute intensive local computa-
tion (trading). This structure of communication is commonly found in many
distributed systems applications. For our experiments, we compare the basic ap-
proach with exporting continuation of trading. We export the trade computation
to the remote server and batch the whole block as a single remote invocation.
We ran these experiments using a server program executing on a 3GHz dual-core
machine with 4GB RAM. The clients were executed on different machines with
identical configuration.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 64

T
hr

ou
gh

pu
t p

er
 c

lie
nt

 (
re

qu
es

ts
/s

ec
)

Number of clients

Local exec.
Exporting cont.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

F
ra

ct
io

n
of

 r
eq

ue
st

s
sa

tis
fie

d

Number of clients

Local exec.
Exporting cont.

Fig. 7: Client request throughput Fig. 8: Server request throughput

Client throughput. Fig. 7 shows the throughput of requests serviced per client
as we increase the number of concurrent clients. The client requests are throttled
at 34 requests/second. For the basic local execution of the trade on the client,
the throughput achieved is independent of the number of clients. This is shown
as a horizontal line with at 6 requests/sec. In this case, the critical path of
computation is executed locally at the client, and hence the throughput is upper
bounded by the client resources. Exporting continuation is represented by the
higher throughput curve which is about 6 times larger, attributed to a powerful
server. This throughput gain is understood by the ratio of computational power
of the server and the client. As we increase the number of simultaneous clients,
however, we see that the throughput starts dropping exponentially after about
6 clients. Note that the abscissa is in logarithmic scale.

Server throughput. Fig. 8 shows the fraction of requests satisfied. Local ex-
ecution achieves a ratio of 1 shown by the straight line, because the server is
under-utilized by just the remote interaction and is hence able to serve all re-
quests received. With exported continuations, the request processing rate starts
at 1 when the server is loaded on a small number of clients. As the number of
clients increases, the server resources saturate and the requests are not handled
at the same rate as they are received and the processing rate drops exponentially.
It is important to note that the server is still able to provide higher throughput
than the clients themselves, which is evident from the client throughput graph.

Server CPU utilization. Fig. 9 shows the CPU usage at the server during
this experiment. About 6 parallel client requests and associated computation
saturates one of the cores at 50% utilization. The remote operation is not in-
herently parallel and does not scale linearly on the two cores. The performance
benefits beyond this point are much smaller. When the number of clients is about
50, the server CPU completely saturates and the per-client throughput equals
that achieved by client’s computational resources. At this point, it ceases to
be worthwhile to export computation to the overloaded server for performance.
This region can be estimated by comparing the performance difference between
the client and the server.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

C
P

U
 u

til
iz

at
io

n
(%

)

Number of clients

Local exec.
Exporting cont.

 0

 5000

 10000

 15000

 20000

 0.1 1 10 100 1000

T
im

e
(m

se
c)

Object size (KB)

Basic 80ms
Chaining 80ms

Basic 150ms
Chaining 150ms

Fig. 9: Server CPU utilization Fig. 10: Time for basic vs. chaining

Batching reduces the number of separate remote communication to one and
is therefore affected only by a single RTT. Increasing the RTT would reduce the
throughput of both approaches as a result of increased client latency. However,
by exporting the continuation, increase in client latency is lesser and so is the
decrease in throughput. As shown before, the single batched call would score
ahead in large RTT settings with both network and computation benefits.

4.3 Chaining

We implemented the example of purchasing songs from the phone discussed in
Sec. 3.2, where chaining is exploited to reduce communication involving the slow
phone. Fig. 10 shows the comparing chained and non-chained versions. We set
the network up such that the phone has a 1Mbps high latency link to the server
and the PC, and the server is connected to the PC on a 100Mbps link with
2ms latency. We vary the size of the object being chained from 0.1KB to 1MB
and experiment with RTT values of 80 and 150ms. The upper two curves in the
graph show the basic approach used to transfer the object through the phone. In
this case, the speed of transfer is limited by the link capacity of the phone’s 3G
network and hence we see an exponential increase in time as the size increases.
However, chaining the calls has a drastic improvement in time by using the high
bandwidth link to transfer the song.

5 Related Work

Session types [14] allow precise specification of typed distributed interaction.
Early session types described interaction between two parties, which has then
been extended to multi-party interaction by Honda et al. [10] and Bonelli et
al. [3]. Honda et al. conduct a linearity analysis and prove progress of MPSTs.
Linearity analysis in our system is simplified by the fact that each participant
has a unique statically defined channel to every other participant, and channels
are not first-class citizens. The work of Bejleri and Yoshida [2] extends that of
Honda et al. [10] for synchronous communication specification among multiple
interacting peers. We choose asynchronous over synchronous communication as
the resulting looser coupling facilitates more aggressive optimizations.

Session types have have been applied to functional(e.g. [7])), component-
based systems (e.g. [15]), object-oriented (e.g. [11]), and operating system ser-
vices (e.g. [5]). Asynchronous session types for have been studied for Java [4].
Bi-party session types have been implemented in Java [11]. Our protocol descrip-
tion syntax is inspired from the syntax described in that work. Our framework
supports multi-party protocol specification and interaction. We have also imple-
mented a session registry to facilitate initiation of multi-party sessions. Gay et
al. [8] describe how to marry session types with classes, allowing for participants
to be implemented in a modular fashion. This work could be used to extend our
framework.

Yeung and Kelly [17] propose runtime batching on Java RMI by performing
static analysis on bytecode to determine batches. In these systems, ordering of
remote and local operations influences the effectiveness of batching. Any oper-
ation performed on the result of remote method calls forces the method call to
be flushed. Remote batch invocation (RBI) [12] performs batching on a block of
code marked by the programmer. RBI reorders operations such that all remote
operations are performed after the local operations and the code is exported to
the server. RBI would not be able to batch a loop which requires user input
on every iteration. RBI is also limited to batching specialized control structures
and cannot handle arbitrary computation. Our system allows global optimization
decisions to be made, and can batch across multiple participants.

First-class continuations [1] are a general idea to allow arbitrary computation
to be captured and sent as arguments to other functions. In a distributed setting,
exporting continuations are advantageous where the cost of moving data is much
larger than the cost of moving computation to the data. RPC chains [13] reduce
cross site remote procedure call overheads by exporting the callback functions
to the remote host. This system requires that the user writes code in a non-
intuitive continuation passing (CP) style [1]. Also, the callback functions cannot
manipulate local state. Our system chains arbitrary code segments written in
imperative style. Though we require all code to be available during compilation,
our system can support separate compilation of participants, if the code were
provided in CP style.

6 Conclusions

This paper is to the best of our knowledge the first to attempt to exploit session
types for performance enhancements. We have shown that combining session
types with information gathered from static analysis can yield performance im-
provement for distributed object interactions. We demonstrated the benefits of
our approach; in particular, we have shown that our continuation exportation
scheme benefits applications with thin clients and fat servers.

Acknowledgements. We are very grateful to A. Ibrahim, Y. Jiao, E. Tilevich,
and W. Cook for sharing insights and the source code for RBI [12] with us.

References

1. Appel, A.W.: Compiling with Continuations. Cambridge University Press. (2007)
2. Bejleri, A., Yoshida, N.: Synchronous Multiparty Session Types. Electron. Notes

Theor. Comput. Sci. 241, 3–33 (2009)
3. Bonelli, E., Compagnoni, A.: Multisession Session Types for a Distributed Calculus.

In: In TGC07. pp. 38–57.
4. Dezani-ciancaglini, M., Yoshida, N.: Asynchronous Session Types and Progress for

Object-oriented Languages. In: In FMOODS’07. pp. 1–31.
5. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R.,

Levi, S.: Language Support for Fast and Reliable Message-based Communication
in Singularity OS. In: EuroSys ’06. pp. 177–190.

6. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley.
(2002)

7. Gay, S., Vasconcelos, V., Ravara, A.: Session Types for Inter-process Communica-
tion. Tech. rep., University of Glasgow (2003)

8. Gay, S., Vasconcelos, V., Ravara, A., Gesbert, N., Caldeira, A.: Modular Session
Types for Distributed Object-oriented Programming. In: POPL 2010.

9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: ESOP’98. pp, 122–138

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types.
In: POPL 2008. pp. 273–284.

11. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in Java.
In: ECOOP 2008. pp. 516–541.

12. Ibrahim, A., Jiao, Y., Tilevich, E., Cook, W.R.: Remote Batch Invocation for
Compositional Object Services. In: ECOOP 2009. pp. 595–617.

13. Song, Y.J., Aguilera, M.K., Kotla, R., Malkhi, D.: Rpc Chains: Efficient Client-
Server Communication in Geodistributed Systems. In: NSDI 2009. pp. 17–30.

14. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing
System. In: In PARLE’94. pp. 398–413.

15. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of Software Com-
ponents using Session Types. Fundam. Inf. 73(4), 583–598 (2006)

16. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hi-
bler, M., Barb, C., Joglekar, A.: An Integrated Experimental Environment for
Distributed Systems and Networks. In: NSDI 2002. pp. 255–270.

17. Yeung, K.C., Kelly, P.H.J.: Optimising Java RMI Programs by Communication
Restructuring. In: Middleware ’03. pp. 324–343.

