
HAL Id: hal-01054622
https://inria.hal.science/hal-01054622

Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Hybrid Visual Dataflow Language for Coordination in
Mobile Ad Hoc Networks

Andoni Lombide Carreton, Theo d’Hondt

To cite this version:
Andoni Lombide Carreton, Theo d’Hondt. A Hybrid Visual Dataflow Language for Coordination
in Mobile Ad Hoc Networks. 12th International Conference on Coordination Models and Languages
(COORDINATION) Held as part of International Federated Conference on Distributed Computing
Techniques (DisCoTec), Jun 2010, Amsterdam, Netherlands. pp.76-91, �10.1007/978-3-642-13414-
2_6�. �hal-01054622�

https://inria.hal.science/hal-01054622
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Hybrid Visual Dataflow Language for

Coordination in Mobile Ad Hoc Networks

Andoni Lombide Carreton⋆ and Theo D’Hondt

Software Languages Lab
Vrije Universiteit Brussel, Pleinlaan 2 1050 Brussel, Belgium

{alombide} {tjdhondt}@vub.ac.be

Abstract. Because of the dynamic nature of mobile ad hoc networks
and the applications running on top of them, these applications have to
be conceived as event-driven architectures. Such architectures are hard
to program because coordination between concurrent and distributed
mobile components has to be expressed by means of event handlers or
callbacks. Applications consisting of disjoint event handlers that are in-
dependently triggered (possibly by their environment) exhibit a very
implicit control flow that is hard to grasp. This paper presents a visual
dataflow language tailored towards mobile applications to express the in-
teraction between mobile components that operate on data streams. By
using a visual dataflow language as a separate coordination language,
the coarse grained control flow of a mobile application can be specified
visually and separately from the fine grained control flow. In its turn,
this allows a very explicit view on the control flow of the entire mobile
application.

Key words: dataflow programming, coordination languages, visual pro-
gramming, mobile ad hoc networks

1 Introduction

When developing pervasive applications for mobile ad hoc networks, the pro-
grammer has to deal with a number of characteristics of both the underlying
network infrastructure and the applications running on top of them.

1. Devices in mobile networks often experience intermittent connectivity with
nearby peers. Because devices are mobile, they can move out of and back
into range of each other at any point in time. Hence, connections between
devices are volatile.

2. Applications deployed on mobile ad hoc networks cannot rely on fixed in-
frastructure such as servers.

3. Mobile applications moving through different ad hoc networks should be
able to discard unavailable services and find replacement services at runtime.
Applications should remain functional on roaming devices.

⋆ Funded by a doctoral scholarship of the “Institute for the Promotion of Innovation
through Science and Technology in Flanders” (IWT Vlaanderen).

4. Services offered by nearby devices in the network should be discovered at
runtime and trigger the appropriate actions without requiring prior knowl-
edge about these devices or services.

5. The data that is interchanged between different parties often takes the form
of a stream, for example a stream of sensor readings or a stream of scanned
RFID tags.

These characteristics make it impossible to structure pervasive applications as
monolithic programs which accept a fixed input and compute it into some out-
put. Instead, to allow responsiveness to changes in the mobile ad hoc network,
programming paradigms targeting pervasive applications propose the adoption
of event-driven architectures [1–4]. In such event-driven architectures, the pro-
grammer no longer steers the application’s control flow explicitly. Rather, control
is handed over to the application logic whenever an event is detected by means
of callbacks. By adopting such an event-driven architecture, the application logic
becomes scattered over different event handlers or callbacks which may be trig-
gered independently [5]. This is the phenomenon known as inversion of control

[6]. Control flow among event handlers has to be expressed implicitly through
manipulation of shared state. Unlike subsequent function calls, code triggered
by different event handlers cannot use the runtime stack to make local variables
visible to other executions (stack ripping [7]), such that these variables have to
be made instance variables, global variables, etc. This is why in complex sys-
tems such an event-driven architecture can become hard to develop, understand
and maintain [8, 9]. Coordination of distributed and concurrent activities can be
done on a higher level by means of a separate coordination language. However,
current coordination languages lack support to deal with all the characteristics
of mobile ad hoc network applications pointed out above.

The visual dataflow language presented in this paper is geared towards ap-
plications running on mobile ad hoc networks in the following ways:

1. Application components that move out of range are either treated as tem-
porarily or permanently disconnected. In the latter case, replacement com-
ponents can be discovered and automatically plugged into the distributed
application.

2. Mobile application components are dynamically discovered based on broad-
casted role names - acting as topics in a decentralized publish/subscribe
architecture - that describe their behavior, and require no additional infras-
tructure to discover each other.

3. Distributed application components interact by means of reactive scripts
that propagate events to dataflow variables and depend on their own set
of dataflow variables. This is a straight-forward interface that allows such
distributed components to be made dependent on changes in their environ-
ment without relying on an explicit callback-style that would introduce the
problems mentioned above.

4. The basic dataflow coordination model is extended with infrastructure to al-
low different strategies of dataflow event propagation tweaked towards a mo-
bile ad hoc network setting, offering one-to-one, one-to-many, many-to-one,

and many-to-many communication among a volatile set of communication
partners.

1.1 Coordination in Mobile Ad Hoc Networks

Gelernter and Carriero [10] argue that a complete programming model consists
of both a computation model and a coordination model. The computation model
allows programmers to build a single computational activity (e.g., a process, a
thread, an actor in an actor language). The coordination model is the glue that
binds separate activities into a concurrent application. An ordinary computation
language embodies a computation model. Different concurrent languages provide
in addition a coordination model that ranges over different levels of abstraction,
from manual thread creation and locking to event-based communication among
distributed processes. An example of the latter will be discussed in Section 2.
A coordination language embodies a coordination model; it provides operations
to create computational activities and to support communication among them.
We require the coordination model to be applicable in mobile ad hoc networks,
meaning that the model should be resilient to network partitioning and reactive
to network topology changes. In the remainder of this section, we discuss some
related work in the form of existing coordination and visual (dataflow) languages.

Coordination languages Thanks to their decoupling both in space and time
of the different communicating processes, coordination based on tuple spaces is
quite popular for mobile ad hoc network applications. Both the LIME [3] and
TOTA [11] middleware implement variations on the original tuple space model
targeted towards mobile ad hoc network applications. In both systems however,
devices respond to the appearance of such tuples by registering reactions. Re-
actions are an advanced form of callbacks, where the callback gets executed as
soon as a tuple in the tuple space is successfully pattern-matched.

Reo [12] is a glue language that allows the orchestration of different het-
erogeneous, distributed and concurrent software components. Reo is based on
the notion of mobile channels and has a coordination model wherein complex
coordinators, called connectors, are compositionally built out of simpler ones
(where the simplest ones are channels). These different types of connectors hier-
archically coordinate their constituent connectors, which eventually coordinate
the software components that they interconnect. The mobility of the channels
refers in this case to a user-invoked migration of a software component along
with all its connected channels to a different host. This is not the automatic
runtime adaptation to the frequently changing network topology in a mobile ad
hoc network that we require.

Visual languages LabVIEW was the first software program to include graph-
ical, iconic programming techniques to make programming more transparent
and the sequence of processing visible to the user [13]. LabVIEW is based on the
G visual dataflow language and the concrete implementation in the LabVIEW

environment is primarily used for data acquisition, processing and monitoring
in a lab setting. LabVIEW does not use dataflow for expressing distribution
and/or parallelism, but for the graphical composition of software components
that interact with lab hardware.

Another language that does use dataflow for expressing distribution and con-
currency is Distributed Prograph [14]. Distributed Prograph is very similar to
our approach in the sense that the program code of dataflow operators is dy-
namically sent to remote processing units. The scheduling of the execution of
these operators happens at runtime, but the processing units themselves have
to be known at compile time, which is unrealistic in mobile ad hoc networks. In
our approach, the processing units are dynamically discovered at runtime in the
mobile ad hoc network.

NesC nesC [15] is a programming language for networked embedded systems
(such as sensor networks) offering event-driven execution, a flexible concurrency
model, and component-oriented application design. These components, however,
are statically linked to each other via their interfaces. This makes nesC programs
better statically analyzable, but restricts the language to networks of static de-
vices instead of entirely mobile networks.

2 Fine-grained Programming with AmbientTalk

The visual dataflow language that we propose in this paper is a hybrid language:
it uses a host language to implement the dataflow operators and allows expressing
the coordination among these operators visually. In our case, this host language
is AmbientTalk [16, 17], a distributed scripting language embedded in Java that
can be used to compose Java components which are distributed across a mo-
bile ad hoc network. The language is developed on top of the J2ME platform
and runs on handheld devices such as smart phones and PDAs. Even though
AmbientTalk is embedded in Java, it is a separate programming language. The
embedding ensures that AmbientTalk applications can access Java objects run-
ning in the same JVM. These Java objects can also call back on AmbientTalk
objects as if these were plain Java objects. The most important difference be-
tween AmbientTalk and Java is the way in which they deal with concurrency
and network programming. Java is multithreaded, and provides both a low-level
socket API and a high-level RPC API (Java RMI) to enable distributed comput-
ing. In contrast, AmbientTalk is a fully event-driven programming language. It
provides only event loop concurrency [18] and distributed object communication
by means of asynchronous message passing, which are briefly illustrated below.
Event loops deal with concurrency similar to GUI frameworks (e.g. Java AWT
or Swing): all concurrent activities are represented as events which are handled
sequentially by an event loop thread.

To be synchronized with changes in one’s environment, AmbientTalk uses a
classic event-handling style by relying on closures to function as event handlers.
This has two advantages: firstly closures can be used in-line and can be nested
and secondly closures have access to their enclosing lexical scope. Event handlers

are (by convention) registered by a call to a function that starts with when. The
following code snippet illustrates how AmbientTalk can be used to discover a
LocationService and WeatherService in the ad hoc network.

1 when: LocationService discovered: { |locationSvc|
2 when: locationSvc<-getLocation(gpsModule.getCoordinates())
3 becomes: { |myLocation|
4 when: WeatherService discovered: { |weatherSvc|
5 when: weatherSvc<-getWeather(myLocation)
6 becomes: { |weatherInfo|
7 GUI.updateWithWeatherInfo(weatherInfo);
8 }}}}

Once the LocationService is discovered, it is sent a message along with the
current GPS coordinates to determine the current location of the user. As soon
as a reply is received, the lookup for the WeatherService starts. When such a
service is discovered, it is sent the getWeather message along with the current
location that was received from the LocationService.

The above code consists of four event handlers. The first event handler,
registered by means of the when:discovered: control structure, is invoked
when the language runtime discovers a LocationService component. Here,
LocationService refers to a Java interface. The discovered object is accessi-
ble via the locationSvc variable, which denotes a remote AmbientTalk object
that wraps a Java component implementing the weather service. The syntax
obj<-msg() denotes an asynchronous message send and is used here to query
the LocationService object for the current location of the user (e.g., city) given
her GPS coordinates.

When the query message is received by the remote locationSvc object,
that object’s getLocation method is invoked. The return value of this method
is used as the reply to the query. This reply is signaled asynchronously to the
caller. The when:becomes: control structure is used to install an event handler
that can process this reply. The return value is passed to this event handler (cf.
the myLocation variable in the example). As soon as this value is received, this
event handler registers two new event handlers (following the same pattern) to
query a WeatherService about the weather at myLocation. Therefore, as soon
as the WeatherService signals a reply, the user interface is updated.

As can be seen from the above example, service discovery and replies to
remote queries (to causally connect the program with the outside world) are
represented in AmbientTalk as events that trigger the appropriate event han-
dlers. Care must be taken when coordinating and synchronizing asynchronous
invocations: nesting callbacks (like in the example presented above) introduces
simple synchronization (the discovery of the WeatherService only starts when
a LocationService is discovered and has replied to the getLocation message),
but more complex synchronization and coordination patterns require more com-
plicated structures (the lookup of a WeatherService could happen, for example,
in parallel without waiting for the LocationService to reply). While in this sim-

ple example the control flow remains apparent enough to understand, the control
flow of large-scale event-driven applications can quickly become puzzling.

3 Coordinating Distributed AmbientTalk Components

Using a Visual Dataflow Language

Before the Von Neumann architectures took over the parallel programming world
as well, dataflow languages were popular to program massively parallel systems
that used a dataflow hardware architecture [19]. By making data dependencies
explicit, these languages and hardware architectures allowed a high degree of
parallelization while preventing race conditions and other problems arising when
parallelizing programs intended for Von Neumann architectures. Moreover, the
resulting dataflow graphs are easy to visualize, allowing a visual representation
of the data dependencies and the coordination they imply on the different par-
allel components of the application. The dataflow coordination model can be
informally described as follows:

– Dataflow programs consist of dataflow operators that take a number of input
values and return a single output value. These dataflow operators are best
compared to functions or procedures in functional or imperative program-
ming languages that always run in parallel.

– Dataflow operators communicate with each other over dataflow edges. These
edges represent data dependencies and always flow from the output of a
dataflow operator (corresponding to its output value) to one of the inputs
of a dataflow operator (corresponding to one if its input values).

– When a dataflow operator is fired depends on the concrete coordination
model used. Some languages only fire dataflow operators once as soon as all

its input values have received a value. Other languages repeatedly fire the
dataflow operator as soon as one of its input values received a new value

Such a coordination model allows that different dataflow operators in the dataflow
graph can execute in parallel as long as their data dependencies are satisfied.
For example a number of operators in a pipeline execute in parallel when the
first operator is fed a stream of data. In such a pipeline the first operator is
being applied to new data from the stream while operators later in the sequence
are being applied to data already processed by earlier dataflow operators in the
pipeline.

Currently, the dataflow paradigm is mostly used in the form of the coarse-

grained dataflow model, as can be seen from the systems discussed in Section
1.1. In such models, the dataflow paradigm is used to orchestrate the control
flow between different modules (possibly running in parallel) that can be of an
arbitrary level of abstraction, usually implemented in a conventional program-
ming language. When looking at the characteristics and requirements of mobile
networks and the applications running on top of them (discussed earlier in Sec-
tion 1), we have observed that the dataflow model may provide a very suitable
coordination model for this kind of applications. These applications consist of

different distributed components running in parallel that in many cases have to
be invoked whenever some external data is fed to them (event-driven architec-
tures). Hence, the driving force for program execution in such applications is not
the control flow, which is explicitized by the order of statements in an imperative
textual program, but the data flow, which is implicit in an imperative textual
program. Furthermore, in many cases these data come in the form of streams,
such as continuous sensor readings. These observations, combined with the basic
coordination model of the AmbientTalk programming language, led us to the
integration of AmbientTalk with a coarse grained dataflow coordination model,
that explicitizes the data flow, and a graphical language embodying this model.
The main advantage above implementing everything in plain AmbientTalk, is
that the coarse-grained control flow, which in AmbientTalk would become very
implicit in a complex interplay of different event handlers, is now represented in
a very explicit visual notation based on the dataflow coordination model. In this
section, this visual dataflow language is explained.

3.1 Visual Dataflow Programming

Figure 1 shows the general idea behind our visual dataflow language. The lan-
guages uses the boxes-and-arrows notation to denote dataflow operators and
dataflow dependencies between them respectively. The identifier before the ->

!"#$%&'%(")$

)$*$+)$+(,-

)$*$+)$+(,.

)$*$+)$+(,/

)$*$+)$+(,0

!"#

$%&'()*+,-./"#

)$1%2"#$%34%"56$(73%8

%%99%:::

;<

)$17,*$%!"#$<

$=*"273%2"#$%>?3%!"#$<

!"#

$%&'()*+,-./"#

)$1%2"#$%34%"56$(73%8

%%99%:::

;<

)$17,*$%!"#$<

$=*"273%2"#$%>?3%!"#$<

-

-

-

-

-

-

@ @

Fig. 1. Basic architecture of a dataflow program

symbol denotes the role of the operator (for now, it suffices to think of a role as a
procedure name). The code after the -> symbol can be any list of AmbientTalk
expressions and comprises the code of the dataflow operator, which serves as its
implementation. This code can be parametrized by variables that are bound to
the input values of the dataflow operator. This is achieved by naming the edges,
such that these names can be used as the names of the dataflow parameters in
the dataflow operator implementation. The dataflow operator firing rule in our

visual languages is the following: any new value propagated along an incoming

dataflow edge results in reapplying the dataflow operator with the new value of

the dataflow variable.

Executing a dataflow program happens by distributing the dataflow operator
code to devices that match the roles designated to the operators in the graph and
installing communication channels that represent the dependency edges between
them. Dependency edges can be either fixed (uninterrupted lines) or rebinding

(dashed lines). The service discovery needed for this is further explained in Sec-
tion 3.2. For this, these devices should have an AmbientTalk virtual machine
running on top of a Java virtual machine, and additionally host the necessary
library code to execute their role code. The code associated with a role is mobile
AmbientTalk code that can call any AmbientTalk or Java library code that is
made visible to it by the device. This is further explained in Section 3.3.

Finally, to cater for group communication in mobile ad hoc networks, we
extended the basic dataflow coordination model with dependency arities that
allow dataflow dependencies to be one-to-one, one-to-many, many-to-one, many-
to-many. This is indicated by the programmer by changing the annotations at
the start point or end point of the graph edges and is further explained in Section
3.5.

Before going further into detail, we sketch a small scenario. Envision the shop
of the future where every product is tagged with an RFID tag. Customers pick up
these products and carry them to certain locations in the shop where the tagged
products can be scanned. In a CD shop for example, one could install an RFID
reader below the listening stations where customers can listen to the albums
they are carrying before buying them. Based on the list of scanned products,
the device scanning the products requests a list of recommended products from a
remote party. In the CD shop demo application that we have implemented this
remote party is the LastFM web service1. The resulting list of recommended
products is passed to a software service representing the shop and is filtered
to only contain the products that are currently in stock, extended with their
location in the shop (based on products that are scanned by RFID devices in
the shop’s shelves). Given these three pieces of information (the list of scanned
products carried by the user, the list of recommended products, and the list of
recommended products available in the shop), a small application on the user’s
PDA or smartphone is updated to show this information and help the user in
getting the products he wants. As soon as the user removes a product from the
range of the device scanning the products (for example by putting it back in the
shelves) or brings another product in range of the device, this change is reflected
on the application running on his PDA or smartphone.

In this scenario, we consider the user’s PDA or smartphone a mobile device
moving throughout the shop and being dynamically discovered by multiple RFID
readers running the dataflow program. Interaction between the user’s mobile de-
vice and other devices present in the shop happens entirely spontaneous over
wireless connections that can break at any point in time when the user moves

1 http://www.last.fm/api/intro

out of range of one of the components. However, such intermittent connections
as the the user roams the shop should be tolerated and not break the application.
The continuous flow of RFID data generated by the different components of the
application is usually processed by representing this data as data streams [20,
21]. The screenshot shown in figure 2 shows the scenario implemented in our

Fig. 2. AmbientTalk visual dataflow example

visual dataflow language. In this example, the Java package paths to the meth-
ods that are invoked in the code are omitted for the sake of brevity, but other
than that the program shown here is entirely functional. Dataflow operators are
represented as boxes while the directed edges connecting these boxes represent
data dependencies.

3.2 Discovering Operator Nodes

Our visual dataflow language serves the purpose of coordinating application
components running in parallel and distributed over a mobile network. Because
the devices hosting these application components can move out of range and
back into range of each other at any point in time, our dataflow engine has to
discover these application components at runtime without relying on naming
servers or other fixed infrastructure. In our visual dataflow language, mobile
application components that play a role in a dataflow program are discovered
based on their roles. These roles actually have the same use (and in fact are
implemented this way) as the Java interfaces that are used by AmbientTalk to
discover remote objects and hence act as the topics that are being used by the
underlying distributed publish/subscribe architecture. The system uses UDP

broadcasting to both advertise dataflow nodes and devices willing to execute
one or more of the roles in the dataflow program. This an entirely decentralized
approach that does not assume any other infrastructure but the mobile devices
themselves.

Depending on what kind of dataflow dependency edge there is between two
operators, the discovery mechanism works differently. In case of fixed dataflow
edges, such as between the Shop node and the User node, once the User node is
discovered, the same instance of the dataflow program expects always the same
instance of a User node. This means concretely that when the connection is lost
with the User node, the Shop node will wait until the connection is restored
to resume the execution of the dataflow program. This makes sense if there is
a stateful aspect over the different distributed nodes in the dataflow program,
for example if users should receive personalized recommendations and not rec-
ommended products from different users. To detect a permanent disconnection
the dataflow dependency edge can be annotated with a timeout period. Event
messages are buffered until the timeout is signaled2.

On the other hand, in some cases a different operator node encoding the
same role can be used as a replacement, typically when there is no state asso-
ciated with the operator’s execution. This is catered for by rebinding dataflow
edges, which are represented by a dashed line, such as the one between the
ProductDatabase node and the Shop node. In this scenario, the shop may con-
sist of different shelves which are all represented as Shop nodes. Concretely, a
rebinding dataflow edge allows rebinding the dataflow dependency to another
destination operator at runtime, because the network topology has changed for
example. Again, a timeout can be specified that determines how long event mes-
sages are buffered. In this example, the user might have moved out of range of
shelf in the shop and moved into communication range of a different shelf. How
the group communication to the different shelves is handled is discussed later in
Section 3.5.

3.3 Executing Mobile AmbientTalk Code

Dataflow operators operate on data streams. In most cases, it makes sense to
process the stream on the device, through which the stream flows, to reduce
communication overhead and to avoid a performance bottleneck when all the
processing happens on a single device. In such scenarios, it is thus cheaper
to move the processing code towards the data than the data stream itself. In
the shopping assistant example, the scaling of album cover images can hap-
pen directly on the server hosting the images which is better suited for such
a CPU-intensive job than a mobile device. Furthermore, in the face of inter-
mittent network connections, long-lasting computations can continue while the
network connections with other nodes is temporarily broken, and flush buffered

2 Buffer overflows can happen in theory for very large timeout periods and will raise
a Java exception.

return values when the network connection is restored. This is why the im-
plementation of dataflow operators is in fact mobile AmbientTalk code that is
sent to application components playing a role in the dataflow program. To be
able to execute this mobile code, these application components need to provide
some already present infrastructure in the form of some pre-implemented Am-
bientTalk or Java methods. Currently, this means that services playing a role in
our coarse-grained dataflow model are usually implemented as objects that pro-
vide an interface that can be called by the mobile code (as shown in our example
where the filterOutPresentProducts method is assumed to be implemented
by the Shop node3). To allow objects to be easily extended with the necessary
methods for accepting and executing their mobile dataflow operator code in the
correct way, we provide a basic OperatorHostInterface object. Custom im-
plementations specific to the device hosting the service can be used as well (e.g.,
to impose restrictions on the received mobile code to prevent security issues) by
overriding specific methods on the OperatorHostInterface.

The code snippet below shows how a certain host can advertise itself as a User
by simply exporting a service object implementing the User role (hence, this is
local code present on the user’s machine). The userService object extends
from the OperatorHostInterface discussed above and simply implements the
necessary methods to fulfill its role in the application. The last two lines declare a
Java interface that will be used for service discovery and publish the user service
into the network such that it can be discovered by other remote application
components.

1 def userService := extend: OperatorHostInterface with: {
2 // ... Private fields...
3 def showGui() {
4 // Show the user interface
5 };
6 def showProductsInBag(products) {
7 // Update GUI with new shopping bag contents
8 };
9 def showRecommendations(products) {

10 // Update GUI with new recommendations
11 };
12 def showRecommendationsInShop(products) {
13 // Update GUI with new recommendations in stock
14 };
15 };
16 deftype User;
17 export: userService as: User;

Note that the same device hosting a number of application components can
play a role in different dataflow programs. However, race conditions cannot occur
because the communication between all dataflow operator nodes happens by

3 One can designate a dedicated namespace that is visible to the mobile code and
organize the library code to be called by the mobile code in Java packages.

means of asynchronous AmbientTalk messages that are scheduled in the event
loop of each host, and are sequentially executed by a single thread (causing the
sequential execution of the operator code as well).

3.4 Propagating Events and Reacting to Events

Until this point, we have not elaborated yet on how the actual dataflow program
is executed by our dataflow engine. This is based on the reactive programming
paradigm [22–24], which requires a reactive version of the AmbientTalk inter-
preter [25]. Concretely, the dataflow variables in the operator code denote reac-
tive values. These reactive values are updated each time their respective input
value changes (by new data objects flowing over the dataflow edges correspond-
ing to the input values). Analogous to the reactive programming paradigm, a
dataflow operator is re-executed as soon as one of the reactive values it depends
on changes. Dataflow updates are signaled simply by executing a dataflow op-
erator, which results in a new return value for the executed dataflow operator
and which is propagated over all the outgoing dataflow edges. For example in
the self role, the scanned products could be periodically updated by the RFID
reader by for example periodically scanning its surroundings for tags and updat-
ing a reactive value. The events signaled by this reactive value will in this case
be propagated along the products and productsInBag dataflow dependencies,
invoking the rest of the dataflow graph. In the other direction, the User node will
receive updates to its productsInBag, recommendations and inStock dataflow
variables, which will result in the re-execution of the dataflow operator, leading
to the necessary updates to the user interface.

The names identifying the dataflow dependency edges are again used for
service discovery, but this time only for enabling the communication (initiated
behind the scenes by the dataflow engine) to update the reactive values used
in the dataflow operator code: no additional semantics are attached to them (in
contrast to the role names). Important to note is that the propagation of dataflow
events happens by means of the underlying reliable asynchronous messages of
AmbientTalk. This means that intermittent connections between dataflow op-
erators do not cause errors, instead the event messages are buffered and resent
when the same dataflow operator host comes back in range or a replacement host
is found. Per dataflow dependency, a timeout can be specified that determines
how long these messages are buffered. In case of a timeout, an exception is raised
on both disconnected application components, which can trigger cleanup actions
in response.

3.5 Dependency Arities

In mobile ad hoc networks, it is in many cases necessary to gather information
from and/or propagate information to a multitude of peers (that can move out of
range and back into range at any point in time). For example, a mobile applica-
tion may want to query other mobile applications about their GPS coordinates
to show the location of their users on a map. On the other hand, an application

may also want to periodically broadcast the new GPS coordinates of its host
device to nearby peers. To cater for this kind of remote communication with a
number of equivalent peers, we have extended the original dataflow coordina-
tion model with dependency arities. These dependency arities can be one-to-one,
one-to-many, many-to-one or many-to-many. This is depicted graphically in our
visual dataflow language on the end points of edges (i.e., 1-1, 1-*, *-1 and *-*,
respectively).

Incoming 1 Incoming *
Outgoing 1 Send one value to a single Send one value to all

(rebound or fixed) node reachable nodes of same role

Outgoing * Send list of values to a single Send list of values to all
(rebound or fixed) node reachable nodes of same role

Table 1. Dependency arity semantics

In the example given above, there is a one-to-many dataflow dependency
between the ProductDatabase and Shop nodes. This will cause the dataflow
engine not only to look for a single Shop operator host (representing a shelf in
our shop scenario), but to all hosts able to play this role in the dataflow pro-
gram. They will all receive the mobile operator code and will all receive the events
propagated along the recommendToUser edge. Now it is up to the dataflow pro-
grammer to decide what will happen with all the different return values from the
replicated Shop nodes running in parallel. One could either choose to receive the
events propagated by a single Shop (although other ones are running in parallel)
by installing a one-to-one dependency between the Shop and the User node.
In our scenario this means that the user only receives recommended products
from a single shelf, although multiple ones are filtering recommended product
lists based on their contents. The alternative would be to install a many-to-one
dependency between these components. In that case, the User node will receive
all the events of all the replicated ProductDatabase nodes that are in commu-
nication range. The result here is that the user receives recommended products
from all shelves in communication range, i.e., a dynamically changing list of
product lists. The programmer can specify a timeout to determine how long
values received from non-responding nodes should be kept in the list. Hence,
the list changes not only when dataflow values change, but also when values are
added (because new nodes were discovered) or removed (when nodes time out).
The processing code that operates on this reactive list should of course take into
account that the dataflow variable represents such a changing list. Note that
declaring a dataflow dependency one-to-many or many-to-many will automati-
cally convert the respective dataflow edge into a rebinding edge (see Section 3.2).
The reason is that when broadcasting events to all nodes playing the same role,
a fixed dataflow dependency simply makes no sense: events are propagated to
a dynamically changing collection of listeners as the network topology changes.
This is not always desirable: the dataflow dependency between the Shop node
and User node should clearly be fixed: one instance of the dataflow program

should send personalized recommendations always to the same user. Table 1
summarizes the semantics of the different combinations of dataflow nodes and
dependency arities connecting them.

4 Limitations and Future Work

The naming and discovery of dataflow nodes happens via Java interfaces acting
as role names. We make the underlying assumption that the name of such Java
interfaces represents a unique service and is known by all participating services
in the immediate neighbourhood. This discovery mechanism also does not take
versioning into account explicitly. For example, if the ProductDatabase service
from the example in Section 3.1 is updated, older clients may discover the up-
dated service, and clients that want to use only the updated service may still
discover older versions. Clients and services are thus themselves responsible to
check versioning constraints. A similar issue can be observed with respect to
security: currently, dataflow operator hosts are responsible themselves for pro-
viding a secure infrastructure to execute the mobile AmbientTalk code that is
being sent to them by the dataflow engine. This infrastructure currently has
to be implemented by the programmer of the service: there is no ready to use
framework for this purpose.

Finally, we are working on a more advanced visual dataflow editor and de-
bugger. The current editor4 is a very early prototype which we would like to
extend with debugging support (currently it only offers syntactic error checking
and undefined variables checking of the mobile AmbientTalk scripts in dataflow
operators). We are currently working on a prototype that allows the stepwise
execution of the dataflow graph, similar to the way one would step through in-
vocation stack frames in a stack-based language. This is not trivial since the
execution of the dataflow program is distributed over a mobile ad hoc network,
of which the nodes have to communicate with the debugger. The approach we
are currently pursuing is to integrate a simulator with the debugger that sim-
ulates network communication and also allows simulating failures, for example
arbitrary network partitions, during the simulated execution of the dataflow
program.

5 Conclusions

In this paper, we have introduced a visual dataflow language for coordinating
mobile ad hoc network applications. The motivation for using a dataflow lan-
guage for coordination is that the language offers a coordination model that
is very well suited to the dynamic and inherently parallel nature of mobile ad
hoc network applications and allows separating the coarse-grained coordination
behavior from the fine-grained application logic. The language represents data

4 It can be downloaded as a library for the AmbientTalk language from: http://
code.google.com/p/ambienttalk/ (“rfid” SVN branch).

dependencies between distributed mobile application components very explicitly
and allows them to be visualized and edited graphically. Since its coordination
model is purely based on the satisfaction of these data dependencies, it maps
very well on a mobile ad hoc network environment where distributed applica-
tion components are running in parallel, react to events coming from the outside
world, and are interconnected by peer-to-peer connections over which data can
only flow when the connection is not broken (which may frequently happen
due to the limited communication range and the mobility of the devices). Our
implementation of a dataflow coordination language is made resilient to these
intermittent connections by either buffering dataflow events between different
nodes while communication partners are (temporarily) unavailable, or by al-
lowing new reachable nodes to be dynamically selected. The resulting dataflow
graph instance is entirely decentralized and does not rely on a fixed infrastruc-
ture, but instead only on peer-to-peer connections. To provide the programmer
with abstractions to encode different communication strategies that we deem
useful in such a mobile context, we have extended the basic dataflow model with
rebinding data dependency edges and dependency arities.

References

1. Kaminsky, A., Bischof, H.P.: Many-to-many invocation: a new object oriented
paradigm for ad hoc collaborative systems. In: 17th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications,
New York, NY, USA, ACM (2002) 72–73

2. Meier, R., Cahill, V.: Steam: Event-based middleware for wireless ad hoc networks.
In: 22nd International Conference on Distributed Computing Systems, Washing-
ton, DC, USA, IEEE Computer Society (2002) 639–644

3. Murphy, A., Picco, G., Roman, G.C.: Lime: A middleware for physical and logical
mobility. In: Proceedings of the The 21st International Conference on Distributed
Computing Systems, IEEE Computer Society (2001) 524–536

4. Grimm, R.: One.world: Experiences with a pervasive computing architecture. IEEE
Pervasive Computing 3(3) (2004) 22–30

5. Chin, B., Millstein, T.: Responders: Language support for interactive applications.
In: ECOOP, Nantes, France (July 2006)

6. Haller, P., Odersky, M.: Event-based programming without inversion of control.
In: Proc. Joint Modular Languages Conference. Volume 4228 of Lecture Notes in
Computer Science., Springer (2006) 4–22

7. Adya, A., Howell, J., Theimer, M., Bolosky, W.J., Douceur, J.R.: Cooperative task
management without manual stack management. In: USENIX Annual Technical
Conference, Berkeley, CA, USA, USENIX Association (2002) 289–302

8. Levis, P., Culler, D.: Mate: A tiny virtual machine for sensor networks. In: In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA. (Oct. 2002)

9. Kasten, O., Römer, K.: Beyond event handlers: programming wireless sensors
with attributed state machines. In: 4th international symposium on Information
processing in sensor networks, Piscataway, NJ, USA, IEEE Press (2005) 7

10. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2) (1992) 97–107

11. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions with the TOTA middleware. In: IEEE International Conference on Pervasive
Computing and Communications, Washington, DC, USA, IEEE Computer Society
(2004) 263

12. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci. 14(3) (2004) 329–366

13. Kalkman, C.: Labview: A software system for data acquisition, data analysis, and
instrument control. Journal of Clinical Monitoring and Computing 11(1) (1995)
51–58

14. Cox, P.T., Glaser, H., Lanaspre, B.: Distributed prograph: Extended abstract.
In: International Workshop on Parallel Symbolic Languages and Systems, London,
UK, Springer-Verlag (1996) 128–133

15. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc
language: A holistic approach to networked embedded systems. In: ACM SIGPLAN
conference on Programming language design and implementation, New York, NY,
USA, ACM (2003) 1–11

16. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter,
W.: Ambienttalk: object-oriented event-driven programming in mobile ad hoc
networks. In: XXVI International Conference of the Chilean Computer Science
Society, IEEE Computer Society (2007) 3–12

17. Van Cutsem, T., Mostinckx, S., De Meuter, W.: Linguistic symbiosis between
event loop actors and threads. Computer Languages Systems & Structures 35(1)
(2008)

18. Miller, M., Tribble, E.D., Shapiro, J.: Concurrency among strangers: Programming
in E as plan coordination. In: Symposium on Trustworthy Global Computing.
Volume 3705 of LNCS., Springer (April 2005) 195–229

19. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming
languages. ACM Comput. Surv. 36(1) (2004) 1–34

20. Park, K., Kim, Y., Chang, J., Rhee, D., Lee, J.: The prototype of the massive
events streams service architecture and its application. In: 9th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing, Washington, DC, USA, IEEE Computer Society (2008)
846–851

21. Jin, X., Lee, X., Kong, N., Yan, B.: Efficient complex event processing over rfid
data stream. In: 7th IEEE/ACIS International Conference on Computer and In-
formation Science, Washington, DC, USA, IEEE Computer Society (2008) 75–81

22. Elliott, C., Hudak, P.: Functional reactive animation. In: ACM SIGPLAN Inter-
national Conference on Functional Programming. Volume 32(8). (1997) 263–273

23. Wan, Z., Taha, W., Hudak, P.: Real-time FRP. In: International Conference on
Functional Programming (ICFP’01). (2001)

24. Peterson, J., Hudak, P., Elliott, C.: Lambda in motion: Controlling robots with
haskell. In: 1st International Workshop on Practical Aspects of‘ Declarative Lan-
guages. (January 1999)

25. Mostinckx, S., Lombide Carreton, A., De Meuter, W.: Reactive context-aware pro-
gramming. In: Workshop on Context-Aware Adaptation Mechanisms for Pervasive
and Ubiquitous Services (CAMPUS 2008). Volume 10 of Electronic Communica-
tions of the EASST., DisCoTec (June 2008)

