N

N

Full Text Search Engine as Scalable k-Nearest Neighbor
Recommendation System

Jan Suchal, Pavol Navrat

» To cite this version:

Jan Suchal, Pavol Navrat. Full Text Search Engine as Scalable k-Nearest Neighbor Recommendation
System. Third IFIP TC12 International Conference on Artificial Intelligence (AI) / Held as Part of
World Computer Congress (WCC), Sep 2010, Brisbane, Australia. pp.165-173, 10.1007/978-3-642-
15286-3_16 . hal-01054596

HAL Id: hal-01054596
https://inria.hal.science/hal-01054596
Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01054596
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Full text search engine as scalable k-nearest neighbor
recommendation system

Jan Suchal, Pavol Navrat

Slovak University of Technology
Faculty of Informatics and Information Technologies
Ilkovicova 3, 842 16 Bratislava, Slovakia
suchal@fiit.stuba.sk, navrat@fiit.stuba.sk

Abstract. In this paper we present a method that allows us to useeaigéull
text engine as a k-nearest neighbor-based recommendgiems Experiments
on two real world datasets show that accuracy of recomrtiendgielded by
such system are comparable to existing spreading activatammendation
techniques. Furthermore, our approach maintains lineaalsiig relative to
dataset size. We also analyze scalability and quality propeftmsr proposed
method for different parameters on two open-source full texhesdMySQL
and SphinxSearch) used as recommendation engine baxk end

Keywords: full text search, recommendation systems

1 I ntroduction

Recommendation systems are becoming very common in many rdgnbait their
results can be mostly seen as recommendations in online shaparf@zon.com),
news (e.g. Google news) or social networks sites (e.g. Facebook).rémtceira of
web applications, to create a good and also a scalable recommendatom isysot
an easy task. Typically very specialized systems are developed Itavitleathe
problem of high quality recommendations on large datasets.

In this paper we present a new method that allows to use a generiersndlly
available full text engine back ends (MySQL and SphinxSearch) teraen
recommendations based on a k-nearest neighborhood approach. Firglaire feow
data needs to be preprocessed into virtual documents to exploiext engine
capabilities for recommendation generation and present our ksheaegghbor
algorithm. Next, we discuss how neighborhood size affects precisiosuch
recommendations. We show that long non-scalable queries are nott preseai-
world datasets by exploiting power-law distributions in datasets anchdyirsy
negligible precision gains from long queries. We also show tlam@thod yields
recommendations with comparable precision as spreading activationigigeh
normally used in recommendation systems. Furthermore we adarasbility of our

method showing that it yields linear scalability relative to dataset size. For ou
experiments two medium-sized real world datasets have been used.

2 Full text recommendation algorithm

In order to be able to use a generic full text engine as recommendgsimm we
need to transform data into special structures - virtual documéfgtscreate two
classes of such virtual documents - per-user and per-item virtual dasurBeppose
we have data available from an e-shop consisting of records eughbwhich items.
A per-user virtual document consists of user identifier and comat&e of item
identifiers that this user is connected to. Per-item virtual documentaine item
identifier and space separated user ids. Tables 1 and 2 show exampigs dftsal
documents.

Table 1. Per-item virtual documents

Itemidentifier | Users
iteml1 userl user2 user
item2 userl user2 user.
item3 user4

Table 2. Per-user virtual documents

User identifier | ltems
userl item1 item2
user2 iteml1
user3 item1 item2
user4 item3

Issuing specialized full text queries on such virtual documents enablkpsick
retrieval of similar items or users. For example finding top-klaimusers to a given
userl can be rewritten to a simple full text query: "item1|item2" where ¢septs the
OR operator aniteml anditem?2 are items already seen bgerl. Furthermore such
full text query returns results ordered by relevance, which isiincase similarity.
Finding similar items based on a list of users can be doneéyyiqg per-item virtual
documents.

Since full text engines typically use weighting schemes[1] by using full teixeind
on per-user documents, lower weights are automatically given te ithat are
common for all users and higher weights for items that are connecteel same user
several times (such as items bought by the same user on a regu@prSiaslarly for
per-item documents, users that tend to be connected to more iteloweetveight
since they are less discriminative.

By using these virtual documents and similarity queries we can oromufate our
top-k nearest neighbor recommendation algorithm using psedeoasdollows:

Inputs: user id, k, neighborhood size N
Output: top-k recommended items for user user_ id

function recommend with fulltext (user_id, k, N)
items = find items_ connected to(user id)
items query = create gquery(items.ids)
n_similar users = query per user (items_ gquery, N)
n similar users.remove (user id) # remove current user
user query = create query(n similar users.ids)
find items not already seen, based on similar users
similar items = query per item(user query, k, items)
return similar items

end

At first, user history is retrieved by finding all items connected given user. Next
“full text” query is constructedby concatenating item identificators with OR-
operator. This query is used to retrieve top N similar users §ivittiar history) from
per-user virtual documents table. Next a specializ&dl text” query is again
constructed by concatenating user identificators with OR-operator. Fihalguery
is used to retrieve top k itemsyt excluding items already in user history, since we do
nat want to recommend items that user already is connected to. Iy #hier
algorithm work in such a way that first finds similar users based on usehistory
and then finds top-k items that these similar users have irhik&iry.

This algorithm however makes an important and hidden assuntptibmeeds to
be addressed. Since full text engines are heavily optimized fdrcaemy strings (in
our case low number of item/user identifiers in a query) and geneéalhot scale
well for very long query strings, we need to make surefthdtitems connected_to
does return only a limited number of items. This is a problenthéory, but in
practice and thanks to nature of real-world datasets, we are mosliygdedh
power-law distributions where most users are connected only to amégdl subset
of items. In those rare cases where users are connected to a large ofuitelpes, a
filtering based on a secondary heuristic (e.g. information gain oe-liased
weighting) should be considered. For the sake of simplicity,gmerée this detail in
our further evaluation since implicitly used full text tf-idf weightingealily addresses
this problem at an intermediate level.

3 Evaluation
In order to test recommendation quality, speed and scalability wediwko real

datasets for evaluation. Github contest data published by gitmuland 15 days of
server access logs from top Slovak online news publisher wwwilsme.s

Github.com is an online social collaborative repository hosting seramedon git
source control management, where users can create and share sourt/sersdean
even fork and watch repositories of other users. A subset oibgithm database was
released as a challenge to build a recommendation system that reconusersls
which repositories they should also watch based on repositorigsateewatching
already, on their programming language preferences and other attributes. &im
evaluated recommendation systems by querying topl0 repos#ooynmendations
for 4788 users giving one point for each correctly guksspository. In our
evaluation we use the same approach, but for clarity we use raticedtaguesses to
all guesses and refer to this value as precision on tef1M.

As a part of collaboration with largest Slovak online news publisher we ha
access to server logs of their online news portal www.sme.sk haviginly one
million page views a day (excluding discussion forums). To uatal our
recommender system we are recommending articles to users basesir oaaitiing
history. For evaluation we have used a 15 day windowttigglit into “train” and test
sets. Similarly as in github.com contest, we generate top10 recommesadatieach
user in test set and add a point for each article that this user hakyadgsited in this
test set. Again we evaluate precision on tdp -1 P10. Table 3 shows size
characteristics of these two datasets.

In evaluation we silently ignore the fact that such an evaluation thenased for
testing the real precision or quality of any recommendatiotesysince we are
unable to simulate how users would actually react given such tegeknmendations.
For example in evaluation using a train/test dataset in domain of news astistes,
fact that a user has not seen a recommended article does not make it a bad
recommendation, it could simply mean that the user has nad thisiarticle. On the
other hand a sole fact that a user has seen a recommended article doakentitis
recommendation a good one. This could also mean that this mesrmfation was not
necessary since the user found this article even without our recatation system
(2] [3].

However for our purposes (scalability analysis and parametsitigity) such
train/test dataset evaluation is sufficient.

Table 3. Dataset size characteristics

Dataset github.com sme.sk
of users 56 519 1023 407
of items 120 867 162 455

(repositories) (articles)
of entries 440 237 11 996 530
(followings) (pageviews)

For all experiments we used two generic and freely available full text engines
(MySQL 5.0 full text and SphinxSearch 0.9.8) as recommendationdwaisk

3.1 Recommendation quality

To evaluate the precision of our top-k nearest neighborhood batbdd we use
precision on top-10 metric. Since generic full text engines typicaféyr different tf-
idf weighting schemes we also experimented with possible configusaif@ngines.

Figure 1 shows recommendation precision as a function ohlmgigood size (N)
and different engines and their configurations. The big dropSfbinx default at
N=10 is caused by additional Sphinx’s full text word proximity weighting that gives
more weight if words in query are close to each other. This usiatrfor w
counterproductive for our purpose, since we are not interestechioh vorder of
users/items appear in virtual documents.

We can see that for N > 40 precision gain starts to be negligiloejrenthat we
do not need long queries for recommendation generation. Also Sphinx’s bm25
precision is superior to MySQL for lower N, but for highérMySQL starts to be
slightly more precise. This might seem as an advantage for MyB@Lquite the
contrary is true because higher N means longer queries and scaladolbitgms for
large datasets as we show in experiments in section Scalability.

Figure 1 also shows that difference between weighting schemmeizount and
bm25 (Sphinx bm25 and MySQL) is 3-4%. Here, wordcount refers éaigion that
could be yielded by creating basic inverted indices on user/item dhizsary our k-
nearest neighborhood algorithm.

22
21
20

19

P10

18

Sphinx default
Sphinx bm25
17 | | ¢ emans L XD Theme cmme- Sphinx wordcount

MySQL 5.0
16

0 10 20 30 40 50 60
Neighborhood size

Fig. 1. Recommendation precision as function of neighborhood sidéLél text backend
engine for github.com dataset.

Since this evaluation only compares different configuratiorieeofame algorithm
we compared our method also with an existing spreading activation based

recommendation method. Spreading activation is a recursive eésgipution
algorithm with a threshold stopping criteridd] [5]. Our results show that spreading
activation on github.com dataset yields best results (P10 = 1908%igfting energy
= 500 and threshold = 0.1 which is slightly worse than besttres our k-nearest
neighborhood based method (P10 = 20.0%).

3.2 Scalability

We have shown that our recommendation method yields comparables @Esan
existing spreading activation based approach. Figure 2 shows a soattérpme
needed for recommendation generation versus precision or0 té@l such
recommendation. Since these are very different implementationsmpatce in an
absolute manner (e.g. recommendation speed) we are only interestedainility
characteristics. Results show that while recommendation time for spyeadivation
grows exponentially due to neighborhood traversal explo&imearest neighborhood
method maintains a low footprint.

2500
+ Spreading activation k-nearest
= 2000
']
£
—
E 1500
=]
L1+
-]
3
£ 1000
£
[=]
(%)
@
& 500
0
0 5 10 15 20

P10

Fig. 2. Recommendation time versus precision on top-10 for simgadtivation and k-nearest
neigborhood based method.

Figure 3 shows scalability analysis of recommendation generation &fma
function of neigborhood size on github.com dataset for bottmieendation engine
backends and Sphinx variants. All configurations maintain lineafakility for
varying neighborhood size, witlySQL being superior t&phinx bm25.

Figure 4 shows scalability as a function of dataset size for largeslsuataset
showing that both algorithms maintain linear scalability relative to eatsige.
However this analysis also shows that MySQL scales much worse, b@@gos to
Sphinx only for smaller datasets and having a steeper linear charachenjaticd 250
thousand entries mark.

300

C
y=2.8692x+257.32
R?=0.9999
250
y=2.1936x+90.147
R?=0.9908
_ 200
-, .
u: « Sphinx default
E
4: = Sphinx bm25
(=] -
Pt y=1.5343x+94.122 4+ Sphinx wordcount
3 150 R?=0.9925 i
H £ Sphinx Any
E
E . MySQL 5.0
g s
.
® 100
y=0.3116x+67.811
H R2=0.9454
50
0
0 10 20 30 40 50 60 70 80 90 100

Neighborhood size

Fig. 3. Scalability analysis showing time needed for recommendggéneration as a function
of neighborhood size for various full text backend engimelssattings on github.com dataset.

6000
y=2.7339x-193.81
5000 R*=0.9927
=z /
o 4000
£
=
c
2
=
8 3000
E ——My5QL 5.0
E SphinxSearch
g 2000
« y=0.5634x+359.41
R? =0.9698
1000
0
0 500 1000 1500 2000 2500

Dataset size [thousands entries]

Fig. 4. Scalability analysis showing time needed for recommenuaggneration for different
backend full text engines as a function of dataset sizmansk dataset (k = 35).

4 Related wor k

Our nearest neighborhood recommendation method uses standardvéifiting
scheme typically used for document vectorization in content-b@seinmendation
methods [6]butwe do not use cosine similarity to find similar vectors.

There are two major approaches to scalability problems when dealingnedthst-
neighborhood-based recommendation systems. One approadiedsite the number
of item similarity comparisons required to retrieve most similar stefirhis can be
done by pre-clustering similar items into sets, which are usegréming possible
item candidates [7]. The second, but more challenging approachetite existing
algorithms in such a way that scalable frameworks (e.g. mapgegdean be
effectively utilized [§.

5 Conclusions

In this paper we have proposed a k-nearest neighborhood basednesutation
method that exploits generic and generally available full text engines as losctoen
quick similarity search. Using experiments on two real world datagetsave also
shown that this method not only yields comparable results to $pgeadtivation
based recommendation methods, but is superior in means ofdueadability relative
to dataset size. We have also addressed the following drawback okfiéhtgines:
they are optimized only for short queries. We have shown that adainworld
datasets power-law distributions are present and most users will be corordgteal
limited subset of items, thus finding similar users quickly is iptsssand b) by
showing that recommendation precision gains are negligible ¢br méighborhood
sizes that cause long queries.

6 Futurework

Our work is planned to be extended by

e adding additional columns to virtual documents, we would be abtetoh similar
users/items based on more than one attribute. For example on githuttataset
we could also use preferred programming languages as an additionhtedeig
similarity metric, or similarly on sme.sk dataset article categories.

¢ evaluating scalability and precision characteristics for additional bacigdes
such as PostgreSQL full text and Apache Salr.

¢ evaluating scalability in distributed environments on large datasets.

Acknowledgments. This work was partially supported by the grants VEGA
1/0508/09, KEGA 345-032STU-4/2010 and it is the partial result oRésearch &
Development Operational Programme for the project Support of Cafrieicellence
for Smart Technologies, Systems and Services, ITMS 26240126829nded by the
ERDF.

References

1. Buckley, C. The importance of proper weighting methods. &urhanguage
Technology Conference, (1993).

2. Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl, EValuating
collaborative filtering recommender systems. ACM Transactions fonmation
Systems (TOIS) 22, 1 (2004).

3. Karypis, G. Evaluation of Item-Based Top-N Recommendation Algyost
Conference on Information and Knowledge Management, (2001).

4. Crestani, F. Application of Spreading Activation Techniques in Informatio
Retrieval. Artificial Intelligence Review 11, 6 (1997), 453-482.

5. Salton, G. and Buckley, C. On the use of spreading activation dsetimo
automatic information. Annual ACM Conference on Research and Develapm
in Information Retrieval, (1988).

6. Pazzani, M. Billsus, DContent-Based Recommendation Systefte Adaptive
Web, (2007)325341

7. Sarwar, B.M., Karypis, G., Konstan, J., and Riedl, J. Recommerdeznss for
Large-scale E-Commerce: Scalable Neighborhood Formation Using Clgsterin
2002.

8. Das, A.S., Datar, M., Garg, A., and Rajaram, S. Google news personalization:
scalable online collaborative filtering. International World Wide Web
Conference, (2007).

