N

N

Extending the standard execution model of UML for
real-time systems
Abderraouf Benyahia, Arnaud Cuccuru, Safouan Taha, Francois Terrier,

Frédéric Boulanger, Sébastien Gérard

» To cite this version:

Abderraouf Benyahia, Arnaud Cuccuru, Safouan Taha, Francois Terrier, Frédéric Boulanger, et al..
Extending the standard execution model of UML for real-time systems. 7th IFIP TC 10 Working
Conference on Distributed, Parallel and Biologically Inspired Systems (DIPES) / 3rd IFIP TC 10
International Conference on Biologically-Inspired Collaborative Computing (BICC) / Held as Part
of World Computer Congress (WCC) , Sep 2010, Brisbane, Australia. pp.43-54, 10.1007/978-3-642-
15234-4_6 . hal-01054487

HAL Id: hal-01054487
https://inria.hal.science/hal-01054487
Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01054487
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Extending the Standard Execution Model of UML for
Real-Time Systems

Abderraouf Benyahts, Arnaud Cuccury Safouan TaHaFrancois Terriér
Frédéric Boulangér Sébastien Gérard

ISUPELEC Systems Sciences (E3S) Computer Sciencertives,
91192 Gif-Sur-Yvette cedex, FRANCE
2CEA LIST, 91191 Gif-Sur-Yvette cedex, FRANCE
{abderraouf.benyahia, safouan.taha, frederic.b@da@supelec.fr,
{arnaud.cuccuru, francois.terrier, sebastien.gé@uaba.fr

Abstract. The ongoing OMG standard on the “Semantics of anBational
Subset for Executable UML Models” identifies a sthsf UML (called fUML,
for Foundational UML), for which it defines a geakpurpose execution
model. This execution model therefore captures x@twgable semantics for
fUML, providing an unambiguous basis for variousxds of model-based
exploitations (model transformation, code genemtianalysis, simulation,
debugging etc.). This kind of facility is of graaterest for the domain of real
time systems, where analysis of system behaviaeig sensible. One may
therefore wonder if the general-purpose executiodehof fUML can be used
to reflect execution semantics concerns of reagtiystems (e.g., concurrency,
synchronization, and scheduling.). It would praadtic mean that it is possible
to leverage on this precise semantic foundatiord (alh the work that its
definition implied) to capture the precise execatisemantics of real-time
systems. In this paper, we show that this appraachot directly feasible,
because of the way concurrency and asynchronousaainations are actually
handled in the fUML execution model. However, wewhthat introducing
support for these aspects is technically feasibteraasonable in terms of effort
and we propose lightweight modifications of the &x@n model to illustrate
our purpose.

Keywords: fUML, MDD, Model Simulation, Concurrent systems, Réme
systems.

1 Introduction

Profiles are the default UML extension mechanismtésloring UML2 to specific
application domains, from both syntactic and sematérms. Extending UML2
syntax is well achieved, with explicit stereotypefiditions capturing the syntactic
extensions. Unfortunately, the semantic extens{pogentially implied by a profile)
have not yet reached a similar degree of formatimafThey usually take the form of
a natural language description, just like the sdimadescription of the UML2
metamodel. The informal nature of this descriptieaves the door open to several

(potentially contradictory) interpretations of avg@in model and does not lend itself to
unambiguous model-based exploitations. This isqdairly critical when considering
complex notions such as time and concurrency, warehcentral issues to the design
of real-time and embedded software.

Things should however evolve with the ongoing OM@&ndard on the semantics
of a foundational subset for executable UML mod2]sThis standard indeed defines
a formal operational semantics for a subset of UMilalled fUML (foundational
UML). The operational semantics of fUML takes tleenfi of an executable UML
model called “Execution Model” (that is to say, MU model defined with elements
from the fUML subsé), which is precise enough to be considered as@mpreter
for f{UML models. While foundational, this subsetlides non-trivial mechanisms
carrying concurrent and asynchronous execution s8osa such as active objects
(i.e., objects with their own execution thread) @sgnchronous communications via
signal passing. These notions are essential whesidering concurrent real-time
systems, such as in the MARTE profile [1] (Modelamyd Analysis of Real-Time and
Embedded systems) and in particular in its HLAM -pubfile (High Level
Application Modeling), which provides support foegigning concurrent real-time
systems with extensions inspired by the conceptaiftime active object [4][5][6].

Our long term objective is to reflect timed and cament execution semantics as
introduced in HLAM by extending the general-purp@eecution Model of fUML.
Ideally, this extension would first rely on fUML mleanisms for concurrency and
asynchronous communications, and then add suppmorttime. This extended
Execution Model would typically provide support fonodel-based simulation, a
design technique that has proven useful for rapiotopyping of real-time and
embedded systems [7][8].

While the rationale for this approach sounds qoitwious, we believe that it
cannot be directly put into practice. Our main abkt concerns the way concurrency
(i.e., active objects) and asynchronous commumicat{i.e., via signals) are actually
supported. While the fUML specification of ExecutidModel leaves the door open to
support some slightly different execution paradighys including a few explicit
semantics variation points (secti8r2.2 of [2]), no key variation points are defined
regarding concurrency and asynchronous communitatioFurthermore, the
Execution Model does not identify an explicit eptiesponsible (such as scheduler)
for the management of concurrent entities. In otdgoroperly handle these aspects,
some modifications are needed in the Execution inddhe main contribution of this
article is to propose such lightweight modificasoriThese propositions can be
considered as a first step towards our long-terjeative: reflecting the execution
semantics of real-time systems by specializingthdL execution model.

In section 2, we start by highlighting fUML limifahs. In section 3, we discuss
works related to model-based simulation of congurrgystems. We show how
principles underlying these approaches could kegnated in the standard Execution
Model of UML. In section 4 we propose a modificatiof the Execution Model,
which mainly consists in introducing an explicihsduler. Section 5 then concludes
this article and sets guidelines for future redearc

1n order to break circularity, some of the fUMlerients have a formal axiomatic description.

2 Limitations of fUML regarding support for concurrency and
asynchronous communications

As explained in the introduction to this articl&/ML [2] formalizes the execution
semantics of a subset of the UML2 metamodel. Raatily, this subset contains
mechanisms for the description of concurrent systéra., classes can be active. See
[12], section13.3.8for more details). It also includes support fog #pecification of
asynchronous communications (i.e., Signal, Sendbgtion, SignalEvent, see [12],
section13.12.24 11.3.45and13.3.25. The semantic formalization, called Execution
Model, takes the form of a UML model specified witie f{UML subset itself, simply
by considering the fact that the fUML execution ieegis a particular executable
fUML model. It defines the operational procedure tioe dynamic changes required
during the execution of a fUML model. In the folllg section, we start by
providing an overview of the Execution Model. Theve discuss limitations of the
Execution Model regarding the management of coectigxecutions.

2.1 Overview thefUML Execution Model

The Execution Model has been defined following Wisitor design pattern [11],
where almost each class of the Execution Modelahadationship with a class from
the fUML syntax subset (except for a package calledi, where classetocus
Executorand ExecutionFactoryare not visitors, and are just used for settinghe
execution engine).

Each visitor class of the Execution Model basicgltgvides an interpretation for
the associated fUML class, and therefore explicithptures the corresponding
execution semantics. Globally, the Execution Mozl be considered as the model
of an interpreter for UML models specified with ttiéML subset. Figure 1 illustrates
a part of this global architecture. It represemis telationship between syntactic
elements of the fUML subset (left-hand side of Fgyl) and corresponding visitors
of the Execution Model (right-hand side part of g 1). For example, the execution
semantics associated with the concepClass(which is part of the fUML subset) is
defined by the clasdbjectfrom the execution model.

UML2 Metamodel Execution Model
fUML Subset
Class i N P
o1 stype Object 1 0.1 ObjectActivation
] isActive : Boolean | <f+—————1 startBehavior() > _startObjectBehavior()
+classifierBehavior * send() +object +objectActivation | | _send()
+objectActivation 0.1
+classifierBehaviorExecutions|
ClassifierBehavior
Signal +Signal SendSignalAction SendSignalActionActivation Execution
1 e - _startObjectBehavior()
doAction()

Fig. 1. The global architecture of execution model

It is important to notice that the Execution Mod®tploits the mechanisms
provided by fUML for concurrency and asynchronoammunications. For example,
classeObjectActivation(which encapsulates the execution of an evenattisgoop,
enabling a given active object to react to eventcuoences) and
ClassifierBehaviorExecutiorfwhich encapsulates the concurrent execution ef th
classifier behavior associated with the type ofdduject) are active classes, i.e.,
classes whose instances have their own threadmdfotoln principle, the Execution
Model thus explicitly captures the concurrent aspet fUML execution semantics.
In practice, however, the management of concurrénbyried inside the architecture
of the fUML Execution Model. Regarding our preliraiy objective, this is an
important limitation of the fUML Execution Model:HE place where concurrency is
handled in the Execution Model must be accessihtk explicit, so that it can be
conveniently tailored to the needs of particulaplmation domains. In the two
following sections, we first discuss this limitati@nd its relationship with the usage
of Java as a concrete notation for the descriptiobehavioral aspects of the fUML
Execution Model (i.e., mainly, behaviors associatéth operations of classes from
the Execution Model). Then, we more generally disciuhe absence, in the
architecture of the Execution Model, of explicit chanisms for scheduling and
synchronizing instances of concurrent entities, (aetive objects).

2.2 Ontheactual Java specification of the Execution M odel

UML activities are the only behavioral formalismpgorted by fUML. In the
Execution Model, they are practically used to sfyettie implementations of every
operation and/or classifier behaviors. However, &gnificant behaviors, these
diagrams quickly become large and complex and lfamd to understand. Instead of
using such complex graphical notation (or definiingm scratch a new textual
notation for activities), the authors of the fUMbesification have used Java as a
concrete textual notation for capturing behaviaspects of the Execution Model,
respecting a strict “Java to Activities” mappingdés Appendix A of [2] for details).

In other words, Java statements should just besidered as a concrete and
concise textual syntax for UML activities. Neveltss, the positive side effect
regarding the choice of Java is that the Execultflmilel takes an executable form,
which could be used as a model interpreter for UMadels respecting the fUML
subset. A reference implementation is thereby pieiby Model Driven Solutions
[3]. However, the “Java to Activities” mapping (defd in Appendix A of [2], and
followed for the definition of the Execution Modedpes not consider native Java
threading mechanisms. fUML mechanisms related twaoency and asynchronous
communications (e.g., active objects, signal emissietc.) are simply depicted using
syntactic conventions, with no explicit manifestatiof the Java Thread API. For
example, a call to the operatiosend()of classObjectActivation(depicted in the
right-hand side of Figure 1) is the Java mapping &0SendSignalAction, which
normally corresponds to an asynchronous signal stoms Therefore, an interpreter
strictly conforming to the Java implementation bé tExecution Model can only
interpret fUML models as sequential Java prograeng.(a call to send()remains a
synchronous and blocking Java call).

To be clear, the fact that the resulting Java imgletation is mono-threaded and
purely sequential is not a fundamental ispee se Indeed, as we will see in the
Related Works section, most state-of-the-art sitradaools are also sequential and
mono-threaded. However, these tools include exptiméchanisms for simulating
concurrency, usually with a well indentified entityrich is responsible for triggering
the execution of the various behaviors, according given scheduling policy. The
real issue with the current architecture of the deien Model is that there are no
equivalent mechanisms, and that executions obtaweedhe Execution Model are
purely sequential. Let us illustrate this issuehvaitsimple example.

The example illustrated in Figure 2 describes gpnapplication model that we
want to simulate using the fUML Execution Modelctintains two active classes (C1
and C2) whose instances will communicate via sign@hanges (S1 and S2). The
classifier behaviors of C1 and C2 are respectidelscribed by activities C1Behavior
and C2Behavior. C1 asynchronously sends a signab$12, and then waits for a
reception of a signal S2 from C2. On the other sfti2 waits to receive a signal s1
from C1. After the reception, it asynchronouslydsn signal S2 to C1.

C1 o1 2 c2
« signal » S2 1 1 « signal » S1

Classifier behavior i/ Classifier behavior
« activity » e « activity » N
C1Behavior C2Behavior

«read »
c2

« accept »
S1

result

(]
« send»
S1
« accept » « send»

Fig. 2. fUML model of a simple asynchronous system

«read »
[

result

Figure 3 shows a sequence diagram of a sequertaligon trace respecting the
java statements of the operational fUML Executiooddl. The hypothesis for this
execution trace is that two active objects c1:Cd e21C2 have been created, and that
c2 has been started before.dlifelines appearing in the sequence diagram géifeé
3 represent instances of classes from the fUML @@t model. The interactions
between these lifelines show how the model spetifie Figure 2 is actually
interpreted by the fUML Execution Model (in thissea all the execution is carried
out in one thread).

On the right-hand side of Figure 3, the instanceClafssifierBehaviorExecution
represents the execution of the classifier behadfi@2. Once it is started, it performs
the AcceptEventActian From the Execution Model standpoint, It consists
registering arEventAcceptefor S1 within a list of waiting event accepters ;i call
to operatiorregister()) It captures the fact that the execution of cRaw waiting for

2 Another fundamental limitation of this sequentiiva interpretation is that it is non-
deterministic. The resulting execution trace wél different if c1 is started before c2

an occurrence of S1. However, the execution of @@sdnot actually wait for an
occurrence of S1 (i.e., with the strict interpretat of the Java statements, the
ClassifierBehaviorExecutiois not executed on its own thread). Instead,titrns to
the main activity, which continues the executionshgrting the classifier behavior of
cl. The execution flow of c2'€lassifierBehaviorExecutiowill be further continued,
after an explicit notification. On the left-handisiof Figure 3, when the classifier
behavior of c1 starts (i.e., call texecute()emitted by theActivityExecutiod, it
executes th&endSignalActianThe semantics associated with BendSignalAction
is captured in the execution model by calling tperationsend()of target object c2,
which in turn calls the operatiosend() of ObjectActivation It results in adding a
signal instance s1 to the event pool associatddthé object activation of c2.

Main Handles the execution of Represents c2 in the! Hendees the execution of 1\
the classifier behavior of C1 | | execution model the classifier behavior of C2
& & &
‘ ActhityBxceasion ‘ ‘ ClassifierBehavior eventPool: ‘ ‘ClassifierBehavior

Execttion ‘ ‘ Object ‘ ‘ Cbjecthctivation ‘ Signalinstance [Execution Register is an operati
H | | I of AcceptEventAction
execute() | L

| i i
l | o | I L
g 1 i | 1 g s ler(eventAccepter)
| 1 1 =7
exeaut | ; ; i d
el | | N
| |
send(s) | send(st) ; ;
’ - ! add(s1) ;
I |
Metch the signal vith N _sendArivaiSignal() | | Acceptis an operati
eventAcceptersList | I of AcoeptEventAction
-If mach found, accept s1 dépm chNextEvert » e ;
| acoepi(s1) |
send(s2) »
- - I
]
1

Fig. 3. Execution trace from a sequential implementatibthe Execution Model

In order to notify theClassifierBehaviorExecutioof c2 that a signal is available
for dispatch (and therefore that its execution flmam potentially be continued if there
is a matchingeventAcceptgr a call to_send(new ArrivalSignal()is emitted, which
in turn causes a call wispatchNextEvent()This operation dispatches a signal from
the event pool and matches it against the list atimg event accepters. If an event
accepter matches, a callttee acceptoperation of thé\cceptEventActiors performed
and the classifier behavior of c2 continues thecatien by sending signal S2 to c1.
The execution of thiSendSignalActiomesults in a call to operatiend()on target
object c1, which in turn implies the sequencingpérations described above.

Beyond these technical details, it is importanintdice here that this sequential
propagation of operation calls will finally result a valid execution trace (i.e., an
execution trace respecting control and data depmieke expressed between actions
in the application model being simulated). Basicalbnce an action execution
terminates, it will simply trigger the execution afiother action that can logically be

executed after it. The problem here is that thehaeisms which determine the next
action to be scheduled is buried inside the implaaten of eachActionExecution
visitor class. If we want the Execution Model to desily customizable for the real-
time domain (which is our primary objective), weeally need to extract this
scheduling aspect from visitor classes, and addexlicit entity that would be
responsible for scheduling the execution of actio®fce the entity which is
responsible for scheduling action executions isartyeidentified, it can be easily
specialized to capture various execution schenmsegponding to various execution
semantics (i.e., semantics implied by a profileirdébn). Perceptive readers may
wonder whether the need for an explicit scheduferthe consequence of the
sequential Java implementation.

If we make abstraction of the actual Java statesnantl the way they would be
interpreted by a Java compiler (i.e., sequenti@ppgation of synchronous and
blocking operation calls), the classifier behaviéreach active object c1 and c2 is
theoretically started asynchronously and perfornoadits own thread. What is
important to notice is that active objects are $yngtarted by the Execution Model,
and finish their execution once their associatedsifier behavior terminates. There is
neither a well identified entity in the Executionolel describing scheduling rules,
nor synchronization primitives that could be usedtie scheduler to synchronize
running active objects (e.g., operations or sigeakptions that could be associated
with classObjectof the Execution Model depicted in Figure 1).

This architecture is not well suited to our primasigjective: Specializing the
Execution Model in order to reflect concerns of tleal-time domain. For this
purpose, we believe that introducing an explictll arell-identified entity responsible
for scheduling active objects and/or action execgiis mandatory, along with well-
identified primitives for synchronizing and schadgl concurrent entities. Existing
solutions (discussed in the next section) in mddaled simulation of concurrent
systems could inspire the modifications requiredHeyExecution Model.

3 Related works

In the field of Hardware Description Languages (Hpldesigners have already been
facing the issue of simulating hardware systemsdfwiare intrinsically concurrent)
on design platforms which are typically not coneatr SystemC [9, 10] is a
representative example of solutions put into pcacin this domain in order to solve
this issue. It basically consists of a set of Cxtersions and class definitions (along
with a usage methodology), and a simulation keffioel executing them. These
extensions include handling of concurrent behayitinse sequenced operations and
simulation support. The core of SystemC is basedawrevent-driven simulator,
where processes are behaviors and events are syirdtion points that determine
when a process must be triggered. The SystemC slignecbntrols the timing, the
order of process execution and handles event catiidins. It provides primitives to
synchronize and notify processes (ewgait() and notify() primitives). Concretely,
similar mechanisms could be easily integrated i fiiML Execution Model, by

adding a scheduler and primitives likait() andnotify() (which would be associated
with classObjec).

More generally, in the field of model-based simiglatof concurrent systems,
generic approaches such as Ptolemy [13] and Mo¥H@d4] should also be
considered. Ptolemy focuses on modeling, simulatowl design of concurrent, real
time, embedded systems. This approach is basechemdtion ofactors which
communicate through an interface which hides theiernal behaviour and is
composed oports Models are built from actors andlations between their ports,
with a director in charge of interpreting the relations betweentgand the values
available on the ports. The director of a modekgithe execution semantics of the
model as the rules used to combine the behavioits @bmponent actors. In fact, a
director may represent a family of execution seiwar#gnd may have parameters such
as a scheduling policy. Ptolemy comes with a nuntdfedirectors ranging from
Synchronous Data Flow for discrete time signal pssing to Continuous Time for
modeling physical processes. It supports a DiscEatent model of computation
which is similar to the execution model of SystenaS,well as a Process Network
model of computation in which asynchronous process® synchronized on the
availability of their inputs (contrary to CSP, ptmihg data is never blocking, only
getting data may block a process if the data isyebtavailable). In Ptolemy, actors
are autonomous entities with a behavior which mayekecuted in its own flow of
control. However, in many models of computatiortoes are activated in sequence
according to a static or dynamic schedule. Whahortant to notice here is that the
Director / Actor architecture of Ptolemy is flexébénough to support multiple models
of computation, that is to say multiple executi@mantics. Regarding the fUML
Execution Model, a similar architecture could beomtdd: Active objects and/or
action executions could be considered as actodstrenexplicit entity responsible for
scheduling their execution could be a kind of Rtoledirector. Defining a
specialization of the Execution Model for a givgrpkcation domain (i.e., explicitly
capturing the execution semantics implied by a il@ofvould therefore basically
come to extending corresponding classes in theutieecmodel, and overloading or
implementing some of their operations.

Like Ptolemy, ModHel'X defines a unique generic @ation engine to support all
MoCs. Consequently, ModHel'X is well adapted fotelhegeneous systems modeling.
It adopts a model-based approach where the wholavioer is represented by a set of
blocks, ports and unidirectional lines. A snapdteded execution engine is proposed
for interpreting this structure. As described id][la model execution is a sequence
of snapshots. To compute each snapshot, the dgonirovides the model with
inputs from the environment and builds an obseovadif the outputs, according to its
current state. This process has a generic strucfust, choose a component to
observe, then observe its behavior in responsestdnputs, and propagate this
observation according to the relations within thedel structure. This generic
algorithm for executing models relies on such piiei operations which can be
refined for each model of computation. The semarticthese operations define the
semantics of the model of computation. Indeed, Melt¥d has a more generic
execution engine and provides a finer grain desorippf models of computation than
Ptolemy. Concretely, we could also get inspiratdrihis architecture to modify the
fUML Execution Model. A class encapsulating the sfet-based execution engine

could be integrated in the Execution Model, anccideing the Execution Model for
a given application domain would basically come pyovide particular
implementations for the operations described above.

Coupling with existing and more static approacheshsas TimeSquare [16] could
also be considered. TimeSquare provides an enveahfor modeling and analyzing
timed systems. TimeSquare supports an implementatib the Time Model
introduced in the UML MARTE profile and the CCSLntpuage (Clock Constraint
Specification Language). It displays possible tewelutions as waveforms generated
in the standard VCD format. These evolutions ctuistia scheduling trace.
TimeSquare takes as input an UML model and a CC8teinapplied to the UML
model. The CCSL model is used to specify time caists and apply a specific
behavioral semantics on a model. The result pratlbgeTimeSquare is a sequence
of steps (Scheduling Map) that can be used by meate¢ools for analysis/simulation
purposes. Concretely, coupling the fUML Executionddl would mean that a CCSL
model must be generated for a given applicationehahd that the generated model
reflects the time and concurrent semantics of thlieation domain for which a
profile is defined. Scheduling maps generated byeBquare could then be “played”
by the Execution Model. Again, modifications in thechitecture of the Execution
Model would be required, and would mainly consistadding an explicit entity
responsible for triggering executions of activeeatt§ and actions, with respect to the
scheduling map generated by TimeSquare.

4 Introducing an Explicit Scheduler in thefUML Execution M odel

In section 2, we have shown that the executionfopaed by the fUML Execution
Model are purely sequential. We have highlighteel afvsence of an explicit entity
responsible for scheduling the execution of actiodlie have identified in section 3
different approaches for modeling and simulation coincurrent systems. Each
approach contains an entity and primitives to adntvehavior executions. We
propose in this section a lightweight modificatioihthe Execution Model following
this general idea. The goal is to break the sedpleaxecution and provide the ability
to control the start of each action execution, ey that can be easily overloaded (so
that it is possible to cope with multiple schedglipolicies). We introduce for this
purpose an explicit scheduler into the Executiomlehoas illustrated in Figure 4.

SemanticStrategy Locus ActivityNodeActivation

+locus +schedulingList

SelectNextActionStrategy

+ getName() : String

+ selectNextAction(...) 0.1 | +scheduler 0.1

Scheduler

— + void start()
FIFOselectNextActionStrategy + selectNextAction(ArrayList<ActivityNodeActivation> schedulingList) : ActivityNodeActivation
+ selectNextAction(...) + updateSchedulingList(ArrayList<ActivityNodeActivation> schedulingList, ActivityNodeActivation activation)

Fig. 4. Description of the Scheduler in f{UML Execution Mgbd

The classSchedulermanipulates a list ofActivityNodeActivation(i.e., this class
represents the visitor class of UML::Action) depittby the propertgchedulingList
which contains the list of all actions ready to @xe (i.e., an action is ready to
execute if all its control and data tokens are labte). Scheduleroffers several
operations that can be used to control executidractions. These operations are
called in the body oftart () which actually start the behavior of the scheduldre
operationselectNextAction(dletermines the next action to be executed, byetitig

an element fromschedulingList according to a given scheduling policy. The
operationupdateSchedulingList (determines the potential successors for the last
executed action (i.e., with respect to control atata dependencies within the
executed activity) and adds them to the schedlikihg

To capture several scheduling policies that cooldespond to different execution
semantics, we rely on the strategy pattern propasethe Execution model, itself
based on the clasgemanticStrateggfor more details about the strategy pattern, see
[11]). In the fUML execution modelSemanticStrategis used to address semantic
variation points of UML, with a refinement of thitass for each semantic variation
point of UML (e.g., there is a class callégtNextEventStrategwhich is introduced
to address the UML semantic variation point reldtethe selection of an event from
an object’s event pool). Fixing a given semantigateon point then comes to refine
the corresponding strategy class, by providing raplémentation for the operation
capturing the strategy.

Following this pattern, supporting different schigaiy policies amounts to refine
the classSelecNextActionStratedgee Figure 4) for each new policy and to overload
the selectNextAction(pperation to capture the underlying behavior. lin case, we
introduce the clasSelecNextActionStrategyhose operatioselectNextAction()s
overloaded in order to encapsulate the behaviamef particular scheduling policy.
For example FIFOSelectNextActionStrategg a concrete class that implements a
simple FIFO strategy (i.e., by “FIFO”, we simply amethat actions are executed
respecting their order of appearance in a list ofioa activations such as
shedulingList In order to plug the scheduler onto the fUML ex@gon model, we
also modify the behavior ofictivityNodeActivationin order to let the scheduler
determine the next action to be executed aftevangictivityNodeActivatiorfinishes
the execution of its visited action. Figure 5 showssequence diagram of an
interaction trace between the scheduler and amractihe scheduler executes the
operation selectNextAction (Ythat chooses one action from its scheduling list
according to a certain policy. Its implementatiariually consists in delegating the
choice to aSelectNextActionStrategslass (in this case, the policy is the one of
FIFOSelectNextActionStrategiNote that thd oci class dynamically determines the
various semantic strategy classes to be used,davi has been correctly configured
before launching the execution). Then, the scheduviggers the execution of the
selected action. The behavior of the selected masoperformed by the operation
doAction() The operatiosendOffer(then propagates tokens to the next actions that
can logically be executed after it, but it does trigger anymore the execution of
these actions. The scheduler indeed calglateSchedulingList(fo add these
potential successors into the scheduling list. fidgw action to be executed is selected
by calling selectNextActiof). This behavior is repeated until the scheduliisg
becomes empty (i.e., the execution of the actigitiinished).

\ :Scheduler | | :ActivityNodeActivation
T T

|
w | selectNextAction()

|

|

|

> |

SchedulingList |
not empty(g) 4—‘ receiveOffer() !

doAction()
—»

sendOffer()

:|—>

updateSchedulingList()
—»

Fig. 5. Execution trace of scheduler interactions withacti

5 Conclusion

The ongoing OMG standard on the semantics of adational subset (fUML) for
executable UML models defines a general-purposeutia model for a subset of
UML. This subset includes non trivial mechanismgrryging concurrent and
asynchronous execution semantics (e.g., activectsyjsignals, etc). Our objective
was to evaluate how far the current definition lné fUML Execution Model can
support formalization of concurrent and temporahaetic aspects required for real
time embedded system design and analysis. As shotre study, the current form
of the fUML execution model is not suited to thisjective, mainly due to the way
concurrency and asynchronous communications avalychandled.

We have mainly shown that the current architectdiiiie fUML Execution Model
suffers the lack of explicit mechanisms for mangimg and synchronizing
concurrent entities. Existing solutions for embeatidgstem simulation indicate that it
is possible to provide much more adapted and t&atislutions. We proposed some
concrete modifications regarding the architectufehe fUML Execution Model,
inspired by these solutions. We took care of mining changes in the architecture,
so that we can leverage as much as possible aexisiing Execution Model (and all
the work that its definition implied). The proposediution is mainly intended to
show that a modification of the fUML Execution Mdds technically feasible and
reasonable in terms of efforts. However, furtheperiments are still required to
validate the proposed modifications. Additionallthis solution only reflects
executions by a single unit of computation (i.eonam-processor). The case of
executions onto multiple processing units will bedstigated in future works.

Another important aspect which has not been detailethis article concerns the
simulation of time in the Execution Model, whichadsrrently not supported. Time is
indeed considered as a semantic variation poinhimnvithe fUML Specification
(Subclause.3 of [2]). Consequently, a wide variety of time mtsdeould be adopted,
including discrete or continuous time. fUML doeg meake any assumptions about
the sources of time information and their relategchanisms. Therefore, to support
timed execution semantics and underlying timingpprties (e.g., ready time, period,

deadline, etc.), it is necessary to extend the i@t Model with both necessary
syntactic and semantic concepts. Time is a ceaspéct to our work. Resolving the
concurrency issues of the fUML Execution Model lbopting solutions similar to
those proposed in the Related Works could thergfaréghe same move, provide a
solution for the Time issue of the Execution Moddtimately, our goal is to provide
a kind of methodological and tooled framework fbe tdefinition of UML profiles,
where the semantic specializations of UML implied & profile will take as much
considerations as syntactic specializations.

References

areD

10.
11.

12.

13.

14.

15.
16.

OMG. A UML profile fore MARTE: Modeling and Analys of Real-Time Embedded systems
Version 1.0. 2009

OMG. Semantics of Foundational Subset for ExecataillL models FTF-Beta2. 2009
Model driven solutionhttp://portal.modeldriven.org/content/fuml-refereAamplementation-download
Agha, G.: Actors: a model of concurrent computatiodistributed system. MIT Press, 1986

Selic, B., Ward, P.T., McGee, G.Gullekson.: Reah&iObject-Oriented Modeling. Publisher Wiley,
John & Sons, Inc., October 1994, ISBN-13: 978042153

Terrier, F., Fouquier; G., Bras, D., Rioux, L., WV&eem, P., Lanusse, A.: A real time object modiel.
International Conference on Technology of Objecte@ed Languages and Systems, TOOLS
Europe'96, Paris, France, Février 1996.

Eker, J., Janneck, J.W., Lee, E.A,, Liu, J., Liu, Mudvig, J., Neuendorffer, S.,Sachs, S., Xiong, Y
Taming heterogeneity — the Ptolemy approach. Pdiege of the IEEE, Special Issue on Modeling
and Design of Embedded Software 91(1)(2003) 127-144

Basu, A., Bozga, M., Sifakis, J.: Modeling hetemeggus real-time systems in BIP. In: 4th IEEE
International Conference on Software Engineerirdyfearmal Methods (SEFMO06). (2006) 3—-12

Open SystemC Initiative. SystemC 2.0.1 Languagerate Manual, 2004.

SystemC. Official web site of SystemC communiitiyp://www.systemc.org/

Design Patterns: Elements of Resuable Object-GrikSoftware, Gamma, Helm, Johnson, Vlissides,
Addison-Wesley, 1995, pp. 163-174, 331-344

OMG. Unified Modeling Language: Superstructuresiar 2.2. formal/2009-02-02

Eker, J., J. W. Janneck, E. A. Lee, J. Liu, X. LJuLudvig, S. Neuendorffer, S.Sachs, and Y. Xiong:
Taming heterogeneity — The Ptolemy approd@toceedings of the IEEE, Special Issue on Modelin
and Design of Embedded Software, 91(1):127-144)alsr2003.

Boulanger,F., Hardebolle, C.: Simulation of Multffalism Models with Mod-Hel'X. In:
Proceedings of ICSTW'08, IEEE Comp. Soc. (2008}318

Executable UML/SYSML semantics. Model Driven Sadu. Final project report. November 2008.

Charles André, Benoit Ferrero, Frédéric Mallet. &B8quare: a Multiform Time Simulation
Environment. Sophia Antipolis and Formal Analysistéshop, Décembre 2008.

