
HAL Id: hal-01054486
https://inria.hal.science/hal-01054486

Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Task Migration for Fault-Tolerant FlexRay Networks
Kay Klobedanz, Gilles B. Defo, Henning Zabel, Wolfgang Mueller, Yuan Zhi

To cite this version:
Kay Klobedanz, Gilles B. Defo, Henning Zabel, Wolfgang Mueller, Yuan Zhi. Task Migration for
Fault-Tolerant FlexRay Networks. 7th IFIP TC 10 Working Conference on Distributed, Parallel and
Biologically Inspired Systems (DIPES) / 3rd IFIP TC 10 International Conference on Biologically-
Inspired Collaborative Computing (BICC) / Held as Part of World Computer Congress (WCC) , Sep
2010, Brisbane, Australia. pp.55-65, �10.1007/978-3-642-15234-4_7�. �hal-01054486�

https://inria.hal.science/hal-01054486
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Task Migration for Fault-Tolerant FlexRay Networks

Kay Klobedanz, Gilles B. Defo, Henning Zabel, Wolfgang Mueller, and Yuan Zhi

University of Paderborn/C-LAB

Abstract. In this paper we present new concepts to resolve ECU (Electronic

Control Unit) failures in FlexRay networks. Our approach extends the FlexRay

bus schedule by redundant slots with modifications in the communication and slot

assignment. We introduce additional backup nodes to replace faulty nodes. To re-

duce the required memory resources of the backup nodes, we distribute redundant

tasks over different nodes and propose the migration of tasks to the backup node

at runtime. We investigate different solutions to migrate the redundant tasks to

the backup node by time-triggered and event-triggered transmissions.

1 Introduction

FlexRay is the emerging standard for safety-critical distributed real-time systems in ve-

hicles [5][15]. It implements deterministic behavior and comes with high bandwidths.

For increased safety, it provides redundant channels to guarantee communication if one

channel is corrupted. Nevertheless, since an ECU (Electronic Control Unit) failure still

often results in the malfunction of the whole system, the main question remains how

to ensure the correct behavior of a safety-critical distributed system in such a case.

As presented in [4], different techniques for tolerating permanent, transient, or inter-

mittent faults are applied. In our article, we consider ECU failures based on permanent

hardware faults which are compensated by means of redundancy. We focus on the repli-

cation of tasks and the activation of backup nodes. The failure results in an execution

of the redundant tasks on a different node which induces changes in the communication

at runtime. Unfortunately, FlexRay only supports static bus schedules where each slot

is reserved for an individual sender and the slot assignments can only be changed by a

bus restart, whose timing is not exactly predictable. In contrast, our approach extends

bus schedules by redundant slots and considers communication dependencies already at

the system design phase before network configuration. Additionally, as ECU function-

alities are distributed over several ECUs, the failure of an ECU which executes several

functions may have a big impact on the correct operation of the whole system. We

adopt this approach and assign two functions to an ECU.1 One implements the main

ECU function; the other one is a redundant mirrored instance of another ECU func-

tion, which is activated on a failure of the other ECU (see Fig. 1 and [4]). Here, just

the failure of one ECU can be compensated. A second node failure may lead to the

failure of the complete system again. In Figure 1, for example, the failure of node n1

disables its own task set and the backup for node n2. The additional failure of node

n4 irrecoverable corrupts the functionality of node n1. We introduce backup nodes to

1For the matter of simplicity, we presume that a function corresponds to a task.

52 K. Klobedanz, G. B. Defo, H. Zabel, W. Mueller, Y. Zhi

Fig. 1. Redundancy with mirrored tasks on other nodes.

completely replace any faulty node and presume a homogeneous network of nodes with

identical resources. This redundancy raises the fault tolerance of distributed networks

and we can furher improve it by simply increasing the number of backup nodes. This

approach additionally requires the migration of the main and the redundant function

of the faulty ECU from other nodes and their migration to the backup node. The addi-

tional advantage is that the redundant function can immediately start executing before

the migration, e.g., t1* on node n4. After the migration, the execution is resumed by

the backup node. This yields to the initial setup where every node is executing only

its main functionality again and keeps a redundant instance of a function from another

ECU which compensates an additional failure of an arbitrary node.

In this article, we present different variants for such a task migration and evaluate

them with respect to their time consumption, predictability, and impact to the commu-

nication. A detailed description of our approach is given in Section 4. The evaluation is

presented in Section 5 before the final section concludes with a summary.

2 Related Work

Several approaches like [14] deal with the analysis of the FlexRay protocol and its

optimization. They present several heuristics to determine proper configurations and

parameterizations for the FlexRay bus based on the static [11][7][10] and the dynamic

segment [14][13]. In general, their optimizations and the resulting configurations as-

sume that the executed tasks are statically linked to the nodes of the FlexRay network.

[4] considers a replication of tasks and a more flexible task to node assignment. Based

on these assumptions they determine the reconfiguration capabilities of the FlexRay

bus.

Task migration itself is a hot topic in current automotive research. For example,

[1] describes a concept for a middleware, which uses task migration further described

in [9] to increase the reliability of distributed embedded systems with soft real-time

constraints, e.g., for infotainment systems. In contrast to our work, they do not consider

safety-critical components and the runtime reconfiguration of FlexRay networks.

Task migration at runtime was considered in the context of mobile agents like [12]

and [2]. However, we are not interested in principle architectures rather than on their

Task Migration in Fault-Tolerant FlexRay Networks 53

technical realization and the efficient task migration in the context of FlexRay. We are

not aware of other related approaches in this area.

3 FlexRay

FlexRay was introduced to implement deterministic and fault-tolerant communication

systems for safety-critical distributed real-time systems like x-by-wire. The main bene-

fits of FlexRay are:

– Synchronous and asynchronous data transmission: FlexRay offers cycle-based

time-triggered communication complemented by an optional event-triggered trans-

mission mode.

– Determinism: The time triggered transmission mode of FlexRay ensures real-time

capabilities of the communication because it guarantees deterministic behavior

with a defined maximum message latency.

– Redundant communication channels with large bandwidth: FlexRay offers two

redundant channels for safety-critical systems. Each channel offers a bandwidth up

to 10 Mbit/s with little latency.

(a) (b)

Fig. 2. Components of the FlexRay communication cycle (a) and communication controller (b).

A communication cycle can be composed of a static and an optional dynamic seg-

ment (see Figure 2(a)). In the static segment, the time-triggered data transfer is carried

out via TDMA (Time Division Multiple Access). The transmission slots of the segment

are assigned to one sender node by a globally known synchronously incremented slot-

counter. The static segment consists of a fixed number of equally sized static slots (2 –

1023). The event-triggered dynamic segment realizes the bus access via FTDMA (Flex-

ible Time Division Multiple Access) and consists of dynamic slots with variable size.

Dynamic slots are composed of minislots whose number depends on the length of the

54 K. Klobedanz, G. B. Defo, H. Zabel, W. Mueller, Y. Zhi

message to transmit (max. 7986 per cycle). The arbitration is accomplished by a prior-

ity assignment to nodes (Frame IDs). If a node has nothing to send, only one minislot

is unused and the next node gets the opportunity for transmission. The size of the slots

and minislots, the cycle length, the size of messages (frames) as well as several other

parameters are defined through an initial setup of the FlexRay schedule, which cannot

be changed during runtime. Figure 2(b) shows the basic components of a FlexRay node.

A host for the functionality of the ECU and a communication controller (CC). The CC

is the core component of FlexRay because it implements the actual protocol. It provides

the communication interface to the bus through a bus driver and it performs the send-

ing/receiving and the decoding/coding of data messages (frames). For more detailed

introduction to FlexRay, the reader is referred to [6].

4 Migration of Redundant Tasks in FlexRay Networks

Our concepts are based on existing approaches for redundant tasks to improve the ro-

bustness of FlexRay networks in case of a node failure. To further increase the fault

tolerance of a FlexRay network, our concept extends them by the improvements out-

lined in the next subsection.

4.1 Overview

Our improvements for an increasing fault tolerance are:

– Extension with additional backup node(s): Backup nodes can completely replace

any faulty node as they provide the same resources as the other nodes. To reduce

the memory demand for the backup node, we migrate necessary tasks rather than

storing instances of all tasks on a backup node. This results in a homogenous system

topology with similar node capacity.

– Migration to the backup node at runtime: During the migration, the functional-

ity is immediately executed by the redundant instance on another ECU. After the

migration, the corresponding task execution is resumed on the backup node. This

yields to the initial system setup where every node executes a main function and

keeps an additional redundant instance from another ECU.

Additionally, we add a coordinator component, which is in charge of the commu-

nication in the system. This can be realized by two different strategies. First, the co-

ordinator can be distributed on different nodes. Second, the coordinator can – as it is

realized here – run on an extra node to keep the topology described above with ECUs

executing one main function, represented as one task. Figure 3 presents the topology of

a FlexRay network with an extra backup and coordinator node.

As shown in Figure 3, the coordinator maintains a task list, with main and redundant

tasks of every node and a communication matrix (see Table 1) with the corresponding

transmission/reception slots. These structures will be updated when modifications in

task and slot assignments are required due to node failures, execution of redundant

tasks, or task migrations. The coordinator is configured to monitor messages from all

Task Migration in Fault-Tolerant FlexRay Networks 55

Fig. 3. Topology with backup and coordinator node before a failure of Node n1.

slots. Using the information from the task list and the communication matrix, the coor-

dinator detects node failures monitoring the bus traffic. If a malfunction of an ECU is

detected, the coordinator sends a message to the appropriate nodes to activate the corre-

sponding redundant task instance and to start the transmission of the particular tasks to

the backup node. This message also contains information about changes in the slot as-

signment for receiving nodes. When the transmission is complete, this is recognized by

the coordinator. Then, the coordinator activates the migrated task on the backup node at

the same time it deactivates the redundant task and informs the receiving nodes about

rearrangements in the slot assignments. Figure 4 illustrates this process for the system

shown in Figure 3 in case of a failure of node n1. The synchronous and asynchronous

static segment dynamic segment

Slot s1 s2 s3 s4 ... d1 d2 ...

Node n1 t1:tx - t1:rx - ... - - ...

Node n2 t2:rx t2:tx t2:rx - ... - - ...

Node n3 t3:rx - t3:tx t3:rx ... - - ...

Node n4 - - - t4:tx ... - - ...

Table 1. Example of a communication matrix for a topology with 4 nodes.

data transmission of the FlexRay protocol allows different implementations of our ap-

proach. It can be realized in the static segment, in the dynamic segment, or in both. In

the following we introduce alternative scenarios for the previous example.

4.2 Exclusive Usage of Static Segment

For an exclusive usage of the static segment, additional static slots for the coordinator,

the backup node, and the migrations have to be reserved. This extends the static seg-

56 K. Klobedanz, G. B. Defo, H. Zabel, W. Mueller, Y. Zhi

Fig. 4. Topology with backup and coordinator node after a failure of Node n1.

ment as shown in Table 2. The advantage of this solution is the predictability for the

transmissions of all nodes as well as the task migration. The duration ∆migration of the

copy process for a task with the size Φtask can be computed by

∆migration = #cycles ·∆cycle with #cycles =

⌈

Φtask · gdBit

∆slot

⌉

, (1)

where #cycles is the number of cycles and ∆cycle the length of a cycle. The cycle length

and the nominal bit time (inverted bit rate) gdBit are configured in the FlexRay sched-

ule as well as the slot length ∆slot , which is related to the number of needed cycles

for a task migration (#cycles) (ref. (1)). Table 2 presents the static slots and the result-

ing assignments and changes for a failure of node n1. In addition to slots s1,..,s4 for

the primarily communication between the four nodes, slots for the coordinator (s5) and

the transmission of the redundant task during the migration process (s6,...,s9) – here

t1* transmits in s9 – have to be reserved in the schedule. For the migration, a slot for

each node (s10, ..., s13) and a slot for the backup node (s14) has to be reserved. The

communication matrix shows that all nodes receive the messages from the coordinator

(s5) and the coordinator monitors all slots. Node n4 uses slot s13 to copy the task t1*

to the backup node (t1*:mig) and node n2 uses s11 (t2:mig). During that period, the

redundant task t1* transmits its data in slot s9 and receives from slot s3. The corre-

sponding tasks/nodes are informed via the coordinator message to listen to s5. When

the migration is finished, the backup node receives the advice (bk:rx) to activate its mi-

grated instance of t1*. Thereafter, task t1* on the backup node reads from slot s3 and

sends via slot s14 whereas the receiving tasks are informed to listen to this slot. Simul-

taneously, node n4 stops executing its instance of task t1*. All transmissions as well

as the migration are time-triggered and have a guaranteed maximum latency. But only

few of the reserved slots are required in the case of a node failure. This results in a big

overhead of slots. The setting of an appropriate static slot size (∆slot) makes the situa-

tion even worse. To get a small number of cycles needed for a migration (#cycles), slots

Task Migration in Fault-Tolerant FlexRay Networks 57

should be considerably large. Beside the fact that FlexRay as well as system properties

(e.g., sampling rates of tasks) limit the maximal slot length, this causes a significant

increase of the overhead because every slot needs to be equally sized independent of its

transmitted content.

4.3 Exclusive Usage of Dynamic Segment

To minimize the overhead described above, it is possible to exclusively use the event-

triggered dynamic segment. To guarantee the correct transmission of data within the

dynamic segment, FlexRay only allows a node to send if its frame completely fits into

the remaining minislots (ref [6]). In the case that it does not fit, the node has to wait

for the next cycle. This makes the communication nondeterministic, particularly if the

dynamic segment is also used for other event-based messages like error codes etc. Thus,

the calculation of the time needed for the migration within the dynamic segment is more

complex. The value for (∆migration) can be determined using equation (1). The slot size

(∆slot) is dynamic and is determined by

∆slot = ∆dynamic −∆hp with ∆hp =

i

∑
k=1

∆ f ramei
. (2)

Equation (2) shows that the available dynamic slot size for the migration is given

by the complete length of the dynamic segment (∆dynamic) decremented by the slot sizes

used by frames with higher priority (∆hp). These results inserted into Equation (1) yield

to the migration time derived from the segment length and the priority assignment. The

communication matrix in Table 3 shows the assignment. The coordinator gets the high-

est priority (d1) because it transmits messages of highest priority. During the migration

process task t1* running on node n4 uses d2 to send its data. The other reserved slots

(d3-d5) are unused. When the migration is finished, the activated backup node blocks

the dynamic slot d6 and d2 remains unused. The communication matrix also shows that

the migration of the tasks gets the lowest priorities (d7,..., d10). Here, d8 is used for

the migration of t2 and d10 for the migration of t1*. To permit access to the dynamic

segment, the data size of the migration process must fit in the space left influenced by

prior messages. Additionally, the coordinator informs the backup node how much data

to transmit per cycle. This usage of the dynamic segment makes this solution more flex-

ible than the use of the static segment. Even though the transmission is event-triggered

and nondeterministic, it can be guaranteed that sufficient data are transmitted due to a

proper priority assignment. The size of the dynamic segment has to be initially config-

ured based on the system properties and the message sizes to reach the desired migration

process duration ∆migration along Equation (2). Because the utilization in the dynamic

segment is more flexible and the static slot size is independent of the migration data,

the potential overhead of this solution is considerably less than in the static version

of Table 2. In particular, each unused slot in the dynamic segment only consumes one

minislot. Nevertheless, the major drawback is the partial loss of determinism, which is

an important requirement for safety-critical systems.

58 K. Klobedanz, G. B. Defo, H. Zabel, W. Mueller, Y. Zhi

4.4 Usage of Static and Dynamic Segments

A compromise between the previous two solutions is given by the configuration given

in Table 4. Here, we achieve a reduction of overhead in compliance with a determin-

istic communication. The communication matrix shows that the coordinator node (s5),

the redundant task instances (s6,..., s9), and the backup node (s10) communicate time-

triggered over reserved static slots like in the exclusive static segment solution. In con-

trast, the migration itself is performed via the dynamic segment (d1,...,d4), which re-

duces the overhead significantly as the size of the migration frames only influences the

size of the dynamic segment and unused slots in the dynamic segment generate less

overhead. Hence, the size of the static slots remains independent of the migration data.

In summary, this yields to a higher flexibility in the schedule configuration and com-

bines the benefits. On the one hand, we guarantee a maximum latency and a determinis-

tic transmission for the important messages using the static segment. On the other hand,

we reduce the overhead by the exclusive assignment of the dynamic segment to the mi-

gration process. Through this, the migration time is even more predictable because the

capacity required by prioritized tasks is omitted.

5 Experimental Results

We evaluated the presented alternatives by simulations with our SystemC Flex-Ray

library. SystemC is a system design language providing means to model application-

specific hardware and software at different levels of abstraction [3]. The implemented

FlexRay CC supports the simulation of static and dynamic segments for one communi-

cation channel. All necessary modules specified in the FlexRay standard (see [6]) are

also covered by the implementation. Our model consists of six modules implement-

ing communication nodes along the topology shown in Figure 3. Each node uses an

instance of the CC for the communication. All CCs are in turn connected to a transac-

tion level (TLM) bus object. The CC model can be configured with the same controller

host interface (CHI) files like hardware CCs. This file contains all necessary param-

eters to configure the registers and message buffers for the communication. The bus

communication applies TLM 2.0 [8]. Figure 5 depicts a communication sequence be-

tween two communication controllers. The communication controllers act as initiators

of the transaction during the communication process and the bus acts as the target. We

use approximately timed TLM 2.0 coding style to model the communication with the

bus module. The communication is divided into four phases: Begin/end request and

begin/end response. As shown in Figure 5, CONTROLLER1 starts a write transaction,

with a begin request. Immediately after the receipt of the transaction, the bus module

notifies CONTROLLER2 about the start of the data transmission with the time required

for the data transfer. Afterwards, CONTROLLER2 starts a read transaction. Both con-

trollers then wait until they have received a confirmation from the bus about the end of

the data transfer. The SystemC model consists of 6 nodes, 6 CCs, and 1 bus module in

total. Nodes communicate via their respective CCs. Communication between nodes and

CCs is realized via callback methods. Each node has to implement receive and transmit

function, that are called by the FlexRay CC. Since we are using an abstract model for

Task Migration in Fault-Tolerant FlexRay Networks 59

the evaluation, we did not actually implement the migration process itself. Instead we

simulate the reconfiguration/migration duration since timing analysis is our main focus.

Simulation time =

10ns + delay

Controller1

(Initiator)

FlexRay_Bus

(Target)

Controller2

(Initiator)

READ, BEGIN_REQ, delayTLM_ACCEPTED

TLM_ACCEPTED

WRITE, BEGIN_REQ, delay
WRITE, BEGIN_REQ, delay

TLM_COMPLETED

READ, BEGIN_RESP, -WRITE, BEGIN_RESP, -

TLM_COMPLETED

Simulation time =

10ns
Simulation time =

20ns

Simulation time =

20ns + delay

w
a

it(d
e

la
y
)

no time elapses

1.1 Notify begin of

transmisssion

(Trick: use backward

path)

1. initiate a write

transaction on

forward path

3. notify end of

transmission on

backward path

3. notify end of

transmission on

backward path

2. initiate a read

transaction on

forward path

Fig. 5. Simulation of bus transmission.

Simulation Results In the following, we present the simulation results for one exam-

ple. For that we assume a size of 1 kByte = 8000 bit for a task to migrate (Φtask) and

configure the FlexRay Bus schedule by:

– ∆cycle = 600µs for static solution,

– ∆cycle = 600µs+400µs = 1000µs for dynamic and mixed solution,

– ∆slot = 50µs for the static segment with 14 slots,

– gdBit = 0,1µs/bit (equates to a bandwith of 10 Mbit/s).

The time needed for the migration within the static segment can be determined by

means of Equation (1) as:

#cycles =

⌈

Φtask · gdBit

∆slot

⌉

=

⌈

8000 bit · 0,1 µs/bit

50µs

⌉

= 16,

∆migration = #cycles ·∆cycle = 16 ·600µs = 9,6ms

For the (exclusive) assignment of the dynamic segment to the migration and the

usage of both transmission modes, the simulation also confirms the computed values,

e.g.:

#cycles =

⌈

Φtask · gdBit

∆slot

⌉

=

⌈

8000 bit · 0,1 µs/bit

400µs

⌉

= 2 with
i

∑
k=1

∆ f ramei
= 0,

∆migration = #cycles ·∆cycle = 2 ·1000µs = 2ms.

All numbers were additionally validated by our simulations which thus confirms the

applicability of our approach.

60 K. Klobedanz, G. B. Defo, H. Zabel, W. Mueller, Y. Zhi

6 Conclusion & Outlook

This paper presented different alternatives of redundant tasks and slots for the com-

pensation of node failures in safety-critical FlexRay networks. We introduced backup

nodes, which can replace any faulty node when our task migration is applied. With

this scalable approach, we further increase redundancy and fault tolerance through the

compensation of an additional failure of an arbitrary node. We presented three different

task migration strategies based on the transmission capabilities of FlexRay and evalu-

ated them by a SystemC simulation. The comparison of the proposed solutions showed

that the combined usage of static and dynamic segment improves the benefits and min-

imizes the disadvantages by providing deterministic communication with low overhead

and flexibility for task migration. On the one hand, it results in a maximum latency

for the transmission of functional relevant messages in the static segment. On the other

hand, it reduces the overhead through the exclusive assignment of the dynamic segment

to the migration process.

In future work, we will examine the distribution and redundancy of the coordinator

component within the system. By this, we avoid the potential “single-point of failure”

induced by the solution with a single coordinator ECU. The additional small memory

requirement resulting from the stored task list and communication matrix on several

nodes is neglectable.

7 Acknowledgements

The work described herein is supported by the BMBF through the ITEA2 VERDE

project (01S09012H).

References

1. R. Anthony, D. Chen, M. Törngren, D. Scholle, M. Sanfridson, A. Rettberg, T. Naseer,

M. Persson, and L. Feng. Autonomic middleware for automotive embedded systems. In

Autonomic Communication, 2009.

2. Lubomir F. Bic, Munehiro Fukuda, and Michael B. Dillencourt. Distributed computing using

autonomous objects. Computer, 29(8), 1996.

3. Donovan Jack Black David C. SystemC: From the Ground Up. KLUWER ACADEMIC

PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW, 2004.

4. Robert Brendle, Thilo Streichert, Dirk Koch, Christian Haubelt, and Jürgen Teich. Dy-

namic reconfiguration of flexray schedules for response time reduction in asynchronous

fault-tolerant networks. In ARCS, 2008.

5. Julian Broy and Klaus D. Müller-Glaser. The impact of time-triggered communication in

automotive embedded systems. In SIES, 2007.

6. FlexRay Consortium. Flexray communications system protocol specification version 2.1 rev.

A, Dec 2005. www.flexray.com.

7. Shan Ding, Hiroyuki Tomiyama, and Hiroaki Takada. An effective ga-based scheduling

algorithm for flexray systems. IEICE - Trans. Inf. Syst., E91-D(8), 2008.

8. Open System Initiative. Osci tlm2 user manual, software version tlm 2.0 draft 2, dcument

version 1.0.0, 2007.

Task Migration in Fault-Tolerant FlexRay Networks 61

9. F. Kluge, J. Mische, S. Uhrig, and Th. Ungerer. Building Adaptive Embeddd Systems by

Monitoring and Dynamic Loading of Application Module. In L. Almeida et al., editor,

Workshop on Adaptive and Reconfigurable Embedded Systems, St. Louis, MO, USA, April

2008.

10. Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Paul Milbredt. Flexray schedule op-

timization of the static segment. In CODES+ISSS ’09, New York, NY, USA, 2009. ACM.

11. L. Havet M. Grenier and N. Navet. Configuring the communication on flexray: the case of

the static segment. In ERTS’08, 2008.

12. H. Peine and T. Stolpmann. The architecture of the ara platform for mobile agents. In Proc.

of the First International Workshop on Mobile Agents. Springer-Verlag, 1997.

13. T. Pop, P. Pop, P. Eles, and Z. Peng. Bus access optimisation for flexray-based distributed

embedded systems. In DATE’07, 2007.

14. Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru Andrei. Timing analysis of the

flexray communication protocol. Real-Time Syst., 39(1-3), 2008.

15. A. Schedl. Goals and architecture of flexray at bmw. slides presented at the Vector FlexRay

Symposium, Mar 2007.

6
2

K
.

K
lo

b
ed

an
z,

G
.

B
.

D
efo

,
H

.
Z

ab
el,

W
.

M
u

eller,
Y

.
Z

h
i

static segment

Slot s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

Node n1 t1:tx - t1:rx - t1:rx - - - - - - - - -

Node n2 t2:rx t2:tx t2:rx - t2:rx - - - t2:rx - t2:mig - - t2:rx

Node n3 t3:rx - t3:tx t3:rx t3:rx - - - t3:rx - - - - t3:rx

Node n4 - - t1*:rx t4:tx t4:rx - - - t1*:tx - - - t1*:mig -

Coordinator co:rx co:rx co:rx co:rx co:tx co:rx co:rx co:rx co:rx co:rx co:rx co:rx co:rx co:rx

Backup - - t1*:rx - bk:rx - - - - - mig:rx - mig:rx t1*:tx

Table 2. Communication matrix for exclusive usage of the static segment.

static segment dynamic segment

Slot s1 s2 s3 s4 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Node n1 t1:tx - t1:rx - t1:rx - - - - - - - - -

Node n2 t2:rx t2:tx t2:rx - t2:rx - - - t2:rx t2:rx - t2:mig - -

Node n3 t3:rx - t3:tx t3:rx t3:rx - - - t3:rx t3:rx - - - -

Node n4 - - t1*:rx t4:tx t4:rx - - - t1*:tx - - - - t1*:mig

Coordinator co:rx co:rx co:rx co:rx co:tx co:rx co:rx co:rx co:rx co:rx co:rx co:rx co:rx co:rx

Backup - - t1*:rx - bk:rx - - - - t1*:tx - mig:rx - mig:rx

Table 3. Communication matrix for exclusive usage of dynamic segment.

static segment dynamic segment

Slot s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 d1 d2 d3 d4

Node n1 t1:tx - t1:rx - t1:rx - - - - - - - - -

Node n2 t2:rx t2:tx t2:rx - t2:rx - - - t2:rx t2:rx - t2:mig - -

Node n3 t3:rx - t3:tx t3:rx t3:rx - - t3:rx t3:rx - - - -

Node n4 - - t1*:rx t4:tx t4:rx - - - t1*:tx - - - - t1*:mig

Coordinator co:rx co:rx co:rx co:rx co:tx co:rx co:rx co:rx co:rx co:rx co:rx co:rx co:rx co:rx

Backup - - t1*:rx - bk:rx - - - - t1*:tx - mig:rx - mig:rx

Table 4. Communication matrix for ”mixed” usage of static segment and dynamic segment.

