N

N

Generation of Executable Testbenches from Natural
Language Requirement Specifications for Embedded
Real-Time Systems
Wolfgang Mueller, Alexander Bol, Alexander Krupp, Ola Lundkvist

» To cite this version:

Wolfgang Mueller, Alexander Bol, Alexander Krupp, Ola Lundkvist. Generation of Executable Test-
benches from Natural Language Requirement Specifications for Embedded Real-Time Systems. 7th
IFIP TC 10 Working Conference on Distributed, Parallel and Biologically Inspired Systems (DIPES)
/ 3rd IFIP TC 10 International Conference on Biologically-Inspired Collaborative Computing (BICC)
/ Held as Part of World Computer Congress (WCC) , Sep 2010, Brisbane, Australia. pp.78-89,
10.1007/978-3-642-15234-4_9 . hal-01054484

HAL Id: hal-01054484
https://inria.hal.science/hal-01054484
Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01054484
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Generation of Executable Testbenches from Natural
L anguage Requirement Specifications for Embedded
Real-Time Systems

Wolfgang Muellet, Alexander Bdi, Alexander Krupfy Ola Lundkvist

tUniversity of Paderborn/C-LAB, Paderborn, Germany
2Volvo Technology Corp., Mechatronics & Software, Batburg, Sweden

Abstract. We introduce a structured methodology for the gatien of
executable test environments from textual requirgrspecifications via UML
class diagrams and the application of the clasgifio tree methodology for
embedded systems. The first phase is a stepwisesfaranation from
unstructured English text into a textual normal nfoTNF), which is
automatically translated into UML class diagramdteA annotations of the
class diagrams and the definition of test casesdnyence diagrams, both are
converted into classification trees. From the sifamtion trees we can finally
generate SystemVerilog code. The methodologytiediniced and evaluated by
the example of an Adaptive Cruise Controller.

Keywords: Natural Language, UML, SystemVerilog, Testbenches

1 Introduction

Since the introduction of the electronic injectioontrol by Bosch in the 80s, we
observed a rapid growth of electronic systems asftivare in vehicles. Today a
modern car is equipped with 30-70 microcontrolless, called ECUs (Electronic
Control Units). With the acceptance of the AUTOSAfRndard and its tool support
there is a need for further automation in autonsofiystems developments, especially
in the first design phases.

Currently, the model-based testing process is basatifferent design stages, like
Model-in-the-Loop (MIL), Software-in-the-Loop (SIL)and Hardware-in-the-Loop
(HIL) tests. In this context, different testingrtiaare and software come into
application like MTest from dSPACE which comparesthe Classification Tree
Method for Embedded Systems (CTM/ES) which we @gbin our work. While
model-based testing is well supported by existogs, one of the major challenges
still remains the transformation of requirementstfirst executable specification. In
practice, such requirements are typically captasdinstructured text by means of
tools like Rational DOORS from IBM. Today, we caltemtify a major gap between
requirement specifications and first implementatbthe executable testbench.

This article closes this gap by introducing a dted semi-automatic
methodology for the generation of test environmeat UML class diagrams and
CTM/ES. The first phase performs a stepwise transition of natural language

sentences before they are automatically translated UML class diagrams. For
automatic translation, we defined a textual norfoain (TNF) as a subset of natural
English sentences, where classes, attributes,ifunsgtand relationships can be easily
identified. The generated class diagrams are atatbtay additional information so
that we can - after the definition of test scemariogenerate a testbench. In our
evaluation, we applied SystemVerilog and Questa&@imd linked it with native
SystemC code and C code generated from Matlab/8iknuTrhough we applied
SystemVerilog for the implementation of this casedg, our methodology is not
limited to SystemVerilog. The introduced methodglagay easily adapt to other
languages like e [10] as long as they support fanatoverage definition and random
test pattern generation.

The remainder of this article is structured asofe. The next section discusses
related work including CTM/ES and principles of étional verification as basic
technologies. Section 3 introduces the four stépsuo methodology. Thereafter, we
present experimental results in Section 4. Sed&ibinally closes with a summary and
a conclusion.

2 ExistingWork

In embedded systems design, test processes famatite software are based on
tool support with heterogeneous test infrastrusturEhe model-based testing process
is based on different development steps like Maal¢he-Loop (MIL), Software-in-
the-Loop (SIL), and Hardware-in-the-Loop (HIL) testin this context, different
testing environments come into application like @olbesk, MTest, and
AutomationDesk from dSPACE. Each test environmempictlly applies its own
proprietary testing language or exchange format aedcan find only very few
approaches to standard languages like ETSI TTCNeB the OMG UML testing
profile [16].

For natural language requirement specification wwapand management, Rational
DOORS or just MS Word or MS Excel is applied onegular basis. In order to
increase the level of automation, several XML-ba$ednats for enhanced tool
interoperabilities have been developed. For requerg captures, RIF (Requirement
Interchange Format) has been defined by HIS (Hésstmitiative Software) and is
meanwhile adopted by several tools. For the exaharfgtest descriptions, ATML
was introduced by IEEE [7] and TestML by the IMM@®oject [5]. The latter
provides an XML-based exchange format which suppdunctional, regression,
Back-to-back and time partition tests where stireah be defined by different means
like classification tree methodology for embeddgdtams (CTM/ES) [4], which is
introduced in the next subsection.

In general, there has been early work for the fdimation of text by entity
relationship diagrams like [1] and multiple work fitne generation of test cases from
test scenarios like [13]. However, we are not awareny work which combines
those for the generation of complete test enviroriméi.e., testbench architectures
and test cases) for real-time systems taking adgentf principles of functional
verification, e.g., functional coverage and coristrbased test pattern generation.

2.1 Classification Tree M ethod

Classification Trees were introduced by Daimletha 90's [6]. Classification trees
provide structured tree-oriented means for capgutést cases. Starting from an entry
node, the test input is divided into compositiasiassifications, and classes (see Fig.
1). A classification is divided into (equivalenagfsses which represent an abstract
set of test inputs each. A leaf class defineshéuran abstract set of possible input
values. Columns and rows below define a combinatidrbe. Therein, in each row
exactly one class of each classification is setediach row defines exactly one test
step and compares to different states of the statehine which controls the test
environment. The development of a classificatiodefined by the Classification Tree
Method (CTM) [6], which is based on the Categorytitan-Method [14].

composition |- —__ ——

classification |——mm "

/. i

class - [

Y

drg ;: \‘-.‘ \
! \

/ \
wet \\ raight \
\

\
\ \
combination table snow cuwe
1 braking to stop on ice

|
2 strong braking onwet road \TI ’J\ |
3 braking in snow covered curve T o

/N

\
ice

=

R

Figure 1. Classification Tree.

In its first introduction, classification trees dabed different variations of input
stimuli of a System Under Test (SUT). As embeddeidraotive systems testing is
based on sampling rates and time-based relationdiepveen stimuli, Conrad has
extended CTM to the Classification Tree Method Emnbedded Systems (CTM/ES)
[4]. As such, a classification tree is derived frahe interface of the SUT and
classifications from SUT inputs. The input domanpartitioned into different input
interval classes like safety-critical ranges andnep cases. This compares to the
definition of bins in the definition of a SystemVeg functional coverage definition.
For the management of more complex test suitescteses are additionally divided
into test sequences. Finally a timeline is assignezhch test sequence. That timeline
is typically related to the sampling rate in autdire systems testing. Each horizontal
line defines the inputs of a SUT for a specificdiperiod where a time point stands
for the activation or synchronization point of attestep. Therefore, an additional
transition functions, e.g., step, ramp, sinus, toabe assigned to a synchronization
point, which defines the transition between valokdifferent synchronization points.
In the combination table, different transition ftinoos are indicated by different line
styles between transition points (see Fig. 6).

2.2 Functional Verification

Our final verification environment based on the npiples of functional
verification. The notion of functional verificatiomenotes the application of
assertions, functional coverage, and constrainedora test pattern generation in
ESL and RTL designs. Such technologies are basetieoapplication of Hardware
Verification Languages like the IEEE Standards &yaterilog [8], PSL [9] and e
[10]. They support the formal and reusable daéinitof system properties for
functional verification. Standardized APIs like tBystemVerilog DPI additionally
support multi language environments and providenéerface to adapt proprietary
test environments. Meanwhile, there exist sevdtahtlies and methodologies for
additional support like VMM [2] and OVM [15].

3 Generation of Testbenchesfrom Requirements Specifications

Our methodology for the derivation of executablet8ymnVerilog testbenches applies
four different phases:

1. Formalization of Requirements

2. Transformation of Class Diagrams
3. Definition of Test Scenarios

4, Generation of the Testbench

We first provide a stepwise manual transformation umstructured natural
language English sentences into short structuregignsentences. The latter can be
seen as a first formal version of the requiremastthey directly correspond to UML
class diagrams to which they can be automaticallpsiated. After some simple
transformations of the class diagrams they aréhéurtranslated into compositions,
classifications, and classes of a classificatioee trfor embedded systems.
Concurrently, in Phase 3, test scenarios have taldweloped. We propose the
application of UML sequence diagrams though relabeéns can be applied as well.
The test scenarios compose the test sequences cfassification tree. Finally, we
can automatically generate a testbench from thesifieation tree. In our case, we
generate SystemVerilog code [8]. However, we cgrlyagny comparable Hardware
Verification Language which supports random tedtepa generation and function
coverage specification.

In the next paragraphs, we outline the four phasdarther details. For this we
apply an industrial case study from the automotivenain, i.e., an Adaptive Cruise
Controllers (ACC) [3]. The ACC is a cruise contesllwith a radar-based distance
control to a front (subject) vehicle. The ACC coig the cruise speed and the
distance to the front vehicle in the same lane i desired speed and a desired
distance as input.

3.1 Formalization of Requirements

Starting from a set of unstructured English serdsnthey are stepwise manually
formalized into a Textual Normal Form (TNF) which éomposed of unambiguous
sentences which can be automatically transformedarUML class diagram. Table 1
gives an example of some sentences before andladtéransformation.

Table 1 Transformation of Unstructured Sentences.

Unstructured Sentence Transfor med Sentences

The ACC system shall include a longAdaptiveCruiseController is entity.
range radar sensor capable 0fRadar is entity.

detecting data about moving objeq®\gaptiveCruiseController getsDataFrom
travelling in the same direction as theggqar.

driven vehiclelf a vehicle is identifie AdaptiveCruiseController has

by the ACC a safety distance shall b@urrentDrivenVehicIeSpeed

kept by actuating over the throttle o, rentprivenVehicleSpeed is between 20 and
applying the brakes if necessary. Thgos km/h}.
ACC system shall operate under PAdaptiveCruiseController has currentDistance

Iir;itelij 7rp])ee(:] rag.ge, betv]:/eeré 20 ".’mgcurrentDistance is between 1 and 150 meter:
125 km/h. The distance for detectip b SubjectVehicles).

vehicles shall be limited to 150 meteris

Uy

An unstructured textual requirement specificatigpidally includes information
about the logical description of the SUT and theiremment. It identifies operational
constraints and conditions but also logical comptsiefunctions, and attributes
which include important information to implemenstenvironments and test cases.
The structured transformations of that informatiwe an important step to support the
traceability of requirements to their correspondiegtbench components in order to
guarantee the compliance of the testbench to thgrements for an advanced quality
assurance.

The target of the first transformation phase is Tiextual Normal Form (TNF).
TNF is a machine readable presentation composeithreEé word sentences (plus
constraints) which are later automatically transfed into UML class diagrams as an
intermediate format. During the different manuahsformation steps, redundancies,
incompleteness, and contradictions can be muckradtntified by visual inspections
than in the unstructured sentences. In the fiegi,stve remove filler words and empty
phrases, likebasically’ and most likely. Thereafter, we transform long sentences
into short sentences without disambiguities andnmglete information as far as
possible. For instance, we split long sentencestmmform subordinate clauses into
main clauses and replace pronouns by proper ndilven, subjects and objects are
transformed into identifiers, articles removed, @aohtences translated into present
tense. If necessary, this also means to combinextend subjects/objects with
attributes like Adaptive cruise controller systéno ‘AdaptiveCruiseControllér
After this, each identifier has to refer to exactipe entity, i.e., two different
identifiers are not allowed to refer to the samttgand the same identifier shall not
refer to different entities.

Finally, for each identifieX, we add an explicit sentenck¥ Is entity. This helps
for later automatic translations and completenéexks by visual inspection. After
the identification of entities, we have to furtlpeoceed with attributes, functions, and
relationships. In details, we identify the attribsitof each entity and separate it into a
individual sentence of form<entity id> has <attribute id>) e.g., AdaptiveCruise
Controller has currentDistance(cf. Table 1). We also associate attribute sentence
with the corresponding constraints and append tleewiosed in curly brackets.
Thereafter, the identification of functions withnstraints is similarly and results in
sentences likeDriver does applyBrakePedallt is important to note here that we
combine the verb with the object id for the finglnme of the operation in the later
class diagram. Finally, all relationships betweaetities are identified and sentences
like ‘AdaptiveCruiseController getsDataFrom Radare separated.

We finally arrive at a forest structured transfotioa relationship between original
sentences at the root and TNF sentences at thesle#hen applying a simple tool
like MS Excel, we can easily sort the final sentnby the first identifier (i.e., the
subject), which helps to easily check for duplisabe subjects with similar meaning
and even for incomplete specifications which camndlyabe detected in the
unstructured original text. The final TNF is nothinelse than the textual
representation of Class Diagrams which can thusub@matically derived along early
works of Bailin [1]. For this consider the followgnTNF sentence examples:

» AdaptiveCruiseController is entity..

* AdaptiveCruiseController has currentDistance

e AdaptiveCruiseController does controlCurrentDistenc
e AdaptiveCruiseController getsDataFrom Radar.

We can easily see their direct correspondencest®ML Class Diagram in Fig. 2.
For more details, the reader is referred to [1].

AdaptiveCruiseController

+ currentDistance

+controlCurrentDistance()

getsDataFrom

\ 4
Radar

Figure 2. UML Class Diagram.

3.2 Transfor mation of Class Diagrams

In the second phase, Class Diagrams are strucamddannotated before they are
transformed into a classification tree, which isiatiermediate representation for the
automatic generation of the executable testbench.

As such, we first divide all classes into categodeenvironment>> for the test
environment ancg<system>> for the SUT by assigning UML stereotypes to them.
Thereafter, we analyze all attributes of all clasared divide them intdn, out, and

internal with corresponding stereotypes. Attributes of finst category are further
qualified by the delivering class as it is shownFig. 3. As we are dealing with
distributed systems, we have to compute the satribuaes by different classes. In
that figure, we can also see it category is actually redundant as the informatson i
already implicitly covered by the two other catager However, this redundancy
helps to better analyze the interaction betweendhsses and to detect further
inconsistencies as dth andout attributes of the DUT give a complete definitidme t
DUT interface. Thereafter, we have to formalize aftout>> attributes of all
<<environment>> classes. Let us considecurrentDrivenVehicleSpeedof
DrivenVehiclein Fig. 3 as an example. The original constragfires that the ACC is
only active between 20 and 125 km/h (see also fwem class in Fig. 3).
Considering a maximum vehicle speed of 250 km/h,cama formalize it by the
definition of five intervals with 20 and 125 as ger values. In SystemVerilog syntax,
this is defined a¢[0:19], 20, [21:124], 125, [126,260]} This example shows that
several constraints can be retrieved from the maigrequirement specification. In
practice, additional conventions and standards I&k€ 61508 [13] have to be
consulted to retrieve the complete set of condsaihough our example defines
closed intervals due to the limitations of Systemidg, without the loss of
generality, we can also apply open intervals predithey are supported by the tools
or verification language.

«system»

getsDataFjom AdaptiveCruiseController getsPataFrom
«environment» N «in:Radar» | «environment»
DrivenVehicle + currentDistance Radar
<<out>> {between 1 and 150 m to SubjectVehicle} <<out>>
+currentDrivenVehicleSpeed «in:DrivenVehicle» + currentDistance
{[0:19], 20, [21:124], + currentDrivenVehicleSpeed {0, 1, [2:149],
125, [126:260]} {between 20 and 125 km/h} 150, [151:260]}
«in:CruiseControllerinterface»

+ desiredCruiseSpeed
+ desiredTimeGap {between 2 to 5 sec
with 0.1 sec resolution}
«out»
+ deceleration
+ acceleration
«internal»
- currentTimeGap

Figure 3. Modified UML Class Diagram.

The final version of the UML Class Diagram can nipevdirectly translated into a
classification tree (without a combination tablejthwthe SUT at the root. The
individual UML environmentclasses translate to the different compositions thed
class attributes to classifications (cf. Fig. 4).

[AdaptiveCruiseControIIer]

DrivenVehiclq

| currentDrivenVehicIeSpeedI

[0:19] 20 [21:124] 125 [126:260]

Figure 4. Fraction of a Classification Tree for Embedded Syste

3.3 Definition of Test Scenarios

In the next step, we have to manually define tesharios with test steps and test
sequences for the completion of the classificatier. We start with the selection of
one or moreenvironmentclasses from the class diagram. The following exam
takes an interaction of tHeriver and the(Driven) Vehiclewith the ACC and defines
a simplified scenario with five steps:

1. Vehicle drives at a speed of 125 km/h.

2. Driver sets a new speed (desiredCruiseSpeed).
3. Driver sets distance to front vehicle (TimeGap) .
4. Vehicle reaches a medium speed.

5. Vehicle reaches a high speed.

We now can link the entities in the description ttee classifications in the
classification tree and define a UML Sequence Riagm order to formalize the five
steps. The individual steps of the description h&webe mapped to message
interactions with intervals as parameters. The rs&p is the creation of several
instances of this Sequence Diagram with respec¢héotimeline and variations of
message parameters. Fig. 5 gives an example ofssilgh® instantiation. In this
example, we assign the timeline to the time pddsts+2s, +3s, and +5s. The vehicle
starts with a speed of 125 km/h at 0s. At 3s tleedchanges to an interval between
21 and 124 km/h. Hereafter, the speed increades at

«environment» «environment» «system»
DrivenVehicle :CruiseControllerinterface :AdaptiveCruiseController

setDesiredCruiseSpeed,

I
{0s}

__E —

I
|
1
|
|
1 I)
: 25} setDesiredTime Gap "L;J
1
(+35] : setCurentDrivenVehicleSpeed {[21:124]} :
1 -
1 |
55} setCurrentDrivenVehicleSpeed {[126:250]} |
1 -
|
1

Figure 5. Test Sequence as an UML Sequence Diagram.

Each of the Sequence Diagrams can be easily transtbto a test sequence of the
classification tree. Fig. 5 shows part of the ficlalssification tree, which is translated
from the diagram of Fig. 5. Fig. 6 also shows somterpolation functions between
synchronization points, which have to be definedotze the generation of the
testbench.

AdaptiveCruiseController|

DrivenVehicle CruiseControllerinterface|

currentDrivenVehicle Speed desiredCcruiseSpeed| desiredTimeGap

[0:18] 20 [21:124] 125 [126:260] [0:18] 20 [21:124] 125 [125:260] 0 1 [24] 4 [5:10]

- ? ¢

0s

1s
3s
5s

Figure 6. Extended Classification Tree.

3.4 Testbench Generation

The final phase generates an executable testbemchthe classification tree which

includes the test sequences. More details of thés@ can be found in [12]. Though
we apply SystemVerilog here, other verificationdaages which support random test
pattern generation and functional coverage carakentas well. As an example, we
focus on the application of SystemVerilog constsifor random test pattern

generation in the following outlines.

After randomization, the input vectors with intelgtn functions are applied to
the specified SUT interface of tkecsystem>> Due to the current tool support, the
general execution is controlled from SystemVerilagnere the SUT can be
implemented in other languages like SystemC or Glecaenerated from
Matlab/Simulink. For the translation of classificat tree test sequences, each test
sequence is translated to a SystemVerilog clagsamty variables which correspond
to the classifications of the classification tree,, an input signal of the SUT:

cl ass AdaptiveCrui seControl |l er_Sequencel;
rand Int_class_sp
current Dri venVehi cl eSpeed[];

Furthermore, each array element corresponds tetatiep of a classification tree
test sequence for which randomizatioan() is applied. The array element has a data
structure which includes an attribute for the tipoént of the test step, the value of the
signal, and the individual interpolation functiolike ramp or sinus For each
SystemVerilog class, we also generate a constidotk, which implements the

constraints specified in the classification trebeTconstraints implement the timing
behavior and the selection of the equivalence aadsllows:

constraint ctnmenb{
current Dri venVehi cl eSpeed[0] . t ==0* SEC,
current Dri venVehi cl eSpeed[0] . v==125;
current Dri venVehi cl eSpeed[1] . t ==
current Dri venVehi cl eSpeed[0] . t +2* SEC,
current Dri venVehi cl eSpeed[1] . v==125;
desiredTi neGap[0] . t ==current Dri venVehi cl eSpeed[0] . t;
desi redTi neGap[0] . v==0;
desiredTi meGap[1] . t ==current Dri venVehi cl eSpeed[1] . t;
desiredTineGp[1] .v inside {[2:4]};
}

This example implements the constraints of the fin® test steps (with indek
and 0) of test Sequencelfor the two signalscurrentDrivenVehicleSpeednd
desiredTimeGap For each signal at each step, the time and #hge\vis assigned.
Here,SECstands for the adjustment to the time unit ofdimeulation time. Along the
classification tree specification, the second syogization point is 2 seconds after
the first one. The last line takes the interf@gl] for the desiredTimeGaplirectly
from the classification tree to SystemVerilog. Aifthally, we define a method
pre_randomize()for the SystemVerilog class, which instantiatesagridata in
preparation for randomization and initializes valdbkat are not randomized like the
interpolation function.

function void pre_random ze
foreach(current DrivenVehi cl eSpeed[i])
current Dri venVehi cl eSpeed[i] =new) ;

current Dri venVehi cl eSpeed[1] . i pol = ranp;

4 Experimental Results

We have applied the introduced the textual requemmspecification of an
Adaptive Cruise Controllers (ACC) in [3]. The omgi key requirements were
composed of 23 long sentences. Those sentences tremeformed by our
methodology in to their Textual Normal Form (TNFittwfinally 79 sentences. They
were translated to a UML class diagram with 10s#as Table 2 gives an overview of
the details of the generated class diagram. Thptedalass diagram had 6 classes,
which were translated into a classification treetdils of that classification tree can
be found in Table 3. For our first evaluation wefimkd a limited set of 2 test
scenarios which were related to 2 test sequendbsiditest steps each. The final test
environment which was automatically generated fribra classification tree was
composed of 526 lines of SystemVerilog code.

Table 2. UML Class Diagram Numbers.

Class #attributes | #methods #assoc. in #assoc. out
AdaptiveCruiseControler 13 11 1 7
CruiseControlerinterface 3 8 2 2
Radar 5 6 1
Driver 0 2 1 3
SubjectVehicle 1 1 1 0
DrivenVehicle 1 0 3 0
BrakePedal 1 1 2 1
Accelerator 1 1 2 1
Brake 0 0 2 1
Throttle 0 0 2 1
Table 3. Classification Tree Numbers.
Signal # equivalence classes component

acceleratorPosition Accelerator
brakePedalPosition BrakePedal
currentDistance Radar

3

3

5

currentDrivenVehicleSpeed 5 DrivenVehicle

5

2

5

2

desiredCruiseSpeed CruiseControlerinterface
desiredMode CruiseControlerinterface
desiredTimeGap CruiseControlerInterfac
vehiclelnSamelLane Radar

4]

5 Conclusions and Outlook

This article presented a structured semi-autonmaéthodology for the generation
of executable SystemVerilog testbenches from uostrad natural language
requirement specification via UML and classificativees. After transformation into
a Textual Normal Form (TNF), UML class diagrams generated. After some
annotations and simple adjustments they are futthaslated into a classification tree
from which a SystemVerilog testbench is automaiicgénerated. We successfully
applied and evaluated our methodology to the requéints specification of an
Adaptive Cruise Controller which was implemente@&ystemC/C.

Our evaluation has shown that in the first phasd the final derivation of the
TNF, several incomplete and redundant statemenisl d@ easily identified. This is a
very important issue for industrial applicationidsntification of inconsistencies and
errors in very early design phases may result gigaificant reduction of design
respins. Due to our experience, with some extdral detection of such errors based
on manual transformations and visual inspectionuigsently still the most efficient
and fastest method compared to a first time consgitnansformation to a first formal
model like finite state machines and logical forawul

However, the main advantage of our methodology efindely the complete
traceability of each individual requirement to tt@responding objects or methods in
the testbench. Though we just have used MS Exaepture the requirements in our
studies, it was easily possible to trace singleuireqnents via subrequirements to
SystemVerilog classes, methods and attributes. giaiatly simplifies feedback with
the customers in order to quickly resolve opengtesssues. Our studies have also
indicated that it is very hard to achieve a congplketitomation of the first phase as
transformations of natural language statementsrstjuire the dedicated expertise of
a domain engineer. In contrast, transformationiater phases are subject of further
possible automation. Our studies gave promisinglt®and more evaluations have to
follow.

Acknowledgments. The work described herein is partly funded by B®IBF
through the SANITAS q1M3088 and the VERDE project (01S09012).

References

1. Bailin, S. C.: An Object-Oriented Requirements Speaifons Method. In:
Communication of the ACM, 32(5), May 1989.

2. Bergeron, J., Cerny, E., Nightingale, A., Hunter, Yerification Methodology Manual for
SystemVerilog, Springer, 2006.

3. Bernin, F., Lundell, M., Lundkvist, O.: AutomotiveyS8em Case Study, Deliverable D1.1
PUSSEE Project IST-2000-30103, 2002.

4. Conrad, M.: Modell-basierter Test eingebetteter\@afe im Automobil: Auswahl und
Beschreibung von Testszenarien. Deutscher Univesgddag, 2004.

5. Grossmann, J., Conrad, M., Fey, I., Krupp, A., Langh K., Wewetzer, C.: TestML — A
Test Exchange Language for Model-based Testingrifdeéided Software. In:
Automotive Software Workshop '06, San Diego, MaP€io6.

6. Grochtmann, M., Grimm, K.: Software Testing, Verdiion and Reliability: Classification
Trees for Partition Testing. John Wiley & Sons gl 2006.

7. |EEE: Draft Specification for Component Standard\afomatic Test Markup Language
(ATML) for Exchanging Test Results via XML. Deceml2004.

8. |EEE: IEEE Std.1800-2005 - Standard for SystemdgrilUnified Hardware Design,
Specification and Verification Language. Novembed2.

9. |EEE: IEEE Std.1850-2005 - IEEE Standard for Proyp8pecification Language (PSL).
September 2005.

10. |IEEE: IEEE Std.1647-2006 - The Functional VerifioatLanguage 'e’. March 2006.

11. IEC: Functional safety electrical/electronic/ pragraable electronic safety-related
systems - IEC 61508 Part 1-7, Geneva, Switzerla9@g.1

12. Krupp, A.: Verification Plan for Systematic Veriéiton of Mechatronic Systems.
Doctorial Thesis, Paderborn University, 2008.

13. Offutt, J., Abdurazik, A.: Generating Tests from Upecifications. In Proc. of UML99,
Fort Collins, USA, 1999.

14. Ostrand, T.J., Balcer, M.J.: The Category-PartiticettMdd for Specifying and Generating
Functional Tests. ACM, 1988

15. OVM Homepage. www.ovmworld.org.

16. Schieferdecker, I., Dai, Z.R., Grabowski, J., RenndchThe UML 2.0 Testing Profile
and its Relation to TTCN-3 (2003). In: Proc. of Test@803, Sophia Antipolis, 2003.

