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Abstract. Schnorr famously proved that Martin-Löf-randomness of a
sequence A can be characterised via the complexity of A’s initial segments.
Nies, Stephan and Terwijn as well as independently Miller showed that
Kolmogorov randomness coincides with Martin-Löf randomness relative
to the halting problem K; that is, a set A is Martin-Löf random relative
to K iff there is no function f such that for all m and all n > f(m) it
holds that C(A(0)A(1) . . . A(n)) ≤ n − m.

In the present work it is shown that characterisations of this style can
also be given for other randomness criteria like strongly random, Kurtz
random relative to K, PA-incomplete Martin-Löf random and strongly
Kurtz random; here one does not just quantify over all functions f but
over functions f of a specific form. For example, A is Martin-Löf random
and PA-incomplete iff there is no A-recursive function f such that for all
m and all n > f(m) it holds that C(A(0)A(1) . . . A(n)) ≤ n − m. The
characterisation for strong randomness relates to functions which are the
concatenation of an A-recursive function executed after a K-recursive
function; this solves an open problem of Nies.

In addition to this, characterisations of a similar style are also given for
Demuth randomness and Schnorr randomness relative to K. Although the
unrelativised versions of Kurtz randomness and Schnorr randomness do
not admit such a characterisation in terms of plain Kolmogorov complexity,
Bienvenu and Merkle gave one in terms of Kolmogorov complexity defined
by computable machines.

1 Introduction

Kolmogorov complexity [9, 13] aims to describe when a set is random in an
algorithmic way. Here randomness means that no type of patterns can be exploited
by an algorithm in order to generate initial segments of the characteristic function
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from shorter programs. Randomness notions have been formalised by Martin-Löf
[10], Schnorr [18] and others. A special emphasis was put on describing randomness
of a set A in terms of the complexity of the initial segments A(0)A(1) . . . A(n).
The first important result in that direction was that Schnorr [19] proved that
a set A is Martin-Löf random if and only if for almost all n the prefix free
Kolmogorov complexity H(A(0)A(1) . . . A(n)) of the (n + 1)-th initial segment is
at least n. It is easy to see that the counterpart of this characterisation is that a
set A is not Martin-Löf random iff there is an A-recursive function f such that
H(A(0)A(1) . . . A(f(m))) ≤ f(m) − m for all m. In other words, one can find
— relative to A — points to witness the non-randomness effectively. It should
be noted that the function f has to be taken relative to A and not relative to
some fixed oracle B independent of A as the sets 2-generic relative to B are not
Martin-Löf random but would not admit a B-recursive function f witnessing the
non-randomness in the way just mentioned.

The scope of the present paper is to study the notions of randomness beyond
Martin-Löf randomness. These are the relativised versions “Kurtz random rela-
tive to K”, “Schnorr random relative to K” and “Kolmogorov random” which
coincides with “Martin-Löf random relative to K” where K is the halting problem
or any other creative set. In addition, the two independently defined notions of
“Demuth random” and “strongly random” are considered. Strong randomness is
by some authors considered to be the next counterpart of Kurtz randomness,
although it is not the relativised version; therefore they call Kurtz random also
“weakly random” and strongly random also “weakly 2-random” [13]. Strong ran-
domness [8, 17] has various nice characterisations, in particular the following:
A is strongly random iff A is Martin-Löf random and forms a minimal pair
with K with respect to Turing reducibility [4, Footnote 2]. For these notions,
in order to quantify the degree of non-randomness of a sequence, one studies
from which value f(m) onwards all initial segments can be compressed by m

bits. That is, one looks at functions f such that C(A(0)A(1) . . . A(n)) ≤ n − m

for all n > f(m); here f might also be an upper bound of the least possible
point with this property as one might want to have that f is in a certain Turing
degree. This idea is quite natural as Kolmogorov random is just the notion of
randomness which is defined by the absence of any such f and which coincides
with Martin-Löf random relative to K.

The main results of this article will be that other randomness notions can be
characterised in similar ways. The characterisations of these notions will differ in
how the function f can be computed (e.g., relative to which oracles) and whether
the compressibility condition holds for infinitely many or for all m. Note that
due to finite modifications of f it would be equivalent to postulate the condition
for all m or for almost all m. Several proofs make use of this fact.

Although the unrelativised versions of Kurtz randomness and Schnorr ran-
domness do not admit such a characterisation in terms of plain Kolmogorov
complexity, Bienvenu and Merkle [1] gave one in terms of Kolmogorov complexity
defined by computable machines. There is a close connection between the plain
Kolmogorov complexity C and prefix-free Kolmogorov complexity H. This is



formalised in the following remark and this connection helps to establish many
bounds obtained for C also for H.

Remark 1. If C(x) ≤ |x| − 1 − 3m with a minimal plain code x∗ for x, and if
n∗ and m∗ are minimal prefix-free codes for n := |x| and m, respectively, then
some prefix-free machine can use n∗m∗0k1x∗ as a prefix-free code for x, where k

is chosen such that |0k1x∗| = n − 3m.
It easily follows that there is a constant c such that whenever a set A and a

function f satisfy that C(A(0)A(1) . . . A(n)) ≤ n−3m for all m and all n > f(m),
then A and f also satisfy that for all m > c and all n > f(m) it holds that
H(A(0)A(1) . . . A(n)) ≤ n + H(n) − m.

We will also use the following theorem.

Theorem 2 (Chaitin’s Counting Theorem [3]). There is a constant c such

that for all n and m it holds that

|{σ : |σ| = n + 1 ∧ H(σ) ≤ n + H(n) − m}| ≤ 2n−m+c.

For the scientific background of this paper, the reader is referred to the usual
textbooks on recursion theory [15, 16, 20] and algorithmic randomness [2, 9, 13].

2 Characterising Strong Randomness

Nies [13, Problem 3.6.23] asks whether one can characterise strong randomness
via the growth of the initial segment complexity. In the present paper, an answer
will be provided, but for that answer the growth-rate depends also on the Turing
degree of the set A for which it is asked whether it is strongly random. After the
characterisation in Theorem 5, it will be shown in two further results that there
is no obvious way to simplify the characterisation.

Remark 3. An open r.e. class Ve consists of sets A such that for each member
A ∈ Ve it is verified in some finite time s that A belongs to Ve; let Ve,s be the
class of all A such that it is verified in time s that A belongs to Ve. Now the
notion is chosen such that whenever A ∈ Ve,s and B(m) = A(m) for all m ≤ s

then B ∈ Ve,s as well. An open r.e. class Ve is called finitely generated iff there is
a step-number s such that Ve,s = Ve.

Furthermore, in the following, let C be the plain and H be the prefix-free
Kolmogorov complexity. K denotes the halting problem. fs is then the s-th
approximation of a K-recursive function f , the mapping x, s 7→ fs(x) is recursive
in both inputs. The following notion was originally introduced by Kurtz [8] and
is one of the central notions of this paper.

Definition 4 (Kurtz [8]). A set A is called strongly random iff there is no
uniform sequence V0, V1, V2, . . . of open r.e. classes such that µ(Ve) → 0 for
e → ∞ and A ∈

⋂

e Ve.



The next result gives a characterisation of strong randomness in the desired form.

Theorem 5. The following are equivalent for a set A.

(a) A is not strongly random.

(b) There is an A-recursive function f and a K-recursive function g such that

for all m and all n ≥ f(g(m)) it holds that C(A(0)A(1) . . . A(n)) ≤ n − m.

(c) There is an A-recursive function f and a K-recursive function g such that for

all m and all n ≥ f(g(m)) it holds that H(A(0)A(1) . . . A(n)) ≤ n + H(n) − m.

Proof. (a) ⇒ (b): Let V0, V1, V2, . . . be the test which witnesses that A is not
strongly random. Now let h(m) be the first index e with µ(Ve) ≤ 2−2m−1 and
let h0, h1, h2, . . . be a recursive approximation to h; this approximation is from
below, as one can define that h0(m) = 0 and

hs+1(m) =

{

hs(m) if µ(Vhs(m),s) ≤ 2−2m−1;

hs(m) + 1 otherwise.

Now let g(m) = 〈m, s〉 for the first s such that hs(m) = h(m). Next define the
A-recursive function f which assigns to 〈m, s〉 the first encountered ℓ > s + m

satisfying

A(0)A(1) . . . A(ℓ) · {0, 1}∞ ⊆ Vhs(m).

Now one defines a plain machine M such that, for all m, n with n ≥ 2m + 1 and
all x ∈ {0, 1}n−1−2m, M(1m0x) is the x-th string y of length n for which it is
verified in time n that y · {0, 1}∞ ⊆ Vhn(m); for small n there might be too many
of these strings y and then only the first 2n−1−2m of them are in the range of M ;
but for n ≥ f(g(m)) it holds that hn(m) = h(m) and that therefore by the choice
of Vh(m) there are at most 2n−1−2m of these strings and each of them occurs in
the range of M . One of these strings is the prefix of length n of A. Hence, there
is a constant c such that for the function m 7→ f(g(m + c)) and every n greater
than the value of this function it holds that

C(A(0)A(1) . . . A(n)) ≤ n − m.

(b) ⇒ (c): This follows from Remark 1 and a substitution of g by g̃(m) := g(3m).

(c) ⇒ (a): It follows from Chaitin’s Counting Theorem 2 that if ℓ is sufficiently
large, then for all n there are at most 2n−m+ℓ strings σ of length n + 1 with
H(σ) ≤ n + H(n)−m. Let g ≤T K and f = ϕA

e be the functions from condition
(c). Without loss of generality fix them such that g is recursively approximable
from below by g0, g1, g2, . . . and that f is monotone. Now define V〈m,n,s〉 as the
class of all sets B satisfying one of the following conditions:

1. ∃t > s[gt(m) 6= gs(m) or Ht(n) 6= Hs(n)];

2. ϕB
e (gs(m)) ↓> n;

3. H(B(0)B(1) . . . B(n)) ≤ n + Hs(n) − m.



Note that the first condition ensures that all sets are enumerated into those
classes V〈n,m,s〉 where the parameters are not chosen adequately.

The set A is in every class V〈m,n,s〉 as whenever the first condition and the
second condition do not put A into V〈m,n,s〉 then gs(m) = g(m) and Hs(n) =
H(n) and ϕA

e (g(m)) ≤ n and therefore H(A(0)A(1) . . . A(n)) ≤ n + H(n) − m.
Furthermore, one can for every m choose the n so large compared to m and the
s so large compared to m, n that gt(m) = g(m) and Ht(m) = H(m) for all t ≥ s

and ϕB
e (g(m)) ≥ n only for a class of B of measure below 2−m. It follows then

that µ(V〈m,n,s〉) is at most 2−m + 2ℓ−m as the first condition of putting oracles
B into V〈m,n,s〉 does not apply, the second condition contributes a class of oracles
with measure 2−m and the third condition contributes a class of oracles with
measure 2ℓ−m. As ℓ is a constant, one can come as close to measure 0 as desired
by starting off with a sufficiently large m and then choosing n in dependence of
m and s in dependence on m, n as indicated.

From this sequence of the V〈m,n,s〉, one can construct a new sequence of the
form e 7→ ∩n≤e,m≤e,s≤eV〈m,n,s〉 which satisfies that the measures of the members
tend to 0 and that each member contains the set A as an element. Hence this
sequence witnesses that A is not strongly random. ⊓⊔

Note that in the above construction the machine M can be chosen such that its
domain is recursive, that is, M can be chosen as a decidable machine.

The above conditions (b) and (c) contain a function which is a concatenation of
an A-recursive and a K-recursive function. One might ask whether this condition
could be simplified by taking only a K-recursive or only an (A ⊕ K)-recursive
function. The answer is “no” as these two choices will give rise to other randomness
notions as shown in the next two results.

Theorem 6. The following are equivalent for every set A:

(a) A is not Martin-Löf random relative to K;

(b) There is f ≤T A⊕K such that ∀m∀n > f(m) [C(A(0)A(1) . . . A(n)) ≤ n−m];
(c) There is f ≤T A ⊕ K such that ∀m∀n > f(m) [H(A(0)A(1) . . . A(n)) ≤
n + H(n) − m].

Proof. If A is Martin-Löf random relative to K then the two conditions (b) and
(c) cannot be satisfied for any function f by known results [11, 12, 14]. So assume
that (a) holds.

Let UK be a prefix-free universal machine relative to the oracle K and
x, s 7→ Us(x) be a recursive approximation to this machine such that every Us is
prefix-free. Now there is an A⊕K-recursive function which produces for every m

a number f(m) such that there exists z with |z|+ 2m < |UK(z)| ≤ f(m), UK(z)
is a prefix of A and Us(z) ↓= UK(z) for all s ≥ f(m).

Now one can construct a plain machine Ũ which sends every input of the
form xy with x ∈ dom(U|xy|) to U|xy|(x) · y and which is undefined on inputs
which cannot be brought into this form; note that because of prefix-freeness
for each input u the splitting into xy is unique or does not exist. Now for all
m there is a z as above. If UK(z) = A(0)A(1) . . . A(k), then it follows that
Ũ(zA(k + 1)A(k + 2) . . . A(n)) = Un+1(z) ·A(k + 1) . . . A(n) = A(0)A(1) . . . A(n)



and hence C(A(0)A(1) . . . A(n)) ≤ (k− 2m) + (n− k) + O(1) ≤ n−m for almost
all m and all n > f(m). Note that we can modify f for finitely many m such that
f satisfies the condition (b). Remark 1 establishes that (c) follows from (b). ⊓⊔

The next result characterises Kurtz randomness relative to K.

Definition 7. A set A is called Kurtz-random iff it is contained in every r.e.
class of Lebesgue measure 1.

Theorem 8. The following are equivalent for every set A:

(a) A is not Kurtz random relative to K;

(b) There is a sequence of finitely generated r.e. open classes such that each class

contains A and the infimum of their measures is 0;
(c) There is a K-recursive function f such that for all m and all n > f(m) it

holds that C(A(0)A(1) . . . A(n)) ≤ n − m;

(d) There is a K-recursive function f such that for all m and all n > f(m) it

holds that H(A(0)A(1) . . . A(n)) ≤ n + H(n) − m.

Proof. (a) ⇒ (b): By definition, A is covered by a K-recursive Kurtz-test. Ac-
cording to Bienvenu and Merkle [1, Definition 7] a (K-recursive) Kurtz-test is
given by a recursive (K-recursive) function f which determines for each m a
finite set Df(m) of strings such that for all m, A has a prefix in Df(m) and the
measure of the class of all sets B with a prefix in Df(m) is at most 2−m. For the
given K-recursive Kurtz test, let f0, f1, f2, . . . be a recursive approximation of
the corresponding function f . Now let V〈m,s〉 = {B : B has a prefix in Dft(m) for
some t ≥ s}. It is clear that every V〈m,s〉 contains A as a prefix of A is in almost
all Dft(m). Furthermore, as the ft converge, the union of all Dft(m) with t ≥ s is
finite and contains only finitely many strings; that is, the r.e. class generated by
it is finitely generated. Furthermore, for every m and every sufficiently large s,
ft(m) = f(m) for all t ≥ s and hence Vm,s has at most measure 2−m.

(b) ⇒ (c): Let V0, V1, V2, . . . be a given sequence of finitely generated r.e. open
classes as in condition (b). Let Ve,s be the class of all B for which is verified in
time s that they belong to Ve; by choice there is for every e an s with Ve,s = Ve.
For every m let gs(m) be the smallest number e such that µ(Ve,s) < 2−3m−1.

This function gs(m) is always defined as it is bounded by the index g(m) of
the first class whose measure is strictly below 2−3m−1. Now let f(m) be the first
step s such that gs(m) = g(m) and Vgs(m),s = Vg(m), that is, all sets which are
put into Vg(m) are already enumerated into it. Observe that gt(m) = g(m) for all
t ≥ f(m). Now let M(1m0x) be the x-th string y of length n + 1 found in Vgn(m)

where n = 3m + |x|. Note that A(0)A(1) . . . A(n) is in the range of M whenever
n > f(m). As the corresponding 1m0x has the length (n + 1) − 2m, it follows
that C(A(0)A(1) . . . A(n)) ≤ n − 2m + O(1) ≤ n − m for almost all m and all
n > f(m). Hence, by a suitable finite modification of f one obtains condition (c).

(c) ⇒ (d): This follows from Remark 1 and a substitution of f by f̃(m) := f(3m).

(d) ⇒ (a): Again, by the Counting Theorem 2 there is a constant c such that
for every n, m there are at most 2n−m+c strings σ of length n + 1 with H(σ) ≤



n + H(n) − m. Furthermore let f be given as in condition (d); in particular
H(A(0)A(1) . . . A(f(m))) is at most f(m) + H(f(m)) − m. The measure of the
class of the sets B with the same property is at most 2−m−1+c. It follows that
the mapping of m to the class of all B with H(B(0)B(1) . . . B(f(m + c))) ≤
f(m + c) + H(f(m + c)) − m is a Kurtz test relative to K. ⊓⊔

Let A be given such that every A-recursive function is majorised by a K-recursive
one. Then the above characterisations show that A is strongly random iff A

is Kurtz random relative to K. But this coincidence does not hold in general
as 2-generic sets are Kurtz random relative to K but not strongly random. It
should also be noted that there is no oracle B such that every set A which
is not strongly random satisfies that there is an B-recursive function f with
C(A(0)A(1) . . . A(n)) ≤ n − m for all m and all n > f(m). Hence the condition
in Theorem 5 cannot be replaced by a class of functions which is independent
of the set A analyzed. It should be noted that the characterisation of “Schnorr
random relative to K” is quite similar to that one of “Kurtz random relative to
K”.

Theorem 9. The following are equivalent for a set A:

(a) A is not Schnorr random relative to K;

(b) There is a K-recursive function f such that for infinitely many m and all

n > f(m) it holds that C(A(0)A(1) . . . A(n)) ≤ n − m;

(c) There is a K-recursive function f such that for infinitely many m and all

n > f(m) it holds that H(A(0)A(1) . . . A(n)) ≤ n + H(n) − m.

Proof. (a) ⇒ (b): Downey and Griffiths [5] showed that a set A is not Schnorr
random iff there is a recursive sequence of strings σ0, σ1, σ2, . . . such that infinitely
many of these strings are prefixes of A and

∑

j 2−|σj | is a finite rational number;
without loss of generality let the sum be 1. This characterisation can be relativised
to K by taking the sequence to be K-recursive. Now one can choose a K-recursive
sequence n0, n1, . . . of indices such that for each m it holds that

∑

ℓ≥nm
2−|σℓ| ≤

2−3m; this nm can be found as the first number with
∑

ℓ<nm
2−|σℓ| > 1 − 2−3m.

Note that the measure of each subsum
∑

ℓ=nm,nm+1,...,nm+1
2−|σℓ| is also bounded

by 2−3m. Now one can define a plain machine M such that M(1m0τ) is the
τ -th string of length |τ | + 3m which extends one of the finitely many strings
σt

nm
, σt

nm+1, . . . , σ
t
nm+1

, where t = |τ |+3m and σs
n is the value of σn after s steps

in some recursive approximation of the sequence. When approximating nm, nm+1

and the strings σnm
, σnm+1, . . . , σnm+1

, there is a K-recursive function f such
that f(m) is an upper bound on the time which is necessary to converge to the
correct values; furthermore, one can choose f(m) to be also an upper bound on
|σℓ| + 3m for each of these strings. It follows that for each string η of length at
least f(m) there is a string τ of length |η| − 3m such that M(1m0τ) = η; hence
the plain Kolmogorov complexity of all of these strings η is at most |η| + c − 2m
for some constant c. As there are infinitely many m such that one of the σℓ with
nm ≤ ℓ ≤ nm+1 is a prefix of A, it follows that there are infinitely many m such
that for all n ≥ f(m) it holds that C(A(0)A(1) . . . A(n)) ≤ n − m.



(b) ⇒ (c): This follows from Remark 1 and a substitution of f by f̃(m) := f(3m).

(c) ⇒ (a): Let Sc′

m := {B : H(B(0) . . . B(f(m+c′))) ≤ f(m+c′)+H(m+c′)−m}.
The Counting Theorem 2 yields a c′ such that (Sc′

m)m∈ω can be enlarged to a
total Solovay test (as defined by Downey and Griffiths [5]) relative to K. This
test covers A, so A is not Schnorr random relative to K. ⊓⊔

3 Characterising Demuth Randomness

Demuth has defined in the context of analysis a randomness notion which was
formalised as follows in the framework of algorithmic randomness [13, Definition
3.6.24].

Definition 10. In the following let V0, V1, V2, . . . be an acceptable numbering
of all r.e. open classes. Now one says that a set A is Demuth random iff there
is no ω-r.e. function f such that µ(Vf(m)) ≤ 2−m for all m and A ∈ Vf(m) for
infinitely many m.

Theorem 11. The following are equivalent for a set A:

(a) A is not Demuth random;

(b) There exist ω-r.e. functions g and h such that A ∈ Vg(m),h(m) for infinitely

many m and µ(Vg(m),h(m)) ≤ 2−m for all m;

(c) There exists an ω-r.e. function k such that for infinitely many m and all

n ≥ k(m) it holds that C(A(0)A(1) . . . A(n)) ≤ n − m;

(d) There exists an ω-r.e. function k̃ such that for infinitely many m and all

n ≥ k̃(m) it holds that H(A(0)A(1) . . . A(n)) ≤ n + H(n) − m.

Proof. (a) ⇒ (b): Let f be the ω-r.e. function witnessing that A is not Demuth
random. Now define a function h̃(e, m) such that h̃(e, m) is the maximum step
s > 0 for which there is ℓ ∈ {1, 2, . . . , 2m−1} with µ(Ve,s−1) ≤ ℓ·2−m < µ(Ve,s); if

no such step exists then h̃(e, m) = 0 and Ve,0 = ∅. Note that µ(Ve)−µ(Ve,h̃(e,m)) ≤

2−m. Given f, h̃, consider a function g such that

Vg(m) =
⋃

ℓ=0,1,...,m,m+1

(Vf(ℓ),h̃(f(ℓ),2m+4−ℓ) − Vf(ℓ),h̃(f(ℓ),2m+2−ℓ))

and the function h defined by

h(m) = max{h̃(f(ℓ), 2m + 4 − ℓ) : ℓ ∈ {0, 1, . . . ,m, m + 1}}.

Without loss of generality we may assume Vg(m) = Vg(m),h(m). Furthermore,

µ(Vf(ℓ),h̃(f(ℓ),2m+4−ℓ) − Vf(ℓ),h̃(f(ℓ),2m+2−ℓ)) ≤ µ(Vf(ℓ) − Vf(ℓ),h̃(f(ℓ),2m+2−ℓ))

≤ 2ℓ−2m−2

and therefore µ(Vg(m)) ≤ 2−m−1 + 2−m−2 + . . . + 2−2m−2 ≤ 2−m. It remains
to show that g and h are ω-r.e. and that A ∈ Vg(m) = Vg(m),h(m). As f and



h̃ are both ω-r.e. and h̃(e, m) makes at most 2m mind changes, the functions
g and h are also ω-r.e. functions. Now consider any i. Then there is j > i + 1
such that A ∈ Vf(j). It follows that there is an m ≥ j − 1 such that A ∈
Vf(j),h̃(f(j),2m+4−j) − Vf(j),h̃(f(j),2m+2−j); the reason is that µ(Vf (j)) ≤ 2−j and

thus h̃(f(j), 2m + 2 − j) = 0 for m ≤ j − 1. Now Vg(m) contains A and m > i.
Hence there are infinitely many m with A ∈ Vg(m),h(m). So (b) holds.

(b) ⇒ (c): Let g, h be given as required in (b) and assume that gs(m) 6= gs+1(m)∨
hs(m) 6= hs+1(m) implies that hs+1(m) ≥ s + 1. Otherwise one can without
loss of generality modify g and h accordingly while preserving (b). Now let
M(1m0x) be the x-th string found in {0, 1}s such that s = |x| + 3m and
M(1m0x) · {0, 1}∞ ⊆ Vgs(3m),s ∪ Vgs(3m+1),s ∪ Vgs(3m+2),s. For infinitely many m

and all n > max{h(3m), h(3m + 1), h(3m + 2)} it holds that A(0)A(1) . . . A(n) ·
{0, 1}∞ ⊆ Vg(3m) ∪ Vg(3m+1) ∪ Vg(3m+2). For such m, n there are only 2n+1−3m

strings of length n qualifying for the search condition, hence there is an x of length
n + 1 − 3m such that M(1m0x) = A(0)A(1) . . . A(n) and — if m is furthermore
large enough — C(A(0)A(1) . . . A(n)) ≤ n − m. Hence one can choose k to be a
finite variant of the ω-r.e. function m 7→ max{h(3m), h(3m + 1), h(3m + 2)} + 1
in order to satisfy condition (c).

(c) ⇒ (d): This follows from Remark 1 by choosing k̃(m) := k(3m).

(d) ⇒ (a): Let k̃ be as in condition (d). There is a function f defining the class
Vf(m) = {B : H(B(0)B(1) . . . B(k̃(2m))) ≤ k̃(2m) + H(k̃(2m)) − 2m}.

Note that Vf(m) has at most measure 2−m for almost all m and we can assume

that Vf(m) contains A for infinitely many m (otherwise we can replace k̃ by the

function n 7→ k̃(n+1)). Furthermore, there is a recursive function which maps each
triple (m, a, b) to an index for the class {B : H(B(0)B(1) . . . B(a)) ≤ a+ b− 2m}
and therefore maps (m, k̃(2m), H(k̃(2m))) to f(m). There is a recursive function

k̂ such that the approximation of k̃(m) makes at most k̂(m) mind changes. As one
can code m and the number of mind changes in order to get k̃(m), for almost all

m, the value H(k̃(m)) is at most k̂(m)+m and once the value k̃(m) has stabilised,

H(k̃(m)) can be approximated from above with k̂(m) + m many mind changes.
It follows that the mapping m 7→ (k̃(2m), H(k̃(2m))) is ω-r.e. with the number of

mind changes bounded by (k̂(2m) + 2m)2 for almost all m. Hence the function f

can be taken to be ω-r.e. as well. Then, after a finite modification which preserves
f to be ω-r.e., one has that not only for almost all m but indeed for all m the
measure of Vf(m) is bounded by 2−m. So A is not Demuth random. ⊓⊔

4 Characterising Turing-incomplete Martin-Löf random

sets

Recall that a set A is PA-complete iff there is an A-recursive consistent and com-
plete extension of Peano Arithmetic. This condition is equivalent to saying that
every partial-recursive {0, 1}-valued function has a total A-recursive extension.
Stephan [21] showed that a Martin-Löf random set is Turing above K iff it is



PA-complete. This showed that the Martin-Löf random sets fall into two classes:
those above K which coincide with the PA-complete ones and those not above
K which coincide with the PA-incomplete ones. The next result shows that the
PA-incomplete Martin-Löf random sets have a natural characterisation in terms
of initial segment complexity. Note that all Demuth random and all strongly
random sets are PA-incomplete. On the other hand, there are Martin-Löf random
sets which are PA-complete like Chaitin’s Ω. Gács [6] and Kučera [7] showed that
every a ≥T K contains a Martin-Löf random set and those are PA-complete.

Theorem 12. The following statements are equivalent for a set A:

(a) A is PA-complete or A is not Martin-Löf random;

(b) A ≥T K or A is not Martin-Löf random;

(c) There is an A-recursive function f such that C(A(0)A(1) . . . A(n)) ≤ n − m

for all m and all n > f(m);
(d) There is an A-recursive function f such that H(A(0)A(1) . . . A(n)) ≤ n +
H(n) − m for all m and all n > f(m).

Proof. (a) ⇔ (b) is already known [21] and (c) ⇒ (d) follows from Remark 1.

(b) ⇒ (c): If A is not Martin-Löf random, the construction of f is straightforward,
using the fact that A has 2m-compressible prefixes for each m.

If K ≤T A, then if A were Martin-Löf random relative to K, K would be a base
for ML-randomness. By [13, Theorem 5.1.22] we would have K ∈ Low(MLR), a
contradiction. So A is not Martin-Löf random relative to K and by Theorem 6
there is an A ⊕ K-recursive function f with

∀m∀n > f(m) [C(A(0)A(1) . . . A(n)) ≤ n − m].

By assumption, this function f is also A-recursive and satisfies the claim.

(d) ⇒ (b): Assume that A 6≥T K as otherwise there is nothing to prove. Let f be
as in condition (d) and let U be the universal prefix-free machine that defines H.
The function m 7→ f(2m) is A-recursive and does not majorise the function

g : m 7→ max{U(τ) : τ ∈ dom(U) ∩ {0, 1}m},

since A 6≥T K and only oracles Turing above K can compute functions which
majorise g. Hence there are infinitely many m where the largest value U(τ) for
τ ∈ dom(U) ∩ {0, 1}m is beyond f(2m). By assumption on f and τ ,

H(A(0)A(1) . . . A(U(τ))) ≤ U(τ)+H(U(τ))−2m ≤ U(τ)+|τ |−2m = U(τ)−m.

This shows that A is not Martin-Löf random. ⊓⊔

Stephan and Wu [22] called a set A strongly Kurtz random iff there is no recursive
function f such that H(A(0)A(1) . . . A(f(m))) ≤ f(m) − m for all m. Applying
similar methods as above this can be generalized as follows.



Theorem 13. The following are equivalent for a set A:

(a) A is not strongly Kurtz-random;

(b) There is a recursive function g such that C(A(0)A(1) . . . A(n)) ≤ n − m for

all m and all n > g(m);
(c) There is a recursive function h such that H(A(0)A(1) . . . A(n)) ≤ n+H(n)−m

for all m and all n > h(m).

5 Conclusion and Future Work

The overall idea of this article is to measure the degree of randomness of a set A

by analyzing the function

RA(m) = min{k ∈ N∪{∞} : ∀n [k < n < ∞ ⇒ C(A(0)A(1) . . . A(n)) ≤ n−m]}.

Note that RA(m) ≤ RA(m + 1) for all m and that A is Kolmogorov random iff
RA assumes the value ∞ on some inputs. One can now reformulate the main
results of the paper in terms of the function RA. For example, A is strongly
random iff there are no f ≤T A and no g ≤T K such that the concatenation
n 7→ f(g(n)) dominates RA. Here f dominates g iff f(m) ≥ g(m) for almost all
m ∈ N. The other results in this article can be formulated analogously in an
obvious way.

When looking at RA, one could define a new reducibility as follows.

Definition 14. A set A is said to be Kurtz-Kolmogorov-reducible to B (A ≤KK

B) if there is a recursive function f and a constant c such that for all m ∈ N it
holds that RA(m) ≤ f(RB(m + c)). Here, f is extended to N ∪ {∞} by letting
f(∞) = ∞, where the conventions ∞ ≤ ∞ and ∞ 6≤ n hold for all n ∈ N.

Note that this definition is invariant under recursive permutations g, so if B =
{g(n) : n ∈ A} then A ≡KK B. Also, it holds that all sets A, B satisfy A⊕B ≤KK

A. This meets the intuition that a sequence can become more random but not
less random by omitting half of the bits.

Besides this, it can be seen that the following classes are closed upward under
KK-reducibility (that is, whenever A is in the class and A ≤KK B then also B

is in the class): the class of all Kolmogorov random sets (as it consists of the
greatest KK-degree); the class of all strongly Kurtz random sets (as it consists of
all degrees except the least one); the class of all Demuth random sets; the class
of all sets which are Kurtz random relative to K; the class of all sets which are
Schnorr random relative to K.

The reason is that for all of these classes, the randomness notion is defined by
comparing the growth rate of RA with that of a certain list of functions which
do not depend on A.

Somehow, for the classes {A : A is strongly random} and {A : A is Martin-Löf
random and A 6≥T K}, A becomes involved and the upward closure is no longer
guaranteed. Indeed, it would be interesting to know whether the role of A could
be replaced by something else, so that one or both of the mentioned classes would



be closed upward with respect to KK-reducibility. Another topic for study could
be the properties of KK-reducibility and its interactions with other reducibilities.
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21. Stephan, F.: Martin-Löf Random and PA-complete Sets. Proceedings of ASL Logic

Colloquium 2002. ASL Lecture Notes in Logic 27, 342–348 (2006).
22. Stephan, F., Wu, G.: Presentations of K-Trivial Reals and Kolmogorov Complexity.

New Computational Paradigms: First Conference on Computability in Europe, CiE
2005. LNCS, vol. 3526, pp. 461–469. Springer, Heidelberg (2005).


