
HAL Id: hal-00972559
https://hal.science/hal-00972559

Submitted on 4 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient and Generalized Decentralized Monitoring of
Regular Languages

Yliès Falcone, Tom Cornebize, Jean-Claude Fernandez

To cite this version:
Yliès Falcone, Tom Cornebize, Jean-Claude Fernandez. Efficient and Generalized Decentralized Mon-
itoring of Regular Languages. 34th Formal Techniques for Networked and Distributed Systems
(FORTE), Jun 2014, Berlin, Germany. pp.66-83, �10.1007/978-3-662-43613-4_5�. �hal-00972559�

https://hal.science/hal-00972559
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient and Generalized Decentralized Monitoring

of Regular Languages

Yliès Falcone, Tom Cornebize, and Jean-Claude Fernandez

Univ. Grenoble Alpes, LIG, VERIMAG, F-38000 Grenoble, France

Abstract. This paper proposes an efficient and generalized decentralized moni-

toring algorithm allowing to detect satisfaction or violation of any regular specifi-

cation by local monitors alone in a system without central observation point. Our

algorithm does not assume any form of synchronization between system events

and communication of monitors, uses state machines as underlying mechanism

for efficiency, and tries to keep the number and size of messages exchanged be-

tween monitors to a minimum. We provide a full implementation of the algorithm

with an open-source benchmark to evaluate its efficiency in terms of number, size

of exchanged messages, and delay induced by communication between monitors.

Experimental results demonstrate the effectiveness of our algorithm which out-

performs the previous most general one along several (new) monitoring metrics.

1 Introduction

Monitoring is a verification technique based on runtime information. From a practical

perspective, a decision procedure, the so-called monitor, analyzes a sequence of events

(or a trace) from the system under scrutiny, and emits verdicts w.r.t. satisfaction or

violation of a specification formalized by a property. Being lightweight is an important

feature of monitoring frameworks because the performance of the system should be

disturbed in a minimal way. When the monitor collects events from a monolithic system,

we refer to this as centralized monitoring.

Modern systems are in essence distributed: they consist of several computation units

(referred to as components in the sequel), possibly interacting together, and evolving

independently. Monitoring distributed systems is a long-standing problem. The main

challenge is to design algorithms that allow to i) efficiently monitor computation units

of a system, ii) let local monitors recompute a global state of the system with mini-

mal communication, and iii) monitor against rich specifications. Existing monitoring

frameworks usually assume the existence of a central observation point in the system to

which components have to send events to determine verdicts; as seen for instance in [1,

2]. In that case, from a theoretical perspective, monitoring reduces to the centralized

case. A more challenging situation occurs when such central observation point cannot

be introduced or used in the system. Introducing a central observation point implies to

modify the architecture of the system, which is unrealistic in many application domains

mainly for economic reasons. Using a central observation point (i.e., one of the com-

ponents) is also undesirable because it induces i) more communication, ii) unbalanced

overhead between components, and iii) more risks of total failure in case of failure of a

component. When no such central observation point exists in the system, we refer to this

as decentralized monitoring. In the decentralized setting, monitors emit verdicts with

incomplete information: local monitors read local traces, i.e., incomplete versions of

the global trace, and have to communicate with each other to build up a global verdict.

Related Work. Several approaches exist for monitoring distributed systems. A tem-

poral logic, MTTL, for expressing properties of asynchronous multi-threaded systems

was presented in [3]. Its monitoring procedure takes as input a safety formula and a

partially-ordered execution of a parallel asynchronous system. MTTL augments linear

temporal logic (LTL) [4] with modalities related to the distributed/multi-threaded nature

of the system. Several works like [5] target physically distributed systems and address

the monitoring problem of partially-ordered traces, and introduce abstractions to deal

with the combinatorial explosion of these traces. Close to our work is an approach to

monitoring violations of invariants in distributed systems using knowledge [6]. Model-

checking the system allows to pre-calculate the states where a violation can be reported

by a process alone. When communication (i.e., more knowledge) is needed between

processes, synchronizations are added. Both [6] and our approach try to minimize the

communication induced by the distributed nature of the system but [6] i) requires the

property to be stable (and considers only invariants) and ii) uses a Petri net model to

compute synchronization points. We do not assume any model of the system, i.e., we

consider it as a black box. Decentralized monitoring is also related to diagnosis of

discrete-event systems which has the objective of detecting the occurrence of a fault

after a finite number of steps, see for instance [7, 8]. There are two main differences

between monitoring and diagnosis. In diagnosis, a specification with normal and faulty

behavior is an input to the problem. Also, when considering observability of distributed

systems, diagnosis assumes a central observation point which may not have full access

to information. On the contrary, decentralized monitoring does not assume a central ob-

servation point, but that local monitors have access to all local information. Similarly,

decentralized observation [9] uses a central observation point in a system that collects

verdicts from local observers that have limited memory to store local traces. Note, nei-

ther diagnosis nor observability considers minimizing the communication overhead.

In [10], we proposed a decentralized monitoring algorithm for (all) LTL formulas.

The main novelties were to i) avoid the need for a central observation point in the sys-

tem and ii) try to reduce the communication induced by monitoring by minimizing the

number of messages exchanged between monitors. The approach in [10] uses LTL spec-

ifications “off-the-shelf” by allowing the user to abstract away from the system archi-

tecture and conceive the system as monolithic. The algorithm relied on a decentralized

version of progression [11]: at any time, each monitor carries a temporarily extended

goal (aka an “obligation”) which represents the formula to be satisfied according to the

monitor that carries it. The monitor rewrites its obligation according to local observa-

tions and goals received from other monitors. According to the propositions referred

in the obtained formula, it might communicate its local obligation to other monitors.

Our approach relied on the perfect synchrony hypothesis (i.e., neither computation nor

communication takes time) where communication relied on a synchronous bus. This

hypothesis is reasonable for certain critical embedded systems e.g., in the automotive

domain (cf. [10] for more arguments along this line). Moreover, it has been recently

shown that this approach does not only “work on paper” but can be implemented when

finding a suitable sampling time such that the perfect synchrony hypothesis holds [12].

Nevertheless, to facilitate the application of [10] in more real scenarios, several di-

rections of improvement can be considered. First, it is assumed in [10] i) that at each

2

time instant, monitors receive an event from the system and can communicate with each

others, and ii) that communication does not take time. Second, the approach used LTL

formulas to represent the local state of the monitor and progression (i.e., formula rewrit-

ing) each time a new event is received. A downside of progression, is the continuous

growth of the size of local obligations with the length of trace; thus imposing a heavy

overhead after 100 events. Finally, while [10] minimizes communication in terms of

number of messages (i.e., obligations), it neglects their (continuously growing) size,

with the risk of oversizing the communication device, in practice.

Originality. In this paper, we propose to overcome the aforementioned drawbacks

of [10] and make important generalization steps for its applicability. First, instead of

input specifications as LTL formulas we consider (“off-the-shelf”) finite-state automata

and can thus handle all regular languages instead of only counter-free ones. Thanks to

the finite-word semantics of automata, we avoid the monitorability issues induced by the

infinite-word semantics of LTL [13–15]. Interestingly, algorithms using an automata-

based structure are more runtime efficient than those using rewriting (in terms of con-

sumption of time and memory). While our algorithm generally doubles the number of

exchanged messages, it reduces the size of messages, the execution time and memory

consumption of local monitors by several orders of magnitude. Note, our algorithm is

generic: by modifying some of its parameters, one can influence the aforementioned

monitoring metrics. Second, in practice, communication and reception of events might

not occur at the same rate or the communication device might become unavailable

during monitoring. Our algorithm allows desynchronization between the reception of

events from the system and communication between monitors but also arbitrarily long

periods of absence of communication, provided that a global clock exists in the system.

Our algorithm is fully implemented in an open-source benchmark. Our experimental

results demonstrate that our algorithm i) leads to a more lightweight implementation,

and ii) outperforms the one in [10] along several (new) monitoring metrics.

Overview of the decentralized monitoring algorithm. Let C = {C1, . . . , Cn} be the

set of system components. Let L be a regular language formalizing a requirement over

the system global behavior, i.e., L does not take into account the system structure.

Let τi = τi(0) · · · τi(t) be the local behavioral trace on component Ci at time t ∈ N.

Further, let τ = τ1(0)∪. . .∪τn(0)·τ1(1)∪. . .∪τn(1) · · · τ1(t)∪. . .∪τn(t) be the global

behavioral trace, at time t ∈ N, obtained by merging local traces. (An hypothesis of our

framework is the existence of a global clock in the system.) From L, one can construct

a centralized monitor for L, i.e., a decision procedure having access to the global trace

τ and emitting verdict ⊤ (resp. ⊥) whenever τ is a good (resp. bad) prefix for L, i.e.,

whenever τ · Σ∗ ⊆ L (resp. τ · Σ∗ ⊆ (Σ∗ \ L). Then, from a centralized monitor,

we define its decentralized version, i.e., a monitor keeping track of possible evaluations

of a centralized monitor when dealing with partial information about the global trace.

A copy of the decentralized monitor is attached to each component. Our decentralized

monitoring algorithm orchestrates message-based communication between monitors.

Monitors exchange information about their received events or their evaluation of the

current global state. Communication is assumed to be reliable (no message losses) but

is not synchronized with the production of events on the system: when a monitor sends

a message, there is no special assumption about the arrival time, except that it is finite.

3

The decentralized monitoring algorithm evaluates the global trace τ by reading each

local trace τi of Ci, in separation. In particular, it exhibits the following properties.

• If a local monitor yields the verdict⊥ (resp.⊤) on some component Ci by observing

τi, it implies that τ ·Σ∗ ⊆ Σ∗\L (resp. τ ·Σ∗ ⊆ L) holds. That is, a locally observed

violation (resp. satisfaction) is, in fact, a global violation (resp. satisfaction).

• If the monitored global trace τ is such that τ · Σ∗ ⊆ Σ∗ \ L (resp. τ · Σ∗ ⊆ L), at

some time t, one of the local monitors on some component Ci yields ⊥ (resp. ⊤),

at some time t′ ≥ t because of some latency induced by decentralized monitoring,

whatever is the global trace between t and t′.

Paper Organization. The rest of this paper is organized as follows. Section 2 introduces

some preliminaries and notations. Section 3 proposes a generic (centralized) monitoring

framework, compatible with frameworks that synthesize monitors in the form of finite-

state machines. Section 4 shows how to decentralize a monitor. In Sec. 5, we present

how decentralized monitors communicate with each other to obtain a verdict in a decen-

tralized manner. Section 6 describes the relation between centralized and decentralized

monitoring. Section 7 presents our benchmark, DECENTMON2, used to evaluate an

implementation of our monitoring algorithm. Section 8 presents some perspectives.

2 Preliminaries and Notations

For i, j ∈ N, the (underlying set associated to the) interval of integers from i to j is

denoted by [i; j]. The set of finite sequences over a finite set E is noted E∗.

We consider that the global system consists of a set of components {C1, . . . , Cn},
with n ∈ N \ {0}. Each component emits events synchronously and has a local monitor

attached to it. An event local to component Ci is built over a set of atomic propositions

AP i, i ∈ [1;n], i.e., the local set of events is Σi = 2APi . The set of all atomic proposi-

tions is AP = ∪i∈[1;n]AP i. Atomic propositions are local to components by requiring

that {APi | i ∈ [1;n]} is a partition of AP . (Note, this hypothesis simplifies the pre-

sentation of the results in the paper but is not an actual limitation of our framework.)

The set of all local events in the system is ∪i∈[1;n]Σi, where Σi is visible to the mon-

itor at component Ci, i ∈ [1;n]. The global specification refers to events in Σ = 2AP

and is given by a regular language L ⊆ Σ∗. Note that the specification does not take

into account the architecture of the system and may refer to events involving atomic

propositions from several components (i.e., Σ 6= ∪i∈[1;n]Σi in the decentralized case

whereas Σ = ∪i∈[1;n]Σi in the centralized one or when there is only one component).

We assume that the (regular) language to be monitored is recognized by a determinis-

tic finite-state automaton (Q,Σ, qinit, δ, F) where Q is the set of states, qinit ∈ Q the

initial state, δ the transition function, and F ⊆ Q the set of accepting states.

Over time, for i ∈ [1;n], the monitor attached to Ci receives a trace τi ∈ (2APi)∗,

a sequence of local events, representing the behavior of Ci. The global behavior of the

system is given by a global trace τ = (τ1, τ2, . . . , τn). The global trace is a sequence of

pair-wise union of the local events in components traces, each of which at time t is of

length t + 1 i.e., τ = τ(0) · · · τ(t), where for i < t, τ(i) is the (i+1)-th element of τ .

The sub-sequence τ [i; j] is the sequence containing the (i+1)-th to the (j+1)-th elements.

The substitution of the element at index t in a sequence τ by e is noted τ [t|e].

4

3 Centralized Monitoring of (Propositional) Regular Languages

In this section we propose a general framework for centralized monitoring of regular

languages. The framework is compatible with the existing monitoring frameworks that

synthesize monitors as finite-state machines for propositional regular languages.

In the centralized case, the monitor is a central observation point. Generally speak-

ing, the purpose of the monitor is to determine whether the observed sequence forms

a good or a bad prefix of the language being monitored. For this purpose, the monitor

emits verdicts in some truth-domain B s.t. {⊥,⊤} ⊂ B where⊤ and⊥ are two “defini-

tive values” used respectively when a validation (good prefix) and violation (bad prefix)

of the language has been found, respectively.

Definition 1 (Good and bad prefixes [16]). The sets of good and bad prefixes of a

language L ⊆ Σ∗ are defined as:

good(L) = {τ ∈ Σ∗ | τ ·Σ∗ ⊆ L}, bad(L) = {τ ∈ Σ∗ | τ ·Σ∗ ⊆ (Σ∗ \ L)}.

Using good and bad prefixes, we can define the centralized semantic relation |=C for

traces, using, for instance, the truth-domain B
def

= {⊥, ?,⊤}, where the truth-value ?
indicates that no verdict has been found yet. Given τ ∈ Σ∗, we say that τ |=C L = ⊤
(resp. ⊥) whenever τ ∈ good(L) (resp. bad(L)) and τ |=C L =? otherwise.

Definition 2 (Centralized Monitor). A centralized monitor is a tuple (Q,Σ, q0, δ,
verdict) where Q is the set of states, Σ = 2AP the alphabet of events, q0 the ini-

tial state, δ : Q × Σ → Q the complete transition function, and verdict : Q → B is a

function that associates a truth-value to each state.

q0 q1
{a, b, c}

Σ \ {a, b, c} Σ

Fig. 1: Transitions of CM 1

A monitor is a Moore automaton, processing events from its

alphabet, and emitting a verdict upon receiving each event.

Monitor-synthesis algorithms ensure that i) for any τ ∈ Σ∗,

verdict(δ(q0, τ)) = ⊤/⊥ iff τ ∈ good / bad(L), where

δ is extended to sequences in the natural way; ii) for any

q ∈ Q, if verdict(q) ∈ {⊤,⊥} then ∀σ ∈ Σ : δ(q, σ) = q. A centralized monitor is a

decision procedure w.r.t. the centralized semantics relation |=C .

Remark 1 (Truth-domains). More involved truth-domains with refined truth-values (e.g.,

the ones used in [16, 15]) can be used in our framework without any particular difficulty.

Example 1 (Centralized Monitor). Consider AP1 = {a, b, c} and L1 the language of

words over 2AP
1

that contain at least one occurrence of the event {a, b, c}. The mon-

itor CM 1 of this language has its transition function δ1 depicted in Fig. 1. Moreover,

verdict(q0) =? and verdict(q1) = ⊤. Consider τ1 = ∅ · {a, b} · {a, b, c} · {a}, we have

∅ · {a, b} · {a, b, c} ∈ good(L1) and τ1 ∈ good(L1).

4 Decentralizing a Monitor

Let us now use the previous example to see what would happen when using a centralized

monitor on a local component where only a subset of AP can be observed. Let us

consider a simple architecture with three components CA, CB , CC respectively with

sets of atomic propositions AP1
A = {a},AP1

B = {b},AP1
C = {c}. If we use a central

5

{q0} {q0, q1}{q1}
({1, 2, 3}, {a, b, c}) {(s, σ) | σ = ∪i∈sAP i ∧ σ 6= {a, b, c}}

{(s, σ) | σ ⊂ ∪i∈sAP i}{(s, σ) | σ ⊆ ∪i∈sAP i}

({1, 2, 3}, {a, b, c})

{(s, σ) | σ ⊆ ∪i∈sAP i ∧ σ 6= {a, b, c}}

Fig. 2: Transitions of DM1

monitor on, say CA, no event (in 2AP
1

A) could allow the monitor to reach q1. Monitors

should thus take into account what could possibly happen on other components. Given

an observation on a local component, a decentralized monitor computes the set of states

that are possible with this observation, and refines (i.e., eliminate possible states) when

communicating with other monitors (as we shall see in Sec. 5).

Given a centralized monitor, we define its decentralized version as follows.

Definition 3 (Decentralized Monitor). Given a centralized monitor (Q,Σ, q0, δ, verdict),
the associated decentralized monitor is a 5-tuple (2Q\{∅}, (2[1;n]\{∅})×Σ, {q0}, ∆δ,
verdictD) where:

• (2[1;n] \ {∅})×Σ is the alphabet,

• ∆δ : (2Q \ {∅}) × (2[1;n] \ {∅}) × Σ → (2Q \ {∅}) is the decentralized transition

function defined as:

∆δ(Q, s, σ) = {q
′ ∈ Q | ∃σ′ ∈ Σ, ∃q ∈ Q : σ = σ′ ∩

⋃

j∈s AP j ∧ q′ = δ(q, σ′)},

• verdictD : (2Q \ {∅})→ B is the decentralized verdict function, s.t.:

verdictD(Q) =

{
b if ∃b ∈ B : {verdict(q) | q ∈ Q} = {b},
? otherwise,

for any Q ∈ 2Q \ {∅}.

Intuitively, a decentralized monitor “estimates” the global state that would be obtained

by a centralized monitor observing the events produced on all components. The estima-

tion of the global state is modeled by a set of possible states (of the centralized monitor)

given the (local) information received so far. When a decentralized monitor receives an

event (s, σ), it is informed that the union of the atomic propositions that occurred on

the components indexed in the set s is σ. The transition function is s.t. if the estimated

global state is Q ∈ 2Q \ {∅} and it receives (s, σ) as event, then the estimated global

state changes to ∆δ(Q, s, σ) which contains all states s.t. one can find a transition in δ
from a state in Q labeled with a global event σ′ compatible with σ. In other words, if

the actual global state belongs toQ, and the union of events that happen on components

indexed in s is σ, then the actual global state belongs to ∆δ(Q, s, σ) which is the set

of states that can be reached from a state in Q with all possible global events (obtained

by any observation that could happen on components indexed in [1;n] \ s). Regarding

verdicts, a decentralized monitor emits the same verdict as a centralized one when the

current state contains states of the centralized monitor that evaluate on the same verdict.

Example 2 (Decentralized Monitor). Let us consider again the architecture and lan-

guage L1 of Example 1. Consider what happens initially on any of the components

executing DM1 , the decentralized version of CM1 , see Fig. 2. Initially, the estimated

global state is {q0}. Suppose the monitor is informed that {a} occurred on component

6

CA (of index 1), then it will change its estimated global state to ∆δ1({q0}, {1}, {a}) =
{q0, q1}. Intuitively, this transition can be understood as follows. Knowing that {a} oc-

curred on CA, the other possible global events are {a, b}, {a, c}, and {a, b, c}, as the

monitor does not have information on what happened on CB and CC . In CM1 , from

state q0 and these events, states q0 and q1 can be reached. Note, the only way to reach

{q1} in DM1 , i.e., to know that the global state is q1 (and is unique), DM1 has to know

that the union of events that occurred on components indexed in {1, 2, 3} is {a, b, c}.

As illustrated by the example, a decentralized monitor does not depend on the compo-

nent on which it executes. Its transitions can occur on any component, as it receives an

event together with the identifier of components on which such an event occurred. How-

ever, a decentralized monitor shall communicate with other decentralized monitors.

5 Communication and Decision Making

Our aim is now to define how a collection of decentralized monitors, analyzing a given

distributed trace, should communicate with each other to obtain a verdict in a decen-

tralized manner. The verdict indicates whether the trace, when interpreted as a global

trace, is a good or a bad prefix of the language.

5.1 Preliminaries: Local Memory, Clocks, and Communication

Monitor local memory. The local memory of a monitor is a partial function mem :
N→ Σ × (2[1;n] \ {∅}), purposed to record the “local knowledge” w.r.t. (past instants

of) the global (actual) trace produced by the system. If mem(t) = (σt, st), it means that

the monitor knows that the set of all atomic propositions received by the components in

st is σt. Moreover, if σ ∈ Σ is the global event at time t and mem(t) = (σt, st), then

σ ∩ (
⋃

i∈st
AP i) = σt. In next section, we will see how after communicating, local

monitors can discard elements from their memory.

As a local monitor memorizes the observed local events, it may inform other mon-

itors of the content of its memory via messages. When a monitor receives a memory

chunk from another monitor, it merges it with its local memory. For this purpose, for

two memories mem and mem′, we define the merged memory mem⊔mem′:

(mem⊔mem′)(t) =







mem(t) ∪mem′(t) if t ∈ dom(mem) ∩ dom(mem′),
mem′(t) if t ∈ dom(mem′) \ dom(mem),
mem(t) otherwise,

where the union (σ, s) ∪ (σ′, s′) between two memory elements (σ, s) and (σ′, s′) is

defined as (σ ∪ σ′, s ∪ s′). For instance, consider mem = {0 7→ ({b}, {1, 2}), 1 7→
({a, b}, {1, 2}), 2 7→ (∅, {2})} and mem′ = {1 7→ ({c}, {3}), 2 7→ ({c}, {3})}, we

have mem⊔mem′ = {0 7→ ({b}, {1, 2}), 1 7→ ({a, b, c}, {1, 2, 3}), 2 7→ ({c}, {2, 3})}.

Monitor local clocks. Each local monitor carries two local (discrete) clocks t and tlast.
The purpose of t is simply to store the time instant of the last received event from the

local component. The purpose of tlast is to store the time instant for which it knows the

global state of the system. Indeed, the decentralized monitoring algorithm presented in

next section will ensure that, on each monitor Mi, for a global trace τ :

• the last event σ emitted by the local component was at time t : σ = τ(t).

• the current state is the state corresponding to tlast : q = δ(q0, τ [0; tlast − 1]);

7

How monitors communicate. As mentioned before, local monitors are required to com-

municate with each other to share collected information (from their local observation or

other monitors). To ensure that communication between monitors aggregates correctly

information over time, we suppose having two functions leader mon and choose mon
that can be defined e.g., according to the architecture and possibly changing over time.

The function choose mon : [1;n] → [1;n] indicates for each monitor, the mon-

itor it should communicate with. Local monitors are referred to by their indexes. For

information to aggregate correctly, we require choose mon to be bijective, and such

that ∀i ∈ [1;n], ∀k ∈ [1;n − 1] : choose monk(i) 6= i where choose monk(i) =
choose mon(. . . (choose mon(i)) . . .)
︸ ︷︷ ︸

k times

. One can consider for instance choose mon(i) =

(i mod n)+1. Note: these requirements are not limitations of our framework but rather

guidelines for configuring the communication of our monitors where the architecture is

such that a bidirectional direct communication exists between any two components.

The proposed algorithms can be easily adapted to any other architecture, provided that

a bidirectional communication path exists between any two components (which other-

wise would limit the interest of decentralized monitoring).

The function leader mon : [1;n] → {true, false} indicates whether the monitor

on the component of the given index is a leader. When receiving new events from the

system, only leader monitors can send the local events received from their components.

The number of leader monitors influences communication metrics of the monitoring

algorithm (see Sec. 7). Using a function makes the algorithm generic and allows leader

monitors to change over time.

5.2 Decentralized Monitoring Algorithm

Let us now present the main algorithm for decentralized monitoring. The algorithm is

executed independently on each component until there is no event to read and the local

monitor has determined the global state, which is given by the condition tlast > t (the

time instant corresponding to the last known global state is greater than the time instant

of the last received event from the local component).

At an abstract level, the algorithm is an execution engine using a decentralized mon-

itor as per Definition 3. It computes the locally estimated global state of the system by

aggregating information from events read locally and partial traces received from other

monitors. It stores in q the last known global state of the system at time tlast, and in t the

time instant of the last event received from the system. The main steps of the algorithm

can be summarized as follows:

Algorithm DM (Decentralized Monitoring). Let L be the monitored language and q0
the initial state of its associated centralized monitor. Initialize variables q to q0, tlast to 0,

and t to−1. Then, repeat the following steps until the end of the trace and tlast > t.

DM1 [Wait] for something from the outside: either an event σ from the system or a

message from another monitor (a pair (q′, tnew) ∈ Q× N or a partial memory m).

DM2 [Update] If an event (resp. a trace) is received from a component (resp. another

monitor), update memory and t. If a state is received, update the known global state.

8

DM3 [Compute new state] Using the transition function of the decentralized monitor

(Definition 3) and the local memory between tlast and t, compute the set of possible

states. If the set of possible states is a singleton, q and tlast are updated.

DM4 [Evaluate and return] If a definitive verdict (⊤ or ⊥) is found, return it (and inform

other monitors).

DM5 [Prepare communication] Prepare a message to be sent. If a state is received or a

new state has been computed (i.e., if q and tlast have been modified), append it to

the message together with tlast. If there are events that occurred after the last found

state (t ≥ tlast), append them to the message, provided that the monitor is a leader

(leader mon(i) = true) or these events come from another monitor.

DM6 [Communicate] If there is a non-empty message to be sent, then send it to the

associated monitor (as determined by function choose mon(i)).

At a concrete level, the abstract algorithm is realized in Algorithms 1, 2, and 3. These

algorithms execute in the same memory space, and variables are global. The receive

function (Algorithm 1) realizes steps DM1 and DM2 where i) events and messages

from other monitors are received, and, ii) the memory and current state are updated.

The receive function is called by the main loop (Algorithm 3) and blocks the execution

until an input is received. It can receive three possible inputs (and any combination of

them): an event σ from the component (then it updates mem and t), a state q′ from

another monitor (then it updates q and tlast if it does not have fresher information), a

partial memory m from another monitor (then it updates mem), or both a state and a

partial memory. The function also keeps track of whether a state or a partial memory

was received using two Booleans rcv state and rcv mem . The update state function

(Algorithm 2) realizes step DM3 by implementing the transition function ∆δ of the

decentralized monitor using at the same time the local memory mem for efficiency

reasons. Variable q keeps track of the last know global state (at time tlast. Variable Q
is a temporary variable that keeps track of the set of possible states. Variable upd state

is set to true if the execution of update state function allows to update the last know

global state. The main loop (Algorithm 3) realizes steps DM4, DM5, and DM6 where

the message is built. Step DM4 is realized by lines 8 to 11, where, if a new global

state is known (either computed with update state or received in a message), then it

is checked if the associated verdict is definitive. The new state together with tlast are

added to the message. Then, when there are some local events to be shared (tlast ≤
t), if the monitor received a partial memory or the monitor is a leader (line 12), the

partial memory from tlast to t (i.e., mem(tlast, t)) and the value of tlast are added to the

message (line 13). Finally (lines 14-15), the (non-empty) message is sent to the monitor

of index choose mon(i).

Remark 2 (Domain of mem). At any moment, the only used elements of mem are those

between tlast and t. Thus, after each step of the algorithm, elements before tlast can be

discarded. Thus, dom(mem) = [tlast; t] is of bounded size under certain conditions

discussed in Sec. 6.

The following example illustrates the decentralized monitoring algorithm. Local moni-

tors keep in memory only the events occurring at time instants within [tlast; t].

9

1 (rcv mem, rcv state)←−
(false, false)

2 when an event σ ∈ Σi is received from

component:

3 t←− t+ 1
4 mem←− mem⊔ [t 7→ (σ, {i})]

5 when a state q′ ∈ Q is received with

time tnew:

6 if tnew > tlast then

7 (q, tlast)←− (q′, tnew)
8 rcv state ←− true

9 when a partial memory m ∈ N→

Σ × (2[1;n] \ {∅}) is received:

10 mem←− mem⊔m
11 rcv mem ←− true

Algorithm 1: function receive

1 Q ←− {q}
2 upd state ←− false

3 for t′ from tlast to t do

4 (σ, s)←− mem(t′)
5 Q ←− ∆δ(Q, s, σ)
6 if ∃q′ ∈ Q : Q = {q′} then

7 (q, tlast)←− (q′, t′ + 1)
8 upd state ←− true

Algorithm 2: function

update state

1 (tlast, t)←− (0,−1)
2 (q,Q)←− (q0, {q0})
3 mem←− {}
4 repeat until the end of the trace and tlast > t:
5 initialize message

6 receive()
7 update state()
8 if upd state ∨ rcv state then

9 if verdict(q) ∈ {⊤,⊥} then

10 return verdict(q)

11 add (q, tlast) to message

12 if tlast ≤ t ∧ (rcv mem ∨ leader mon(i)) then

13 add (mem (tlast, t) , tlast) to message

14 if message is not empty then

15 send message to Mchoose mon(i)

16 return verdict(q)

Algorithm 3: Decentralized monitoring algorithm executing on Ci (main loop)

Example 3 (Decentralized Monitoring). Let us go back to the monitoring of the speci-

fication introduced in Example 1 and see how this specification is monitored with Algo-

rithms 1, 2, and 3. Table 1 shows how the situation evolves on all three monitors when

monitoring the global trace ∅ ·{a, b} · {a, b, c} · {a}. As mentioned earlier, the sequence

of states of the centralized monitor is q0 · q0 · q1 · q1, and the verdict associated to this

trace is ⊤, obtained after the third event. For this example, leader mon(i) = (i = 1)
and choose mon(i) = (i mod 3)+ 1. For simplicity, in this example, communication

between monitors and events from the system occur at the same rate. Cells are colored

10

in grey when a communication occurs between monitors or an event is read from a

component. On each monitor, between any two communications or event receptions,

the local memory is represented on two lines: first the values of tlast, t, and q the last

determined global state, and second the memory content.

• Initially, on each monitor, t = −1 (no event received), tlast = 0 (the time instant of

the last known state), the last know global state is q0, and the memory is empty.

• When the global event ∅ occurs, each monitor Mi, i ∈ [1; 3] receives the corre-

sponding local event and records in its memory: {0 7→ (∅, {i})}. According to

update state, all monitors are able to determine that the global state is (still) q0, and

they update t to 1 and tlast to 1 and discards the information about the local received

event in memory. Then, each monitor Mi sends the information about its computed

state to monitor Mchoose mon(i). Upon the reception of their message, there is no

change in the state of local monitors: the values of t and tlast remain the same, and

the memory remains empty (the information about the event received at t = 0 was

discarded because the monitors were able to compute the global state at t = 0).

• The remaining steps execute similarly until all monitors return verdict(q1) = ⊤.

Remark 3 (Optimizations). Further optimizations can be taken into account in the algo-

rithm. For instance, using a history of sent messages, monitors can remove information

from some messages addressed to another monitor, if they already sent this information

in a previous message. Further studies are needed to explore the trade-off between local

memory consumption vs the size of exchanged messages in the system.

6 Semantics and Properties of Decentralized Monitoring

In this section, we discuss further the semantics induced by the decentralized monitor-

ing algorithm and its properties.

Definition 4 (Semantics of Decentralized Monitoring). Let C = {C1, . . . , Cn} be the

set of system components, L ⊆ (2AP)∗ be a regular language, andM = {M1, . . . ,Mn}
be the set of component monitors. Further, let τ = τ1(0) ∪ . . . ∪ τn(0) · τ1(1) ∪ . . . ∪
τn(1) · · · τ1(t)∪ . . .∪ τn(t) be the global behavioral trace, at time t ∈ N. If some com-

ponent Ci, with i ≤ n, Mi has a local state Q s.t. verdictD(Q) = ⊤ (resp. ⊥), then

τ |=D L = ⊤ (resp. ⊥). Otherwise, τ |=D L =?.

By |=D we denote the satisfaction relation on finite traces in the decentralized setting to

differentiate it from the centralized one. Obviously, |=C and |=D both yield values from

the same truth-domain. However, the semantics are not equivalent, since the current

state of the decentralized monitor can contain several states of the centralized one, when

a local component has not enough information to determine a verdict. This feature was

illustrated in Example 3 where at t = 2, the global trace is ∅ · {a, b} · {a, b, c}, which is

a good prefix of the monitored language, only reported at t = 4 by Monitor 2.

The precise relation between the centralized and decentralized semantics is given

by the two following theorems.

Theorem 1 (Soundness). Let L ⊆ Σ∗ and τ ∈ Σ∗, then τ |=D L = ⊤/⊥ ⇒ τ |=C

L = ⊤/⊥, and τ |=C L = ?⇒ τ |=D L = ?.

Soundness states that i) all definitive verdicts found by the decentralized monitoring al-

gorithm are actual verdicts that would be found by a centralized monitor, having access

11

Table 1: Decentralized monitoring of L1 on 3 components
Monitor 1 Monitor 2 Monitor 3

tlast = 0 t = −1 q = q0 tlast = 0 t = −1 q = q0 tlast = 0 t = −1 q = q0
{ } { } { }

Read event ∅ Read event ∅ Read event ∅
tlast = 1 t = 0 q = q0 tlast = 1 t = 0 q = q0 tlast = 1 t = 0 q = q0

∅ ∅ ∅
Send to M2 Send to M3 Send to M1

(q0, 1) (q0, 1) (q0, 1)
tlast = 1 t = 0 q = q0 tlast = 1 t = 0 q = q0 tlast = 1 t = 0 q = q0

∅ ∅ ∅
Read event {a} Read event {b} Read event ∅

tlast = 1 t = 1 q = q0 tlast = 1 t = 1 q = q0 tlast = 2 t = 1 q = q0
{1 7→ ({a}, {1})} {1 7→ ({b}, {2})} ∅

Send to M2 Send to M3 Send to M1

(({a}, {1}), 1) (({b}, {2}), 1) (q0, 2)
tlast = 2 t = 1 q = q0 tlast = 1 t = 1 q = q0 tlast = 2 t = 1 q = q0

∅ {1 7→ ({a, b}, {1, 2})} ∅
Read event {a} Read event {b} Read event {c}

tlast = 2 t = 2 q = q0 tlast = 1 t = 2 q = q0 tlast = 2 t = 2 q = q0

{2 7→ ({a}, {1})}
{1 7→ ({a, b}, {1, 2}),
2 7→ ({b}, {2})}

{2 7→ ({c}, {3})}

Send to M2 Send to M3 Send to M1

(q0, 2), (({a}, {1}), 2) (({a, b}, {1, 2}), ({b}, {2}), 1) (({c}, {3}), 2)
tlast = 2 t = 2 q = q0 tlast = 2 t = 2 q = q0 tlast = 2 t = 2 q = q0

{2 7→ ({a, c}, {1, 3})} {2 7→ ({a, b}, {1, 2})} {2 7→ ({b, c}, {2, 3})}
Read event {a} Read event ∅ Read event ∅

tlast = 2 t = 3 q = q0 tlast = 2 t = 3 q = q0 tlast = 2 t = 3 q = q0
{2 7→ ({a, c}, {1, 3}),
3 7→ ({a}, {1})}

{2 7→ ({a, b}, {1, 2}),
3 7→ (∅, {2})}

{2 7→ ({b, c}, {2, 3}),
3 7→ (∅, {3})}

Send to M2 Send to M3 Send to M1

(({a, c}, {1, 3}), ({a}, {1}), 2) (q0, 2), (({b, c}, {2, 3}), (∅, {3}), 2)
(({a, b}, {1, 2}), (∅, {2}), 2)

tlast = 4 t = 3 q = q0 tlast = 4 t = 3 q = q1 tlast = 4 t = 3 q = q0
∅ ∅ ∅

Return verdict(q1) = ⊤ Return verdict(q1) = ⊤ Return verdict(q1) = ⊤

to the global trace, and ii) decentralized monitors do not find more definitive verdicts

(⊤ or ⊥) than the centralized one.

Theorem 2 (Completeness). Let L ⊆ Σ∗ and τ ∈ Σ∗, then τ |=C L = ⊤/⊥ ⇒
∃τ ′ ∈ Σ∗ : τ · τ ′ |=D L = ⊤/⊥.

Completeness states that all verdicts found by the centralized algorithm for some global

trace τ will be eventually found by the decentralized algorithm on a continuation τ ·
τ ′. Generally, when the rate of communication between monitors (compared to the

reception of events) is unknown or when not all monitors are leaders, it is not possible

to determine the maximal length of τ ′. When monitors communicate at the same rate

as monitors receive events and all monitors are leaders (i.e., they can send message

spontaneously – leader mon(i) = true , for any i ∈ [1;n]), then, as was the case

12

in [10], we can bound the maximal length of τ ′ by n (the number of components in the

system), which also represents the maximal delay, induced by decentralized monitoring.

Theorem 3 (Completeness with bounded delay). Let L ⊆ Σ∗ and τ ∈ Σ∗, if mon-

itors receive events and communicate at the same rate and if all monitors are leaders,

then τ |=C L = ⊤/⊥ ⇒ ∃τ ′ ∈ Σ∗ : |τ ′| ≤ n ∧ τ · τ ′ |=D L = ⊤/⊥.

7 Implementation and Experimental Results

We present DECENTMON2 a new benchmark tool used to evaluate decentralized moni-

toring (Sec. 7.1) using specifications given as LTL formulas (Sec. 7.2) and specifications

patterns (Sec. 7.3). Then, we draw conclusions from our experiments (Sec. 7.4). Further

experimental results are available at [17].

7.1 DECENTMON2: a Benchmark for Generalized Decentralized Monitoring

DECENTMON2 is an benchmark dedicated to decentralized monitoring. DECENTMON2

consists of: a completely redeveloped version of DECENTMON [10], an implementation

of the decentralized monitoring algorithm presented in Sec. 5.2, a trace generator, and

an LTL-formula generator. DECENTMON2 consists of 1,300 LLOC, written in the func-

tional programming language OCaml. It can be freely downloaded and run from [17].

LTL2Monϕ ∈ LTL Mϕ

DecentMon DecentMon2trace

Comparator Result

Fig. 3: Experimental setup

The system takes as input multiple

traces (that can be automatically gener-

ated), corresponding to the behavior of

a distributed system, and a specification

given by a deterministic finite-state au-

tomaton. Then the specification is mon-

itored against the traces in two differ-

ent modes: a) by merging the traces to

a single, global trace and then using a

“centralized monitor” for the specifica-

tion (i.e., all components send their respective events to the central monitor who makes

the decisions regarding the trace), b) by using the decentralized version introduced

in [10], and c) by using the decentralized approach introduced in this paper (i.e., each

trace is read by a local monitor in the two last cases). To favor the centralized case,

monitors send their events only if they differ from the previous one, which decreases

the number of exchanged messages. We have evaluated the three different monitoring

approaches (i.e., centralized vs. LTL-decentralized vs generalized-decentralized) using

several set-ups described in the remainder of this section. To compare monitoring met-

rics obtained with the decentralized algorithm in [10] and the one in this paper, we used

LTL2MON [18], to convert LTL formulas into automata-based (centralized) monitors.

For our comparison purposes, we used results on common LTL formulas and traces us-

ing the experimental setup depicted in Fig. 3. For each of the metric mentioned in the

following sections, ratios are obtained by dividing the value obtained in the decentral-

ized case over the value obtained in the centralized case.

To compare with the decentralized monitoring algorithm obtained in [10], the emis-

sion of events occurs at the same rate as the communication between monitors. Recall

that it was assumed in [10] whereas our monitoring algorithm allows different ratios.

13

Each line of the following arrays is obtained by conducting 1,000 tests, each with

a fresh trace of 1,000 events and specification. We use the same architecture as in

the running example. Note that benchmarks with different architectures and rates of

communication/event-emission were also conducted, and are available from [17].

For the following monitoring metrics, we measure the size of the elements ex-

changed by monitors as follows. Suppose we monitor an LTL formula ϕ over AP

with an automaton defined over the alphabet Σ = 2AP with set of states Q: each

event is of size ⌈log2 |Σ|⌉, each state is of size ⌈log2 |Q|⌉, each time unit t is of size

⌈log2(t)⌉, each formula is of size n × ⌈log2(|AP | + |Op|)⌉ where n is the number

of symbols in the formula, AP is the set of atomic propositions of the formula and

Op = {⊤,⊥,∨,∧,¬,⇒,⇔, X,F,G,U,R,W,X,#, (,)} is the set of symbols in

formulas handled by DECENTMON. Then in the following tables, the following metrics

are used: #msg., the total number of exchanged messages, |msg.|, the total size of ex-

changed messages (in bits), |trace| the size of the prefix of the trace needed to obtain a

verdict, delay, the number of additional events needed by the decentralized algorithm to

reach a verdict compared to the centralized one, |mem|, the memory in bits needed for

the structures (i.e., formulas for [10], partial function mem plus state for our algorithm).

7.2 Benchmarks for Randomly Generated formulas

Table 2: Number and size of messages - random formulas

|ϕ| #msg. |msg.| #msg. ratio |msg.| ratio

cm dm1 dm2 cm dm1 dm2 dm1/cm dm2/cm dm1/cm dm2/cm

1 3.49 1.13 3.73 10.4 87.2 23.8 0.32 1.06 8.31 2.27

2 4.04 1.89 5.4 12.1 316 39.2 0.46 1.33 26.0 3.23

3 9.33 5.34 16.9 27.9 3,220 166 0.57 1.37 115 4.5

4 25.1 12.6 35.9 75.3 8,430 350 0.5 1.27 112 4.16

5 39.7 21.9 71.0 119 36,500 775 0.55 1.33 306 4.86

6 90.9 47.3 116 272 284,000 1,180 0.52 1.23 1,040 4.21

For each size

of formula

(from 1 to

6), DECENT-

MON2 ran-

domly gen-

erated 1,000

formulas in

the architec-

ture described

in Example 1. How the three monitoring approaches compared on these formulas can be

seen in Tables 2 and 3. The first column of these tables shows the size of the monitored

LTL formulas. Note, our system measures formula size in terms of operator entailment1

inside it (state formulas excluded), e.g., Fa ∧G(b ∧ c) is of size 2.

Table 3: Trace length, delay, and mem-

ory size - random formulas

|ϕ| |trace| delay |mem|
cm dm1 dm2 dm1 dm2 dm1 dm2

1 1.33 1.66 2.61 0.32 1.28 44.2 7.93

2 1.67 2.15 3.2 0.48 1.53 156 9.72

3 5.21 5.79 8.8 0.58 1.6 458 10.4

4 15.7 16.4 19.3 0.7 1.66 1,100 11.3

5 25.5 26.4 36.3 0.82 1.79 2630 12.4

6 59.4 60.2 63.2 0.76 1.66 5,830 12.0

For example, the last line in Table 2 says

that we monitored 1,000 randomly generated

LTL formulas of size 6. On average, monitors

using the centralized algorithm, the decentral-

ized algorithm using LTL formulas, and the

decentralized algorithm using automata, ex-

changed 90.9, 47.3, 116 messages, had mes-

sages of size 272 bits, 284,000 bits, 1180 bits,

respectively. The last two pairs of columns

show the ratios of the previous metrics ob-

1 Experiments show that operator entailment is more representative of how difficult it is to

progress it in a decentralized manner. formulas of size above 6 are not realistic in practice.

14

Table 4: Number and size of messages - specification patterns

|ϕ| #msg. |msg.| #msg. ratio |msg.| ratio

cm dm1 dm2 cm dm1 dm2 dm1/cm dm2/cm dm1/cm dm2/cm

abs 7.33 4.46 17.9 22 2,050 194 0.6 2.44 93.6 8.85

exis 43.9 19.7 64.2 131 10,200 663 0.45 1.46 77.6 5.03

bexis 65.3 31.6 379 19.6 1,170,000 5,450 0.48 2.17 5,970 10.4

univ 10.3 5.92 30.9 31 2,750 379 0.57 2.98 88.6 12.2

prec 77.6 25.4 68.1 232 8,710 648 0.32 1.29 37.4 4.11

resp 959 425 1,070 2,870 337,000 9,760 0.44 1.12 117 3.39

precc 7.68 4.81 18.9 23. 5,180 218 0.62 2.47 225 9.53

respc 643 381 732 1,920 719,000 6,680 0.59 1.13 372 3.46

consc 490 201 469 1,470 337,000 4,260 0.41 1.13 229 3.43

tained in the decentralized cases over the centralized one. For instance, the last line

in Table 2 says that the decentralized algorithm with LTL formulas induced 0.52 times

the number of messages of the centralized algorithm, whereas the decentralized algo-

rithm with automata induced 1.23 times the number of messages. Message ratios and

metrics in Table 3 read similarly.

7.3 Benchmarks for Patterns of formulas

Table 5: Trace length, delay, and memory

size - specification patterns

|ϕ| |trace| delay |mem|
cm dm1 dm2 dm1 dm2 dm1 dm2

abs 3.89 4.55 5.66 0.66 1.77 496 12.4

exis 28.2 28.9 29.9 0.65 1.68 376 11.7

bexis 42.6 43.1 116 0.581 1.56 28,200 14.4

univ 5.96 6.73 7.76 0.76 1.79 498 13.0

prec 50.8 51.6 35.5 0.81 1.66 663 11.5

resp 638 639 639 0.32 0.7 1,540 8.61

precc 4.11 4.82 5.72 0.7 1.64 1,200 11.6

respc 427 428 428 0.59 1.16 4,650 10.7

consc 325 325 326 0.6 1.35 2,720 10.8

We also conducted benchmarks with

more realistic specifications, obtained

from specification patterns [19]. Ac-

tual formulas underlying the patterns are

available at [20, 17]. We generated for-

mulas as follows. For each pattern, we

randomly select one of its associated for-

mulas. Such a formula is “parametrized”

by some atomic propositions. To obtain

randomly generated formula, using the

distributed alphabet, we randomly in-

stantiate atomic propositions.

Results are reported in Tables 4 and 5

for each kind of patterns (absence, existence, bounded existence, universal, precedence,

response, precedence chain, response chain, constrained chain), we generated again

1,000 formulas, monitored over the same architecture as used in Example 1.

7.4 Conclusions from the Experiments and Discussion

The number and size of exchanged messages when monitoring with the decentralized

algorithm using automata are in the same order of magnitude (and most often lower) as

when monitoring with the centralized algorithm. Comparing the decentralized monitor-

ing algorithms, the number of messages when using LTL formulas is always lower but

the size of messages is much bigger in that case (sometimes by orders of magnitude).

Delays are always greater when using automata but they remain in the same order of

15

magnitude. Please also note that we have conducted benchmarks where our algorithm

uses only one leader monitor, which tends to augment the delay (whereas in the al-

gorithm using LTL formulas monitors are not constrained) - see the discussion below.

Regarding the size of memory, the algorithm using automata is always more efficient

by several orders of magnitude when the size of formulas grows.

Efficiency of Implementation. Another interesting feature of our algorithm is its usabil-

ity in implementation. We measured the execution time (in seconds) and real memory

consumption of the two (reasonably optimized) implementations of benchmarks (in the

same programming language), see Table 6 where |msg.| is in kb and |mem| in MB.
Table 6: Performance of implementations

#msg. |msg.| |mem| time
DECENTMON 367 21, 667 157, 845 4.724

DECENTMON2 3, 258 59 18 0.064

We only report the results when mon-

itoring formulas of type bounded exis-

tence, over the same alphabet as before,

with a trace of 10,000 events. For other

kinds of formulas, the trend is similar. As expected, progression is certainly more costly

and thus less appropriate for monitoring. Moreover, the size of messages (and hence the

size of formulas) monitors have to handle becomes unmanageable quite rapidly.

Influence of the number of leaders. We also made some experiments (omitted for space

reasons) regarding the influence of the number of leader monitors. It turns out that,

as the number of leaders augments in the system, the number of messages augments,

whereas the delay induced by decentralized monitoring reduces. For instance, by allow-

ing all monitors to communicate spontaneously (i.e., with leader mon(i) = true for

any i ∈ [1;n]), we observed that, for several patterns of formulas, i) a shorter average

delay and less memory consumption by a factor of 1.5, and ii) the total size of mes-

sages was, in average, multiplied by 1.7 while their number was multiplied by 2 (thus

the average size of messages decreased).

8 Future Work

Experiments in Sec. 7 indicate that some parameters of our monitoring algorithm such

as the frequency of communication, the number of leader monitors, and the commu-

nication architecture, influence monitoring metrics. Our experiments allowed to sketch

some empiric laws but a deeper understanding of the influence of each of these param-

eters is certainly needed to optimize decentralized monitoring on specific architectures.

Another line of research is related to security in decentralized monitoring, when for

instance monitoring security-related properties, or when the property involves atomic

propositions with confidential information. Decentralized monitoring imposes local mon-

itors to communicate, for instance over some network. Exchanged messages contain

information about the observation or state of monitors w.r.t. the property of interest.

Some confidentiality issues may arise. Thus, an interesting question is to determine

how and to what extent monitors could encode their local observation, transmit the en-

coded information, so that the message is of benefit to the recipient (in terms of gained

information), but not to an external observer.

Communication is constrained by the choose mon function to e.g., reflect architec-

tural constraints. We will determine how to optimize the definition of the choose mon
function according to the monitored language, the memory content, or the current state

of local monitors so as to minimize the size and number of exchanged messages.

16

Another extension is to augment local monitors with enforcement primitives [21] to

correct violations. For this purpose, monitors can use their estimated global state and

release events only when the (estimated) states are associated to a “good” verdict.

References

1. Falcone, Y., Jaber, M., Nguyen, T.H., Bozga, M., Bensalem, S.: Runtime verification of

component-based systems. In: 9th Int. Conf. on Software Engineering and Formal Methods.

Volume 7041 of LNCS., Springer (2011) 204–220

2. Zhou, W., Sokolsky, O., Loo, B.T., Lee, I.: DMaC: Distributed monitoring and checking. In:

9th Work. on Runtime Verification. Volume 5779 of LNCS., Springer (2009) 184–201

3. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Decentralized runtime analysis of multithreaded

applications. In: 20th Parallel and Distributed Processing Symp., IEEE (2006)

4. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symp. on Foundations of

Computer Science. (1977) 46–57

5. Genon, A., Massart, T., Meuter, C.: Monitoring distributed controllers. In: 14th Symp. on

Formal Methods. Volume 4085 of LNCS., Springer (2006) 557–572

6. Graf, S., Peled, D., Quinton, S.: Monitoring distributed systems using knowledge. In: Joint

13th IFIP WG 6.1 Int. Conf., FMOODS 2011, and 31st IFIP WG 6.1 Int. Conf., FORTE

2011. Volume 6722 of LNCS., Springer (2011) 183–197

7. Wang, Y., Yoo, T.S., Lafortune, S.: New results on decentralized diagnosis of discrete event

systems. In: 42nd Ann. Allerton Conf. on Comm., Control, and Computing. (2004)

8. Cassez, F.: The complexity of codiagnosability for discrete event and timed systems. In: 8th

Int. Symp. on Automated Technology for Verification and Analysis. Volume 6252 of LNCS.,

Springer (2010) 82–96

9. Tripakis, S.: Decentralized observation problems. In: 44th IEEE Conf. Decision and Control,

IEEE (2005) 6–11

10. Bauer, A.K., Falcone, Y.: Decentralised LTL monitoring. In: 18th Int. Symp. on Formal

Methods. Volume 7436 of LNCS., Springer (2012) 85–100

11. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of Mathematics

and Artificial Intelligence 22 (1998) 5–27

12. Bartocci, E.: Sampling-based decentralized monitoring for networked embedded systems.

In: 3rd Int. Work. on Hybrid Autonomous Systems. Volume 124 of EPTCS. (2013) 85–99

13. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: 26th Int. Conf.

on Foundations of Software Technology and Theoretical Computer Science. Volume 4337

of LNCS., Springer (2006) 260–272

14. Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime verification of safety-progress properties.

In: 9th Int. Work. on Runtime Verification. LNCS (2009) 40–59

15. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at runtime?

Software Tools for Technology Transfert 14 (2012) 349–382

16. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.

Softw. Eng. Methodol. 20 (2011) 14

17. Cornebize, T., Falcone, Y.: DECENTMON2 (2013) http://decentmon2.forge.imag.fr.

18. Bauer, A.K.: LTL2MON (2009) http://ltl3tools.sourceforge.net.

19. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state

verification. In: Intl. Conf. on Software Engineering (ICSE), ACM (1999) 411–420

20. Alavi, H., Avrunin, G., Corbett, J., Dillon, L., Dwyer, M., Pasareanu, C.: Specification pat-

terns website (2011) http://patterns.projects.cis.ksu.edu/.

21. Falcone, Y., Mounier, L., Fernandez, J.C., Richier, J.L.: Runtime enforcement monitors:

composition, synthesis, and enforcement abilities. Formal Methods in System Design 38

(2011) 223–262

17

