
HAL Id: hal-00733458
https://hal.science/hal-00733458

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A context-free linear ordering with an undecidable
first-order theory

Arnaud Carayol, Zoltan Esik

To cite this version:
Arnaud Carayol, Zoltan Esik. A context-free linear ordering with an undecidable first-order theory. 7th
International Conference on Theoretical Computer Science (TCS), Sep 2012, Amsterdam, Netherlands.
pp.104-118, �10.1007/978-3-642-33475-7_8�. �hal-00733458�

https://hal.science/hal-00733458
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A context-free linear ordering with an
undecidable first-order theory?

Arnaud Carayol1 and Zoltán Ésik2

1 Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est, France
2 Institute of Informatics, University of Szeged, Hungary

Abstract. The words of a context-free language, ordered by the lexico-
graphic ordering, form a context-free linear ordering. It is well-known that
the linear orderings associated with deterministic context-free languages
have a decidable monadic second-order theory. In stark contrast, we give
an example of a context-free language whose lexicographic ordering has
an undecidable first-order theory.

1 Introduction

When the alphabet of a language L is linearly ordered, we may equip L with
the lexicographic ordering. It is known that every countable linear ordering is
isomorphic to the lexicographic ordering of a (prefix) language.

The lexicographic orderings of regular languages (i.e., the regular linear
orderings) were studied in [1–4, 12, 15, 20, 24, 28]. These linear orderings agree
with the leaf orderings of the regular trees, and are all automatic linear orderings
as defined in [22]. It follows from results in [20] that all scattered regular linear
orderings have finite Hausdorff rank, or finite condensation rank (FC-rank), as
defined in [27]. In fact all automatic linear orderings have finite FC-rank [22].
Moreover, an ordinal is the order type of a regular well-ordering if and only if it
is strictly less than ωω.

The study of the lexicographic orderings of context-free languages (context-
free linear orderings) was initiated in [4] and further developed in [5, 6, 8, 16–18]
and was extended to languages generated by deterministic higher order grammars
in [7].

It follows from early results in [13] that the lexicographic orderings of de-
terministic context-free languages are (up to isomorphism) identical to the leaf
orderings of the algebraic trees, cf. [5]. In [4], it was shown that every ordinal less

? Arnaud Carayol has been supported by the project AMIS (ANR 2010 JCJC 0203
01 AMIS). Both authors received partial support from the project TÁMOP-4.2.1/B-
09/1/KONV-2010-0005 “Creating the Center of Excellence at the University of
Szeged”, supported by the European Union and co-financed by the European Regional
Fund. Zoltán Ésik was also partly supported by the National Foundation of Hungary
for Scientific Research, grant no. K 75249, and by a chair Labex Bézout as part of
the program “Investissements d’Avenir” (ANR-10-LABX-58).

than ωω
ω

is the order type of a deterministic context-free linear ordering and it
was conjectured that a well-ordering is isomorphic to a context-free linear ordering
if and only if its order type is less than ωω

ω

. This conjecture was confirmed in
[5] for deterministic context-free linear orderings, and in [18] for context-free
linear orderings. Moreover, it was shown in [6] and [18] that the FC-rank of every
scattered deterministic context-free linear ordering and in fact every scattered
context-free linear ordering is less than ωω. Since the FC-rank of a well-ordering is
less than ωω exactly when its order type is less than ωω

ω

, it follows in conjunction
with results proved in [4] that a well-ordering is isomorphic to the lexicographic
ordering of a context-free language or deterministic context-free language if and
only if its order type is less than ωω

ω

. Exactly the same ordinals are the order
types of the tree automatic well-orderings, see [14]. Eventually, it was proved
in [8] that the FC-rank of every context-free linear ordering is less than ωω.
However, the question whether there exists a context-free linear ordering that is
not a deterministic context-free linear ordering remained open.

Since deterministic context-free linear orderings belong to the pushdown
hierarchy [9–11, 25], they all have decidable monadic second-order theories. In
fact, there exists an algorithm that takes two inputs, an LR(1) grammar (or
equivalently a deterministic pushdown automaton) and a sentence of the monadic
second-order logic of linear orders and tells whether the sentence holds in the
lexicographic ordering of the language generated by the grammar. Such a decision
procedure does not exist for all context-free grammars and monadic second-order
or even first-order sentences, since as shown in [16], it is undecidable to tell
whether a context-free linear ordering (given by a context-free grammar) is dense.
In contrast, it is decidable whether a context-free linear ordering is a well-ordering
or a scattered ordering.

In this paper we prove that there is a context-free linear ordering whose
first-order theory is undecidable. Thus there exists a context-free linear ordering
which is not the lexicographic ordering of a deterministic context-free language.
The context-free language defining this linear ordering is a finite disjoint union
of deterministic context-free languages. Hence our undecidability result holds for
the class of unambiguous context-free linear orderings.

As a corollary, we also obtain the existence of a (unambiguous) context-free
language whose associated tree has an undecidable monadic second-order theory.
The tree of a language is composed of the set of all prefixes of the words of the
language as set of vertices, and its ancestor relation is simply the prefix relation.
This result in turn proves the existence a context-free language that cannot be
accepted by any deterministic collapsible pushdown automaton (an extension of
the classical notion of pushdown automaton with nested stacks and links [19]),
as shown previously by Pawe l Parys using a pumping argument [26].

The paper is organised as follows. In Section 2, we recall basic definitions
on linear orderings. Definitions concerning first-order logic and the structures
associated with languages are given in Section 3. Section 1 presents our main
result and its corollaries are given in Section 5. Section 6 concludes the paper.

2 Linear orderings

A piece of notation: for a nonnegative integer n, we will denote the set {1, . . . , n}
by [n].

When A is an alphabet, we let A∗ denote the set of all finite words over A,
including the empty word ε. The set A+ is A∗−{ε}. We let uR denote the mirror
image of a word u ∈ A∗.

A linear ordering [27] (I,<) is a set I equipped with a strict linear order
relation <. As usual, we will write x ≤ y for x, y ∈ I if x < y or x = y. A linear
ordering (I,<) is finite or countable if I is. A morphism of linear orderings is an
order preserving map. Note that every morphism is necessarily injective. When
(I,<) and (J,<′) are linear orderings such that I ⊆ J and the embedding I ↪→ J
is a morphism, we call (I,<) a subordering of (J,<′). In this case the relation <
is the restriction of the relation <′ onto I and we usually write just I for (I,<).

An isomorphism is a bijective morphism. Isomorphic linear orderings are said
to have the same order type. The order types of the positive integers N, negative
integers N−, all integers Z, and the rationals Q, ordered as usual, are denoted ω,
ω∗, ζ and η, respectively. As usual, the finite order types may be identified with
the nonnegative integers.

Recall that a linear ordering (I,<) is dense if it has at least two elements and
for every x, y ∈ I with x < y there is some z ∈ I with x < z < y. A quasi-dense
linear ordering is a linear ordering that has a dense subordering, and a scattered
linear ordering is a linear ordering that is not quasi-dense. For example, N and Z
are scattered, Q is dense, and the ordering obtained by replacing each or some
point in Q with a 2-element linear ordering is quasi-dense but not dense. Clearly,
every subordering of a scattered linear ordering is scattered. It is well-known that
a linear ordering is quasi-dense if and only if it has a subordering of order type η.
Moreover, up to isomorphism, there are 4 countable dense linear orderings, the
ordering Q of the rationals possibly equipped with a least or greatest element, or
both.

When (I,<) is a linear ordering and for each i ∈ I, (Ji, <i) is a linear ordering,
the ordered sum ∑

i∈I
(Ji, <i)

is the disjoint union
⋃
i∈I(Ji×{i}) equipped with the order relation (x, i) < (y, j)

if and only if either i < j, or i = j and x <i y. When each (Ji, <i) is the linear
ordering (J,<′), we call the ordered sum the product of (I,<) and (J,<′), denoted
(I,<)× (J,<′). Finite ordered sums are also denoted as (I1, <1) + · · ·+ (In, <n).
Since the operation of ordered sum preserves isomorphism, we may also define
ordered sums of order types. For example, 1 + η + 1 is the order type of the
rationals equipped with both a least and a greatest element. It is known that
every scattered sum of scattered linear orderings is scattered. This means that if
(I,<) is scattered as is each (Ji, <i), then

∑
i∈I(Ji, <i) is also scattered. A sum

over a dense linear ordering (I,<) is referred to as a dense sum.

3 First-order logic

A signature is a ranked set σ of symbols. We let |R| denote the arity (≥ 1) of
the symbol R. A relational structure S over σ is given by a tuple (D, (RS)R∈σ),
where D is the domain of S, and where for all R ∈ σ, the interpretation of R
in S denoted RS is a subset of D|R|. When S is clear from the context, we just
write R for its interpretation RS .

Let S = (D, (RS)R∈σ) and S′ = (D′, (RS
′
)R∈σ) be two structures over

σ. An isomorphism h from D to D′ is a bijection from D to D′ such that
for all R ∈ σ and for all u1, . . . , u|R| ∈ D, (u1, . . . , u|R|) ∈ RS if and only if

(h(u1), . . . , h(u|R|)) ∈ RS
′
. We let S ∼= S′ denote the existence of an isomorphism

between S and S′.
A linear ordering (I,<I) is naturally represented as a structure over the

signature σord with one symbol < of arity 2. Its domain is the set I and the
symbol < is interpreted as <I .

First-order formulas use first-order variables, which are interpreted by el-
ements of the structure and are denoted by lower case letters x, y Atomic
first-order formulas are of the form R(x1, . . . , x|R|), where R is a relation symbol
from the signature and x1, . . . , x|R| are first-order variables, or x = y for first-
order variables x, y with the obvious semantics. Complex formulas are built as
usual from atomic ones by the use of Boolean connectives and quantifiers. Free
and bound occurrences of variables in a formula are defined as usual. We write
ϕ(x1, . . . , xn) to denote that the formula ϕ has free variables in {x1, . . . , xn}. A
closed formula has no free variables.

For a formula ϕ(x1, . . . , xn) and elements of the domain u1, . . . , un, we write
S |= ϕ[u1, . . . , un] to denote that the structure S satisfies the formula ϕ when
the free variable xi, i ∈ [n], is interpreted as ui. For a closed formula ϕ, we simply
write S |= ϕ.

For example, the following formula over the signature σord expresses that the
structure is a linear ordering:

∀x∀y x < y → ¬(y < x)
∧ ∀x∀y x < y ∨ y < x ∨ x = y
∧ ∀x∀y ∀z (x < y ∧ y < z)→ x < z

3.1 First-order interpretations

First-order interpretation is a transformation defining a structure in another
structure using first-order logic.

Definition 1. A first-order interpretation from a signature σ to a signature σ′ is
given by a tuple (δ, (ϕR)R∈σ′), where δ is a formula over σ with one free variable
x1, and for each symbol R ∈ σ′, ϕR is a formula over σ with free variables
x1, . . . , x|R|.

Applying a first-order interpretation I to a structure S over the signature σ
gives rise to a structure over the signature σ′, denoted I(S). Its domain is the

set D′ = {u ∈ D | S |= δ[u]}. A symbol R ∈ σ′ is interpreted in I(S) as the set
of all tuples satisfying ϕR :

{(u1, . . . , u|R|) ∈ (D′)|R| | S |= ϕR[u1, . . . , u|R|]}.

An example of first-order interpretation is given in Section 3.2.

3.2 Structures associated with words and languages

Let A be a finite alphabet. A word w over A can be represented by a structure
over the signature σA = {Pa | a ∈ A} ∪ σord with |Pa| = 1 for all a ∈ A. This
structure, denoted Sw, has the set [|w|] of positions in the word as its domain.
The symbol < is interpreted (in Sw) as the natural order and for all a ∈ A, Pa is
interpreted as the predicate marking all occurrences of the letter a.

For A = 2 = {0, 1}, the formula ϕ over the signature σA given below expresses
that a word starts with the letter 0 (i.e., for all w ∈ A∗, Sw |= ϕ if and only if w
stars with 0) :

∃x (∀y ¬(y < x) ∧ P0(x)) .

Similarly, when L ⊆ A∗, we define the structure SL over the signature σA
associated with a language L. This structure is obtained by taking the disjoint
union of all the structures Sw for w ∈ L. Note that as soon as L contains two
nonempty words, the relation < is no longer a linear ordering.

The following formula is satisfied by the languages in which all nonempty
words start with the letter 0.

∀x (∀y ¬(y < x)→ P0(x))

0 1 0 1 1 0 1 1 1 0< < < < < <

< < <

<

Fig. 1. The structure SL associated with the language L = 1∗0.

3.3 Lexicographic ordering and countable words associated with a
language

We will consider countable linear orderings that arise as lexicographic orderings
of languages. Suppose that A is an alphabet which is linearly ordered by the
relation <. Then we define a strict partial order <s on A∗ by u <s v if and
only if u = xay and v = xbz for some x, y, z ∈ A∗ and a, b ∈ A with a < b. We
also define u <p v if and only if u is a proper prefix of v, and u <` v if and

only if u <s v or u <p v. The lexicographic order relation <` turns A∗ into a
linear ordering. In particular, any language L ⊆ A∗ gives rise to a structure
over the signature σord denoted OL and called the lexicographic ordering of L.
The domain of OL is the language L and the symbol < is interpreted as the
lexicographic ordering <`.

We say that a language L ⊆ A∗ is scattered, dense, etc. if its lexicographic
ordering has the corresponding property. Moreover, we say that a lexicographic
ordering is a regular or a context-free linear ordering if it is isomorphic to
the lexicographic ordering of a regular or context-free language. Deterministic
context-free linear orderings are defined in the same way.

Example 1. Consider the alphabet 2 = {0, 1} ordered by 0 < 1. The lexicographic
ordering of the regular language 1∗0 is of order type ω and is depicted below.

0 10 110 1110< < <

< <

<

Similarly the lexicographic orderings of the regular languages 0∗1, 0+1 + 1+0
are of order type ω∗ and ζ, respectively. The lexicographic ordering of (00+11)∗01
is η. The context-free linear ordering (

⋃
n≥0 1n0(1∗0)n, <`) is of order type

1+ω+ω2 + · · · = ωω. The context-free linear orderings (
⋃
n≥1 1n0(0(0+1+1+0)+

10<n), <`) and (
⋃
n≥1 1n0(0(00 + 11)∗01 + 1(1∗0)n), <`) have respective order

types ζ + 1 + ζ + 2 + · · · and η + ω + η + ω2 + · · ·.

A countable word (called arrangement in [12]) over an alphabet B is a
countable linear ordering whose elements are labelled by letters of B. Each
language over an ordered alphabet A not containing the empty word gives rise
to a countable word WL over A, which is represented by a structure over the
signature σA. Its domain is the language L. The symbol < is interpreted as the
lexicographic order <`, and for all a ∈ A, Pa is interpreted as the set of words of
L ending with the letter a. We say that a countable word is context-free if it is
isomorphic to the countable word of some context-free language.

Lemma 1. Every context-free linear ordering (resp. word) can be represented by
a prefix context-free language not containing the empty word.

Proof. We establish the result for context-free words. Let A = {a1, . . . , an} with
a1 < · · · < an, and let L ⊆ A+ be a context-free language which does not contain
the empty word.

Let A′ = {a′1, . . . , a′n} be an alphabet disjoint from A and let π : A∗ 7→ (A′)∗

be the morphism mapping ai to a′i for all i ∈ [n].
Consider the context-free language L′ over A∪A′ ordered by a1 < · · · < an <

a′1 < · · · < a′n defined by

L′ = {π(wa)a | wa ∈ L and a ∈ A}.

The language L′ is prefix (as L′ is included in (A′)+A and A and A′ are assumed
to be disjoint). To conclude the proof, we observe that the mapping θ : L 7→ L′

mapping wa ∈ L to π(wa)a ∈ L′ is an isomorphism from WL to WL′ . ut
Context-free words are clearly closed under substitution. Thus we have:

Lemma 2. Let L be context-free language over an ordered alphabet A which does
not contain the empty word, and suppose that for each a ∈ A, Pa is a context-free
linear ordering. Then the ordered sum∑

u∈L
Pλ(u) where λ(u) designates the last letter of u,

obtained by replacing each u ∈ L ending with a ∈ A by a copy of Pa, is a
context-free linear ordering.

Proof. By Lemma 1, we can assume w.l.o.g. that L is prefix. For all a ∈ A, let
La be a context-free language (which does not contain the empty word) defining
the context-free linear ordering Pa. The ordered sum

∑
u∈L Pu(|u|) is isomorphic

to the context-free linear ordering defined by

{waLa | wa ∈ L and a ∈ A}.

ut
This property in turn implies that context-free words can be defined in

context-free linear orderings.

Lemma 3. Let A be an ordered alphabet and let L be a context-free language
not containing the empty word. There exists a context-free language L′ and a
first-order interpretation I such that WL is isomorphic to I(OL′).

Proof. Let L be a context-free language not containing the empty word over the
alphabet A = {a1, . . . , an}. Consider the linear ordering O obtained by replacing
in WL each vertex labelled ai by a copy of a linear ordering of order type ζ+ i+ζ.
As for all i ≥ 0, ζ + i+ ζ is a context-free linear ordering, we obtain by Lemma 2
that O is a context-free linear ordering. Let L′ be a context-free language such
that OL′ is isomorphic to O.

We now define a first-order interpretation transforming OL′ into WL. The
first-order interpretation I only keeps vertices that have no predecessor. These
vertices correspond to the first vertex in between two consecutive copies of ζ.
Therefore these vertices are in a one to one correspondence with the elements of
L. The order relation < is inherited by I. The predicate Pa1

is defined for those
vertices with no successors, hence guaranteeing that the vertex (which must have
no predecessor) lies in a copy of ζ + 1 + ζ. Similarly Pa2 is defined for vertices
having a successor with no successor, etc. Formally the interpretation is defined
by

δ(x) = ∀y ¬Succ(y, x)
ϕ<(x, y) = x < y
ϕPai

(x1) = ∃x2 . . . ∃xi
∧
j∈[i−1] Succ(xj , xj+1) ∧ ∀y ¬Succ(xi, y)

where Succ(x, y) is the formula expressing that y is the successor of x. ut

3.4 Tree of language

The tree of a language L over A is a structure, denoted TL, over the signature
σanc = σA ∪ {≺}, where ≺ is of arity 2. The domain is the the set of prefixes of
the language L. For all a ∈ A, Pa is interpreted as the set of words of L ending
with the letter a, and ≺ is interpreted as the prefix relation <p.

It is possible to define the tree of a language over a more restricted signature
σsuc = σA ∪ {Succ}, where Succ is interpreted as the direct successor relation.

(ε)

(0) (1)

(10) (11)

Fig. 2. The tree TL of the language L = 1∗0 where full edges represent the Succ relation
and dashed edges represent the relation ≺. The root is not labelled, all leaves are
labelled by 0, and all other nodes by 1.

Lemma 4. For any language L over an ordered alphabet A, the linear ordering
OL can be first-order interpreted in TL over the signature σanc.

4 Main undecidability result

This section is devoted to establishing the following theorem.

Theorem 1. There exists a context-free word with an undecidable first-order
theory. Furthermore, such a context-free word can be defined by a finite disjoint
union of deterministic context-free languages.

We now proceed with the proof of Theorem 1. The key ingredient of the
proof are the languages obtained by a special form of product, denoted ⊗, of
deterministic context-free languages.

Definition 2. Let L1, . . . , Ln be languages over the alphabet A. We let L1 ⊗
· · · ⊗ Ln denote the language over the alphabet A× 2n containing all nonempty
words

(a1, b̄1) · · · (am, b̄m)

such that for all i ∈ [m], ai belongs to A and b̄i belongs to 2n and furthermore
for all ` ∈ [n], the `-th component of the “flag” b̄i is equal to 1 if and only if the
word a1 · · · ai belongs to L`.

Intuitively the `th bit of the ith letter of the attached flag signals if the prefix
of length i projected on A belongs to the language L`.

Example 2. Let A be the alphabet {a, b, c, d}. Consider the two deterministic
context-free languages L1 = {w ∈ A∗ | |w|a = |w|b} and L2 = {w ∈ A∗ | |w|c =
|w|d}. The language L1 ⊗ L2 contains the worda

0
1

 c
0
0

 b
1
0

d
1
1

a
0
1

d
0
0


Note that the language L1 ⊗ L2 is not a context-free language3.

The key observation is that the structure associated with the product L1⊗L2

of two deterministic context-free languages L1 and L2 can be defined in first-order
logic in some context-free word.

Proposition 1. Let L1 and L2 be two deterministic context-free languages. There
exists a language L over an ordered alphabet which is the disjoint union of
deterministic context-free languages not containing the empty word such that the
structure SL1⊗L2 can be first-order interpreted in WL.

Proof. Let L1 and L2 be two deterministic context-free languages. Using a
standard binary encoding, we can assume that L1 and L2 are on the binary
alphabet A = {a, b} ordered by a < b.

Consider the alphabet B = {., ā, b̄, 01, 11, 02, 12, /,#, a, b} with . < ā < b̄ <
01 < 11 < 02 < 12 < / < # < a < b and the language L which is the (disjoint)
union of the following languages:

{u#. | u ∈ A∗}
{u#uR/ | u ∈ A∗}
{u#vxx̄ | u ∈ A∗, v ∈ A∗, x ∈ A and vx ≤p uR}
{u#v0i | u ∈ A∗, v ∈ A+ and v 6∈ Li}, i = 1, 2
{u#v1i | u ∈ A∗, v ∈ A+ and v ∈ Li}, i = 1, 2.

We now define a first-order interpretation transforming WL into SL1⊗L2
. The

interpretation only keeps the vertices labelled by the predicate ā or b̄:

δ(x) = Pā(x) ∨ Pb̄(x).

The order relation < coincides with the order relation of WL but restricted to
vertices lying between a vertex labelled by . and a vertex labelled by / with no
vertex labelled by / in between:

ϕ<(x, y) = ∃z1∃z2 (z1 < x < y < z2 ∧ P.(z1) ∧ P/(z2)
∧ ∀z′ (z1 < z′ < z2 → ¬P/(z′))).

3 Indeed, by taking the intersection of L1⊗L2 with the regular language (A×22)∗(A×
{1} × {1}) and then projecting on the first component, we can obtain the language
{w ∈ A∗ | w 6= ε, |w|a = |wb| and |w|c = |w|d}, which is known not to be context-free.

a

b

b

#

.

a b

01 02

b

b̄ 01 02

b

b̄ 01 02

a

ā 01 02 /

Fig. 3. Assuming that L1 = A∗b and L2 = A∗ba, we depict the part of the tree TL

corresponding to the subset of the language producing after interpretation the word
(b, 1, 0)(b, 1, 0)(a, 0, 1). The white nodes correspond to words that are kept by the
interpretation.

For (a, b, c) ∈ A× 2× 2, the predicate P(a,b,c) is defined by

ϕP(a,b,c)
(x) = Pā(x) ∧ ∃y∃z (Succ(x, y) ∧ Succ(y, z) ∧ Pb1(y) ∧ Pc2(z))

where b1 is 01 if b = 0 and 11 otherwise, and similarly, c2 is 02 if c = 0 and 12

otherwise. ut

To conclude the proof, it remains to show that there exists a product of
two deterministic context-free languages whose structure has an undecidable
first-order theory.

Proposition 2. There exist two deterministic context-free languages L1 and L2

such that SL1⊗L2
has an undecidable first-order theory.

Proof. Let A be the alphabet containing the symbols +1,+2,−1,−2,= and $.
Consider the following deterministic context-free languages:

L1 = {w ∈ A∗ | |w|+1 = |w|−1}
L2 = {w ∈ A∗ | |w|+2 = |w|−2}.

In our argument, we will use reduction from the halting problem of 2-counter
machines. A program for a 2-counter machine is a nonempty sequence I1; . . . ; In
of instructions, where In is a halt instruction and all other instructions Ii are of

the form Incj , Decj or Testj(k), j = 1, 2, k ∈ [n]. Here, Incj increments the value
of the jth counter by 1, Decj decrements it by 1 – provided that the current value
is not 0. If the current value is 0, then Decj corresponds to a skip instruction. A
conditional branch instruction Testj(k), where k ∈ [n], tests the current value
of the jth counter and transfers the control to the kth instruction if this value
is 0. Initially, the values of the counters are 0. The instructions are executed
sequentially, except for the effect of the conditional branch instructions. The
machine halts when In is executed. Without loss of generality we will consider
machines that do not try to decrease the value of a counter whose value is 0.
This condition can be syntactically enforced by prefacing each decrease operation
with a test.

Formally, a computation sequence for the program is a sequence i1, . . . , im
of instruction numbers in [n] such that one can define a valuation mapping
v : [m] 7→ N×N associating to every index ` ∈ [m], the value of the two counters
before executing the `th instruction. The computation sequence and the valuation
must satisfy the following properties:

– i1 = 1 and v(1) = (0, 0)
– for all ` ∈ [m − 1], if Ii` = Inc1 (resp. Ii` = Inc2), then i`+1 = i` + 1 and
v(`+ 1) = v(`) + (1, 0) (resp. v(`+ 1) = v(`) + (0, 1)),

– for all ` ∈ [m − 1], if Ii` = Dec1 (resp. Ii` = Dec2), then i`+1 = i` + 1 and
v(`+ 1) = v(`) + (−1, 0) (resp. v(`+ 1) = v(`) + (0,−1)),

– for all ` ∈ [m−1], if Ii` = Test1(k) (resp. Ii` = Test2(k)), then v(`+1) = v(`),
and i`+1 = k if the first (resp. second) component of v(`) is equal to zero and
i`+1 = i` + 1 otherwise.

Furthermore, a computation sequence is halting if im = n.
A word w over A is said to represent a computation sequence if it satisfies

the following conditions:

1. it is of the form $i1x1 · · ·xm−1$im with x1, . . . , xm−1 ∈ {+1,+2,−1,−2,=}
and i` ∈ [n] for ` ∈ [m];

2. for all ` ∈ [m− 1], x` is +1 if Ii` = Inc1, +2 if Ii` = Inc2, −1 if Ii` = Dec1,
−2 if Ii` = Dec2, and = otherwise;

3. i1, . . . , im is a computation sequence.

Claim. The exists a first-order formula ϕHalt such that for every word w ∈ L1⊗L2,
Sw |= ϕHalt if and only if w projected on A represents a halting computation
sequence.

Proof. It is straightforward to write a first-order formula ensuring that w pro-
jected on A satisfies the conditions 1 and 2 above. To be able to express condition
3 in first-order, the only difficulty consists in testing if before the `th instruc-
tion the value of a given counter is 0, where ` ∈ [n]. For this it is enough to
notice that if the value of the two counters before the `th instruction is given
by (|w`|+1 − |w`|−1 , |w`|+2 − |w`|−2), where w` = $i1x1 · · ·x`−1$i` – recall that
we do not consider machines that can decrease the value of a counter when its
value is zero –, then by the definition of L1 ⊗ L2, the fact that the jth counter
has value 0 can be tested by reading the jth bit of the attached flag.

To conclude the proof, we construct a formula φP such that SL1⊗L2
|= φP if

and only if L1 ⊗ L2 contains at least one word satisfying ϕHalt (and hence if and
only if P is halting). The formula φP is equal to ∃x ϕ′Halt(x), where ϕ′Halt(x) is
the formula obtained from ϕHalt by relativizing all quantifications to elements
that are comparable to x with respect to < or =. ut

We can now prove Theorem 1.

Proof (Proof of Theorem 1). By Proposition 2, there exist two deterministic
context-free languages L1 and L2 such that SL1⊗L2

has an undecidable first-order
theory. By Proposition 1, there exists a language L over an ordered alphabet
which is the disjoint union of deterministic context-free languages (not containing
the empty word), such that SL1⊗L2

can be first-order interpreted in WL. Thus
WL has an undecidable first-order theory. ut

5 Corollaries of Theorem 1

Using Lemma 3, Theorem 2 can be transferred to context-free linear orderings.

Corollary 1. There exists a context-free linear ordering with an undecidable
first-order theory. Furthermore such a context-free linear ordering can be defined
by a finite disjoint union of deterministic context-free languages.

Proof. By Theorem 1, there exists a finite union L of deterministic context-free
languages such that WL has an undecidable first-order theory. By Lemma 3, there
exists a context-free language L′ and a first-order interpretation I of WL in OL′ .
Since the first-order theory of WL is undecidable, it follows that the first-order
theory of OL′ is also undecidable.

Observe that as L is a finite disjoint union of deterministic context-free
languages, the language L′ constructed in Lemma 3 can also be chosen to be a
finite disjoint union of deterministic context-free languages. ut

As all deterministic context-free linear orderings have a decidable monadic
second-order theory, this result provides an example of a context-free linear
ordering that is not deterministic context-free.

Corollary 2. There exists a context-free linear ordering that is not a determin-
istic context-free linear ordering.

Moving our focus to trees, we obtain a simple proof of a result first proved in
[26].

Corollary 3. There exists a finite disjoint union of deterministic context-free
languages such that

1. the associated tree has an undecidable first-order theory over the signature
σanc (which includes the ancestor relation),

2. it cannot be accepted by any deterministic collapsible automaton.

Proof. The first claim is a direct consequence of Corollary 1 and Lemma 4.
The second claim then follows form the fact that any language accepted by a
deterministic collapsible automaton has a tree with a decidable MSO-theory [25],
and hence a decidable first-order theory over the signature σanc. ut

In a draft of this article, we asked if there exists a context-free language
whose associated tree has an undecidable first-order theory over the signature
σsuc. This question was positively answered by Markus Lohrey [23].

Proposition 3 (M. Lohrey). There exists a context-free language whose asso-
ciated tree has an undecidable first-order theory over the signature σsuc.

Proof. The proof starts by establishing that there exists a context-free language
L0 over an alphabet A such that the following problem is undecidable : “Given a
word w ∈ A+, decide if L0 contains all words ending with w”.

To construct L0, we consider a universal Turing machine M with a set Q of
states and a set Γ of tape symbols. It is well-known that the set LM of words
representing ill-formed or non-terminating computations of a Turing machine is
a context-free language [21]. More precisely, a configuration is represented by
a word in Γ ∗QΓ ∗ and a computation c0 ` · · · ` cn is represented by the word
w = c0]c

R
1]c2 · · ·. For the language L0, we take LRM = {wR | w ∈ LM}. For a

word w representing an initial configuration c0 of M , it is clear that LRM contains
all words ending with wR if and only if M does not have a halting computation
starting from c0. Hence the aforementioned problem is undecidable for L0.

Let $ be a fresh symbol. We show that the first-order theory over σsuc of
TL0$ is undecidable.

Let w = a1 · · · an with n > 0 be a word over A. The formula ϕw over σsuc,

ϕw = ∀x ∃x1 · · · ∃xn+1 Succ(x, x1) ∧
∧
i∈[n] Succ(xi, xi+1)

∧
∧
i∈[n] Pai(xi) ∧ P$(xn+1),

expresses that for every word u, the word uw$ is in the domain of TL0$ and hence
that uw belongs to L0. Hence for all w ∈ A+, TL0$ |= ϕw if and only if L0 contains
all words ending in w. We conclude that the undecidability of the first-order
theory of TL0$ follows from the undecidability of the above problem. ut

As observed by M. Lohrey, the above proposition can be stated for the more
restrictive signature {Succ} in which labels are omitted. Indeed, this follows
from the following lemma that shows that a context-free tree over σsuc can be
first-order interpreted in a context-free trees over {Succ}.

Lemma 5. Let L be a context-free language. There exists a context-free language
L′ such that TL over the signature σsuc can be first-order interpreted in TL′ over
the signature {Succ}.

Proof. Let L be a context-free language over the alphabet A = {a1, . . . , an}.
Without loss of generality we may assume that L contains a nonempty word.
Consider the context-free language

L′ = {uaji | i ≤ j and ∃w ∈ L, uaj ≤p w}

over the alphabet A ∪ [n]. The first-order interpretation of TL over σsuc in TL′

over {Succ} only keeps non-leaf nodes. The Succ relation is inherited. For i ∈ [n],
the predicate Pai holds at those non-leaf nodes which have exactly i sons which
are leaves. Formally the interpretation is defined by

δ(x) = ¬Leaf(x)
ϕSucc(x, y) = Succ(x, y)
ϕPai

(x) = ∃=iy Succ(x, y) ∧ Leaf(y)

where Leaf(x) is a formula expressing that x is a leaf. ut

It would be interesting to know if Property 3 remains true when only consid-
ering context-free languages which are finite unions of deterministic context-free
languages.

6 Discussion

In this article, we have established that the linear orderings and trees associated
with context-free languages are more complex than those associated to deter-
ministic context-free languages. This result even holds for finite disjoint unions
of deterministic context-free languages and hence for unambiguous context-free
languages. It would be interesting to investigate whether such a separation result
exists for context-free scattered linear orderings.

Acknowledgements

The authors would like to thank Markus Lohrey for his remarks on a previous
draft of this article as well as for the proof of Proposition 3. The authors are also
grateful for the remarks of the anonymous referees.

References

1. S. L. Bloom and C. Choffrut, Long words: the theory of concatenation and omega-
power, Theoretical Computer Science, 259(2001), 533–548.

2. S. L. Bloom and Z. Ésik, Deciding whether the frontier of a regular tree is scattered,
Fundamenta Informaticae, 55(2003), 1–21.

3. S. L. Bloom and Z. Ésik, The equational theory of regular words, Information and
Computation, 197(2005), 55–89.

4. S. L. Bloom and Z. Ésik, Regular and algebraic words and ordinals, in: CALCO
2007, Bergen, LNCS 4624, Springer, 2007, 1–15.

5. S. L. Bloom and Z. Ésik, Algebraic ordinals, Fundamenta Informaticae, 99(2010),
383–407.

6. S. L. Bloom and Z. Ésik, Algebraic linear orderings, Int. J. Foundations of Computer
Science, 22(2011), 491–515.

7. L. Braud and A. Carayol, Linear orders in the pushdown hierarchy, in: ICALP
2010, LNCS 6199, Springer, 2010, 88–99.

8. A. Carayol and Z. Ésik, The FC-rank of a context-free language, to appear.
9. A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic

and higher-order pushdown automata, in: FSTTCS 2003, LNCS 2914, pp. 112–123,
Springer, 2003.

10. D. Caucal. On infinite terms having a decidable monadic theory, in: MFCS 2002,
LNCS 2420, 165–176, Springer, 2002.

11. D. Caucal. On infinite transition graphs having a decidable monadic theory.
Theoretical Computer Science 290(2003), 79–115.

12. B. Courcelle, Frontiers of infinite trees. Theoretical Informatics and Applications,
12(1978), 319–337.

13. B. Courcelle, Fundamental properties of infinite trees, Theoretical Computer Science,
25(1983), 95–169.

14. C. Delhommé, Automaticité des ordinaux et des graphes homogènes, C. R. Acad.
Sci. Paris, Ser. I, 339(2004) 5–10.

15. Z. Ésik, Representing small ordinals by finite automata, in: 12th Workshop De-
scriptional Complexity of Formal Systems, Saskatoon, Canada, 2010, EPTCS, vol.
31, 2010, 78–87.

16. Z. Ésik, An undecidable property of context-free linear orders, Information Pro-
cessing Letters, 111(2010), 107–109.

17. Z. Ésik, Scattered context-free linear orders, in: DLT 2011, Milan, LNCS 6795,
Springer-Verlag, 2011, 216–227.

18. Z. Ésik and S. Iván, Hausdorff rank of scattered context-free linear orders, in:
LATIN 2012, Arequipa, Peru, LNCS 7256, Springer-Verlag, 2012, 291–302.

19. M. Hague, A. Murawski, C.-H. L. Ong and Olivier Serre, Collapsible Pushdown
Automata and Recursion Schemes, in: LICS 2008, IEEE, 2008, 452–461.

20. S. Heilbrunner, An algorithm for the solution of fixed-point equations for infinite
words, Theoretical Informatics and Applications, 14(1980), 131–141.

21. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979

22. B. Khoussainov, S. Rubin and F. Stephan, Automatic linear orders and trees, ACM
Trans. Comput. Log., 6(2005), 625–700.

23. M. Lohrey. Private communication. 2012
24. M. Lohrey and Ch. Mathiessen, Isomorphism of regular words and trees, in: ICALP

2011, Zurich, Switzerland, 2011, LNCS 6756, 210–221.
25. C.-H. Luke Ong, On model-checking trees generated by higher-order recursion

schemes. in: LICS 2006, IEEE Press, 2006, 81–90.
26. P. Parys, Higher-order stacks can not replace nondeterminism. Note published on

the author’s webpage (3 pages), February 2010.
27. J. G. Rosenstein, Linear Orderings, Pure and Applied Mathematics, Vol. 98,

Academic Press, 1982.
28. W. Thomas, On frontiers of regular trees, Theoretical Informatics and Applications,

vol. 20, 1986, 371–381.

