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Abstract. We present a model of competition on prices between two
telecommunication service providers sharing an access resource, which
can for example be the same WiFi spectrum. We obtain a two-level
game corresponding to two time scales of decisions: at the smallest time
scale, users play an association game by choosing their provider (or none)
depending on price, provider reputation and congestion level, and at
the largest time scale, providers compete on prices. We show that the
association game always has an equilibrium, but that several can exist.
The pricing game is then solved by assuming that providers are risk-
averse and try to maximize the minimal revenue they can get at a user
equilibrium. We illustrate what can be the outcome of this game and
that there are situations for which providers can co-exist.

Keywords: Game Theory, wireless networks, pricing, shared spectrum,
Wardrop equilibrium

1 Introduction

Internet access has become almost compulsory in everyday life, and each user
has to decide through which provider to access the network. While there are
areas with a single access point and provider, in most cases the Internet access
has become highly competitive and users can choose the provider they prefer
depending on a combination of price, offered quality of service (QoS), and rep-
utation. Studying the outcome of the association choices from users is of major
importance for providers, in order to decide if they have an interest in competing
for the access offers, and if so, to define at which price.

We propose in this paper to study such a problem by means of non-cooperative
game theory [1]. We define a two-level game where, at the largest time scale,
providers set their price in order to maximize their revenue, and at the smallest



time scale users choose the provider they are going to be associated with. This
association choice is based on a perceived price which depends for each provider
on the real price charged and a congestion cost pondered by the provider’s rep-
utation. A complication is that user choices have an impact on the QoS (i.e.,
the experienced congestion) of others, hence a non-cooperative game between
users. At this level, we rather represent here a total demand level (the granular-
ity of a unit of demand being infinitesimal) and the equilibrium notion follows
Wardrop’s principle, as classically done when dealing with transportation net-
works [2]. Even if providers decide their price before the association game is
played, we assume and believe that they play smartly by anticipating the out-
come of the association game, but also trying to figure out the reaction of their
competitor which also tries to attract customers. This pricing game is then said
to be a multiple-leader (the providers), multiple-follower (the users) game, that
we analyze by backward induction.

This type of two-level game of direct competition between providers has al-
ready been studied in the literature. The most notable related papers [3,4,5,6,7]
usually deal with providers offering their own resource, and not shared as we
do here, resulting in the most important novelty. The typical application we are
looking at is a shared WiFi access. As an additional difference, even if as in
[3,4,5] QoS is represented by delay as we are going to do, we include a provider
reputation characteristic. Also, several reputation-based models of WiFi net-
work selection have already been studied in the literature [8,9,10], but no price
competition between providers is mentionned in those papers.

Demand is also assumed to be segmented to better differentiate the levels
of reputation of providers among the population. Remark that a similar model
with possible resource (i.e., spectrum) sharing (but without demand segmenta-
tion and provider reputation) has been introduced in [11], including an additional
level of game on network investment for providers which could implement sev-
eral technologies. Though, in [11], no pricing game equilibrium could exist with
providers both using a resource, in contradiction to what is observed in practice.
We show here that thanks to demand segmentation and providers reputation,
such an equilibrium can exist with an access resource shared by providers.

The remaining of this paper is organized as follows. Section 2 presents the
model: the demand segmentation and the two-level game we are considering and
aiming to solve. Section 3 then describes how the users’ association game at the
smallest time scale can be solved, when access prices are fixed for each provider.
We show that a user (Wardrop) equilibrium always exists, and that all perceived
prices as well as total demand per segment at equilibrium are unique. Section 4
describes the upper-level pricing game between providers, that is played first
with providers anticipating the resulting equilibria at the user level. Finally,
conclusions and directions for future research are provided in Section 5.



2 Model

We consider a set of wireless telecommunications service providers proposing a
wireless access to users in a given geographical area. Any wireless technology
can be proposed as long as the resource is shared between providers, a typical
example being the 802.11 (WiFi) technology. All access points are modeled as
a single common one accessible by all customers in the area , as is often the
case in WiFi hotspots. The goal of each wireless operator is to maximize its
revenue by choosing the best price per second, whereas the goal of users is to
choose the operator proposing the best compromise between price, reputation,
and congestion.

We denote by O the set of all providers. On a quite large time scale, each
provider o ∈ O proposes an offer that we model here by a single average price
per second po (in monetary units per second).

On a shorter time scale, users select which provider to connect to (if any),
based on their preferences. We assume that users are segmented according to
some trait (wireless service used, age ...), reflecting different perceptions of con-
gestion with each provider, that can be interpreted as reputation effects. We
denote by S the set of segments. Users make their decisions based on the so-
called perceived price of the different possibilities, that encompasses both the
price, congestion, and reputation aspects.

More precisely, we consider that congestion is perceived as a cost that is
added to the subscription price po paid to the selected provider. The conges-
tion level, denoted by `, is assumed to be a continuous, positive and strictly
increasing function depending on the total user throughput. For each segment,
the congestion perception of users is influenced by the reputation of providers
they have chosen, and we assume this dependence to be of multiplicative form
in the congestion. So that if γo,s is the reputation factor of Operator o ∈ O for
segment s ∈ S, the total perceived price p̄o,s for a segment-s user connecting to
provider o equals

p̄o,s := po + γo,s`

∑
i∈O
t∈S

λtdi,t

 , (1)

where do,s is the volume of customers (seen as a continuous quantity) of segment
s on Operator o and λs is the average throughput of a segment-s customer.
Users are indeed assumed here non-atomic, i.e., the influence of an individual
user is negligible, so that each user selects the provider with the lowest perceived
price, without considering the congestion he may create. The total demand (or
throughput) of segment s is then ds =

∑
o∈O do,s, while at Operator o it is∑

s∈S do,s.
Finally, for each population segment s, the aggregated demand ds is a func-

tion of the perceived price at its chosen provider(s), that is the smallest perceived
price for that segment among all operators, mino p̄o,s. We call Ds this function
and suppose that it is upper-bounded, nonnegative, decreasing, continuous, and
strictly positive at 0.



3 Users’ association game

We describe in this section the expected outcomes of the game that is played
among users. As described in the previous section, for a given price profile
(p1, ..., p|O|), a stable situation -i.e., an equilibrium- is a user distribution among
operators for each segment such that no user has an incentive to switch providers.
This corresponds to the notion of a Wardrop equilibrium, which can be charac-
terized mathematically as nonnegative demand values (do,s)o∈O,s∈S satisfying

∀o ∈ O ∀s ∈ S p̄o,s = po + γo,s`(
∑

i∈O,t∈S
λtdi,t)

∀o ∈ O ∀s ∈ S do,s > 0 =⇒ p̄o,s = min
i∈O

(p̄i,s)

∀s ∈ S
∑
i∈O

di,s = Ds

(
min
i∈O

p̄i,s

)
.

(2)

The definition of the perceived price is written in the first line. A necessary
condition for a demand do,s to be strictly positive is explained in the second line,
reflecting the fact that only providers with cheapest perceived price are selected.
The relation between the perceived price of each segment and its demand level
is expressed in the last line.

Note that a solution of the system above always exists:

Proposition 1. For every price profile p, there exists a Wardrop equilibrium.
Moreover, all the perceived prices p̄o,s for each segment s ∈ S and each operator
o ∈ O are unique, and all demand levels (ds)s∈S are also unique.

In addition, the set W (p) of Wardrop equilibria corresponding to the price
profile p is compact.

Proof. The existence is a direct application of Theorem 5.4 in [12]. To prove the
uniqueness of perceived prices, we define the function

g(x) :=
∑
s∈S

λsDs(min
i∈O

fi,s(x))− x,

where fi,s(x) = pi +γi,s`(x), that represents the difference between what the to-
tal demand should be as a response to the total throughput x, and x itself. From
(2), at a Wardrop equilibrium g should be null. But since g is continuous, strictly
decreasing, positive at zero and negative at +∞, g has a unique zero x̂. Con-
sequently a Wardrop equilibrium total throughput verifies

∑
o∈O,s∈S λsdo,s = x̂

and is therefore unique.

Then the uniqueness of all perceived prices comes from (1), and the unique-
ness of segment demands from the last line of (2).



To prove the compactness of the set W (p) of Wardrop equilibria, we remark
that the system (2) is equivalent to the system

∀o ∈ O,∀s ∈ S,

do,s

(
po + γo,s`(

∑
i∈O,t∈S

λtdi,t)− min
o′∈O

[
po′ + γo′,s`(

∑
i∈O,t∈S

λtdi,t)

])
= 0

∀s ∈ S,∑
i∈O

di,s −Ds

(
min
o′∈O

[
po′ + γo′,s`(

∑
i∈O,t∈S

λtdi,t)

])
= 0.

(3)
Therefore, Wardrop equilibria are demand values d = (do,s)o∈O,s∈S such that
F (d) = 0, for the continuous function F : (R+)|O|×|S| 7→ R|S|(|O|+1) with each
coordinate given by the left-hand term of the equations in (3). Consequently,
W (p) is a closed subset of (R+)|O|×|S|. Since it is also bounded (due to the
uniqueness of per-segment demands (ds)s∈S), W (p) is compact.

While the existence of a Wardrop equilibrium is proved, there are situations
where the equilibrium is not unique, as illustrated by the following example.

Example 1 Assume that we have only two operators, denoted by 1 and 2, com-
peting on a single market segment a. We assume that the demand function is
piecewise-linear and is defined by Da(x) = [5 − x]+, where [·]+ = max(·, 0).
Assume in addition that γ1,a = 2, γ2,a = 1, λa = 1, and `(x) = x. Con-
sider the operator price profile (p1, p2) = (2, 3). Then at a Wardrop equilib-
rium, 5 − min(p̄1,a, p̄2,a) = d1,a + d2,a. Moreover p̄1,a = 2 + 2(d1,a + d2,a)
and p̄2,a = 3 + (d1,a + d2,a). Solving that system gives d1,a + d2,a = 1 and
p̄1,a = p̄2,a = 4. In that case, the perceived prices are the same at each provider
and users are indifferent between going to one provider or to the other, the con-
gestion staying the same because the resource is shared, as soon as total demand
is fixed to 1. Any (d1,a, d2,a) = (u, 1−u) with u ∈ [0, 1] is a Wardrop equilibrium.

This example highlights the situation when several Wardrop equilibria can exist,
that is when for some segment the minimal perceived price is the same at several
providers: users in that segment are then indifferent between those providers be-
cause the congestion function and therefore the perceived prices will not change
whatever the distribution.

4 Pricing game between providers

We now describe the competition between providers on prices. Each provider
wants to maximize its revenue, but since several Wardrop equilibria may exist,
several possible revenues may be associated to a price profile. A natural objec-
tive for an operator, that we consider in this paper, is to maximize the worst



revenue it can expect. Formally, the minimal revenue of provider o is expressed
in monetary units per second, as

Rmin
o (p) := po × min

d∈W (p)

∑
s∈S

do,s. (4)

Note that the existence of the minimum is ensured by the compactness of W (p),
established in Proposition 1.

The equilibrium concept in this non-cooperative game between providers is
the so-called Nash equilibrium [1]. A Nash equilibrium is a price profile such
that no provider can increase his revenue by unilaterally changing his price.
Formally, such a price equilibrium is therefore a price profile (p∗1, ..., p

∗
|O|) such

that for every operator i and every price profile pi, R
min
i (p∗) ≥ Rmin

i (p∗−i, pi).
For the rest of this article, we will analyze a duopoly. In order to deter-

mine the existence and uniqueness of a Nash equilibrium, we first compute the
best-response function of each provider, that is, the function giving the profit-
maximizing price value(s) for the considered provider, defined in terms of the
price strategy of the opponent. Formally:

BR1(p2) = arg max
p1≥0

Rmin
1 (p1, p2) and

BR2(p1) = arg max
p2≥0

Rmin
2 (p1, p2).

Note thatRmin
o is only piecewise continuous, thus it may happen that the arg max

per se does not exist; in those cases we reasonably consider a price value giving a
revenue close to the suppo≥0R

min
o . The arg max above is therefore a slight abuse

of notation.
A Nash equilibrium is simply a point (p∗1, p

∗
2) for which BR1(p∗2) = p∗1 (or

p∗1 ∈ BR1(p∗2) if it is made of several solutions) and equivalently BR2(p∗1) = p∗2.
Graphically, if we draw the two best response curves on the same figure, the
set of Nash equilibria is then the (possibly empty) set of intersection points of
those curves. We now illustrate how this kind of equilibrium can be determined
numerically with two operators.

Consider two operators numbered 1 and 2 in competition, and two market
segments a and b. Assume that γ1,a = γ2,b = 1.5 and γ1,b = γ2,a = 0.04. In
addition, assume that λa = 1.0 and λb = 0.02. Finally, assume that the demand
functions are Da(x) = [7− x]+ and Db(x) = [9− x]+ with [·]+ = max(·, 0), and
that the congestion function is `(x) = x. The best response prices have been
numerically computed, and are depicted in Figure 1. One can readily check the
existence and uniqueness of a Nash equilibrium for that instance. We also notice
that the best-response curve of each operator is divided into two parts, with
a discontinuity point because the segment choices at the Wardrop equilibrium
change: for example, for p1 = 7, the best strategy of Operator 2 is to set its price
to attract only segment a and maximize its revenue on that segment, whereas
for p1 > 7.1 it is better for Operator 2 to attract both segments, hence the
discontinuity. Since the user segments choices in terms of preferred operators



may vary, we display them as well in Figure 1 (as well as in subsequent figures):
in the legend, we express user equilibrium choices of the form (S1, S2), meaning
that at the Wardrop equilibrium users of segments in S1 ⊂ S (respectively
S2 ⊂ S) choose Operator 1 (respectively Operator 2).

Remark also that at the Nash equilibrium (p1, p2) ≈ (4.45, 3.45), each oper-
ator has some users, more exactly a full segment.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Provider 1 price p1

P
ro

v
id

er
2

p
ri

ce
p
2

Best reply of provider 1, user equilibrium choices ({b}, {a})

Best reply of provider 1, user equilibrium choices ({a, b}, ∅)

Best reply of provider 2, user equilibrium choices ({b}, {a})

Best reply of provider 2, user equilibrium choices (∅, {a, b})

Fig. 1. Best-response curves of both operators.

To better explain the discontinuity of the best-response price BR1(.) of
provider 1 (a similar reason can be applied to the discontinuity on BR2(.)),
we display in Figures 2 and 3 the revenue Rmin

1 (p1, p2) of Operator 1 in terms
of p1 for two values of p2, 5.1 and 5.3, located on both sides of the discontinuity
point. It is clear from those figures that there are two local maxima (correspond-
ing to two different segment choices at Wardrop equilibrium), and that the value
of p1 maximizing the revenue comes from a different local maximum.

If we look back again at Figure 1, we also observe piece-wise constant slopes
in the best-response curves. To understand why, we plot in Figures 4 and 5 the
revenue Rmin

2 (p1, p2) in terms of p2 for p1 = 7.5 and p1 = 8.0. As it can be seen,
for p1 = 7.5, the maximum is obtained at the left extremity of the interval of p2
such that the segment choices at Wardrop equilibrium are (S1, S2) = (∅, {a, b}).
But after around p1 = 7.75, the maximum is obtained in the interior of the in-
terval of p2 such that the segment choices at Wardrop equilibrium are (∅, {a, b}),
which explains the slope change.
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Interestingly, we observe that the set of segments that an operator attracts
is not necessarily decreasing in its price, a counter-intuitive phenomenon. On
Figure 5, Operator 2 attracts Segment b only when its price is above 4.5. This
can be explained as follows: when p2 < 4.5, Segment a (resp. b) prefers Operator
2 (resp. 1), and an increase in p2 leads to a decrease in demand d2,a. Therefore
congestion decreases, and since γ1,b < γ2,b, the perceived congestion (γ·,b`(·)) for
Segment b decreases faster on Operator 2 than on Operator 1. In our instance,
that congestion cost loss exceeds the price increase, so that p̄2,b decreases faster
than p̄1,b and Segment b ends up preferring Operator 2.

5 Conclusions

A two-level (i.e., two time scales) price competition model between wireless
providers has been presented, with several segments of customers and several
operators. At the shortest time scale, users of each segment select the provider
offering the best compromise between price, reputation and congestion. At the
largest time scale, providers compete on the price they propose, to maximize
the worst-case revenue they can earn from a user equilibrium. We illustrate this
model by an example of two providers competing on a two-segment market where
the price equilibrium is reached with one segment per provider.

We can extend this model by introducing a multi-channel ressource-shared
price competition model and studying how attributing a segment to one or more
channels may influence possible price equilibria and the social welfare. Another
possible extention is a more complete model partially inspired by [11] on in-
vestments in technologies and infrastructures, including our present assumption
that market is segmented. This should yield investment of several providers on
technologies with a shared spectrum, a result that was not possible in [11].
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