
HAL Id: hal-00722485
https://hal.science/hal-00722485

Submitted on 2 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Knowledge-based Distributed Conflict Resolution for
Multiparty Interactions and Priorities

Saddek Bensalem, Marius Bozga, Jean Quilbeuf, Joseph Sifakis

To cite this version:
Saddek Bensalem, Marius Bozga, Jean Quilbeuf, Joseph Sifakis. Knowledge-based Distributed Con-
flict Resolution for Multiparty Interactions and Priorities. 14th International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS) / 32nd International Conference on
Formal Techniques for Networked and Distributed Systems (FORTE), Jun 2012, Stockholm, Sweden.
pp.118-134, �10.1007/978-3-642-30793-5_8�. �hal-00722485�

https://hal.science/hal-00722485
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Knowledge-based Distributed Conflict Resolution

for Multiparty Interactions and Priorities⋆

Saddek Bensalem, Marius Bozga, Jean Quilbeuf, and Joseph Sifakis

UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France

Abstract. Distributed decentralized implementation of systems of com-
municating processes raises non-trivial problems. Correct execution of
multiparty interactions, subject to priority rules, requires sophisticated
mechanisms for runtime conflict detection and resolution. We propose a
method for detection of false conflicts which combines partial observation
of the system’s state and apriori knowledge extracted from invariants. We
propose heuristics for determining optimal sets of observations leading
to implementations with particular guarantees. We provide preliminary
experimental results on an implementation of the method in the BIP
framework.

Keywords: Distributed System, Priorities, Knowledge, Partial Observation,
Multiparty Interactions

1 Introduction

Systems of communicating processes are a very common model for concurrent
systems. Processes have their own data space and can interact by executing inter-
actions, which are atomic synchronization operations involving a simultaneous
state change of the set of the processes involved. The meaning of interactions can
be specified compositionally by using operational semantics. Specifications are
given in the form of rules. The premises include facts about the capabilities of
individual processes to execute an action. The conclusion describes interactions,
that is, transitions of the system obtained as the composition of actions executed
by individual processes. In addition to interactions, operational semantics rules
can be used to express priorities between interactions. These are parameterized
by a priority order between interactions. They express the fact that some in-
teraction may be executed only if interactions of higher priority are disabled.
Priorities are instrumental for specifying scheduling policies [1].

The distributed implementation of systems of communicating processes raises
several non trivial problems. It should be consistent with the operational se-
mantics of multiparty interaction which assumes knowledge of the global system

⋆ The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
no. 248776 (PRO3D) and no 257414 (ASCENS) and from ARTEMIS JU grant agree-
ment ARTEMIS-2009-1-100230 (SMECY)

states. Furthermore, multiparty interactions should be replaced in distributed
implementations by protocols based on asynchronous message passing.

The BIP component framework [2] allows the construction of composite com-
ponents from a set of atomic components by using layered parameterized com-
position of two types of operators: 1) operators parameterized by a set of inter-
actions which are sets of ports of the atomic components that must synchronize;
2) operators parameterized by priorities between interactions. We proposed a
distributed implementation method involving a set of transformations from the
initial global state model with multiparty interactions to a distributed model
that can be directly implemented [3, 4]. This method has been extended to han-
dle priorities [5]. The target model consists of components representing processes
and interactions representing asynchronous message passing. Correct coordina-
tion is achieved through additional components implementing conflict resolution
protocols that resolve two types of potential conflicts:

1. The first type of conflicts is symmetric conflicts between interactions. Such
conflicts arise when two interactions a and b involve a common component.
Since execution of interactions is atomic, execution of interaction a requires
ensuring that b will not take place concurrently. Thus execution of a requires
permission from some conflict resolution protocol.

2. The second type of conflicts is asymmetric conflicts between interactions
related by priorities. Execution of interaction a dominated by interaction
b is allowed only if some conflict resolution protocol ensures that b is not
enabled.

Conflict resolution protocols are solicited for all potential statically computed
conflicts according to a structural analysis of a BIP composite component. This
may lead to huge implementation overhead for systems with large numbers of
potentially conflicting interactions. Is it possible to reduce this overhead based
on a priori knowledge of the system’s dynamics and decide that some potential
conflicts are not real conflicts?

We denote by a#b the fact that there is a potential conflict between in-
teractions a and b. A false conflict state for interaction a is a state where a
is enabled and all other interactions b such that a#b are disabled. In such a
state, interaction a can be executed independently without arbitration by the
conflict resolution protocol. States where a is in a false conflict are characterized
by the predicate FCa = ENa ∧

∧

a#b ¬ENb where ENx is the state predicate
characterizing all the states from which interaction x can be executed.

The aim of the paper is to study whether partial knowledge of the system’s
state is sufficient for deciding when a potential conflict is a false conflict. In
that case, execution of interactions can directly take place, without arbitration
and thus, reduce communication with the conflict resolution protocol for a more
efficient implementation. The concept of knowledge [6] has been extensively stud-
ied for distributed systems in particular with respect to their ability to execute
actions [7]. Distributed Knowledge [8] allows a set of components to “know”
that an interaction is in a false conflict. We assume that each interaction a ob-
serves the states of a set of components La. The knowledge predicate denoted

KLa
FCa characterizes the states where observing only components in La is suf-

ficient to ensure that FCa holds. In other words, it characterizes states where
the distributed knowledge of the set of components La allows detection of false
conflicts for a. We propose conditions for basic and complete implementation,
respectively. In a basic implementation, it is possible to detect for each state at
least one amongst the false conflicts of the global state model. In a complete
implementation all false conflicts of the global state model are detected.

An interesting problem is to minimize the number of observed components,
while achieving either basic or complete detection of false conflicts. To this end,
we propose heuristics based on simulated annealing strategy [9].

A predicate ϕ is known to be true for a partial state observed on compo-
nents L, that is KLϕ, if it holds in all reachable global states extending this
partial state. However, computing the reachable states of a model is not always
tractable. Therefore, we use invariants that over-approximate the set of reach-
able states. Depending on the invariant used, we obtain different results for the
minimization heuristics and different performance for the implementation.

The paper is structured as follows: Section 2 provides a formal definition of
the BIP global state semantics. In Section 3, we propose a definition of knowl-
edge in the BIP context and we use it to formalize false conflict detection, and
detection levels. We provide in Section 4, heuristics based on a simulated an-
nealing strategy to minimize the number of observed components while ensuring
a given detection level. In Section 5, we apply false conflict detection to imple-
mentation of priorities. We show results about both heuristics from Section 4
and an actual distributed implementation based on [3, 4] that uses false conflicts
to implement priority resolution. Finally, we present related work in Section 6,
concluding remarks and future work in Section 7.

2 The BIP Framework

In this section, we present BIP[2], a component framework for building systems
from a set of atomic components by using two types of composition operators:
Interaction and Priority.

Atomic Components. An atomic component B is a labelled transition system
represented by a tuple (Q,P, T) where Q is a set of control locations or states,
P is a set of communication ports and T ⊆ Q × P ×Q is a set of transitions.

Interactions. In order to compose a set of n atomic components {Bi = (Qi, Pi,
Ti)}ni=1, we assume that their respective sets of control locations and ports are
pairwise disjoint; i.e., for any two i 6= j in {1..n}, we require that Qi ∩ Qj = ∅

and Pi ∩ Pj = ∅. We define the global set P
def
=

⋃n
i=1 Pi of ports. An inter-

action a is a set of ports such that a contains at most one port from each
atomic component. We denote a = {pi}i∈I with I ⊆ {1..n} and pi ∈ Pi. If a
is an interaction, we denote by support(a) the set of atomic components that
participate in a. This notation is extended to sets of interactions γ, that is,

support(γ)
def
=

⋃

a∈γ support(a).

Priorities. Given a set γ of interactions, we define a priority as a strict partial
order π ⊆ γ×γ. We write aπb for (a, b) ∈ π, to express the fact that a has lower
priority than b.
Composite Components. A composite component πγ(B1, . . . , Bn) (or simply
component) is defined by a set of atomic components {Bi = (Qi, Pi, Ti)}ni=1

composed by a set of interactions γ and a priority π ⊆ γ × γ. If π is the empty
relation, then we may omit π and simply write γ(B1, · · · , Bn). A global state q
of πγ(B1, · · · , Bn) is defined by a tuple of control locations q = (q1, · · · , qn). The
behavior of πγ(B1, · · · , Bn) is a labelled transition system (Q, γ,→πγ), where
Q =

⊗n
i=1 Qi and →γ ,→πγ are the least set of transitions satisfying the rules:

a = {pi}i∈I ∈ γ
∀i ∈ I. (qi, pi, q

′
i) ∈ Ti

∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
→γ (q′1, . . . , q

′
n)

[inter]

q
a
→γ q′

∀a′ ∈ γ. aπa′ =⇒ q
a′

9γ

q
a
→πγ q′

[prio]

Intuitively, transitions →γ defined by rule [inter] express the behaviour of the
component without considering priorities. A component can execute an interac-
tion a ∈ γ iff for each port pi ∈ a, the corresponding atomic component Bi can
execute a transition labelled by pi. If this happens, a is said to be enabled. Ex-
ecution of a modifies atomically the state of all interacting atomic components
whereas all others stay unchanged. The behavior of the component is defined
by transitions →πγ defined by rule [prio]. This rule restricts execution to in-
teractions which are maximal with respect to the priority order. An enabled
interaction a can execute only if no other one a′ with higher priority is enabled.

M S

off up

onup

onMoff M

off
upg

rb

on

onMoff M

upg

rb
off M

onM

rb
upg

lst

dwn

onS

off S

srv

ack
req

off S
onS

ack

req

rb π req

rb π ack

π

γ = {rb,
upg, on,
off , req,
ack}

γ

off

on

Fig. 1. An example of BIP component. Initial state is (off, dwn).

Example 1. A BIP component is depicted in Figure 1 using a graphical notation.
It consists of two atomic components named M and S. Component S is a server,
that may receive requests (req) and acknowledge them (ack). Component M is
a manager that may perform upgrades (upg) and needs to reboot (rb) the server
for the upgrade to be done. Interactions are represented using lines connecting
the interacting ports. There are 4 unary interactions and 2 binary interactions.
The component goes up through the interaction on and down through off , which
are both binary interactions. Priorities rb π req and rb π ack are used to prevent
a reboot whenever a request or an acknowledgement are possible.

Invariants and reachable states. Let B = πγ(B1, · · · , Bn) be a component.
We say that the state q is reachable from a fixed, initial state q0 if there exist a
sequence of interactions a1, · · · , ak ∈ γ and states q1, · · · , qk such that q0

a1→πγ

q1
a2→πγ · · ·

ak→πγ qk = q. We denote by R(B) the set of reachable states of B.
An invariant of B is a state predicate I(q) satisfied by all its reachable states,

that is the characteristic set of I contains the set of the reachable states. For a
control location qi ∈ Qi, we define the predicate at(qi) which is true (or equal to
1) when the atomic component Bi is at control location qi. We are interested in
two types of invariants that can be generated automatically [10], respectively:

– A boolean invariant is a conjunction of boolean constraints of the form
∨

j∈J at(qj). For the example of Figure 1, at(onup) ∨ at(on) ∨ at(dwn) is
a boolean invariant. It characterizes a set of control locations such that at
each global state, at least one location of the set is active. Such constraints
are obtained using methods described in [10].

– A linear invariant is a conjunction of linear constraints of the form
∑

j∈J kjat(qj) = k0, where each kj and k0 are integer constants. For the
example of Figure 1, at(onup) + at(on) + at(dwn) = 1 is a linear invariant.
Linear invariants are obtained using algebraic methods as described in [11].

The two above categories of invariants are particularly useful for several reasons.
First, they provide good approximations for the enabling/disabling conditions
of interactions. This has been empirically demonstrated by the successful ap-
plication of such invariants for checking deadlock-freedom of component-based
systems in BIP [10, 12]. Second, the methods for computing these invariants are
tractable and scale for large systems. Their computation is based on the (inter-
action) structure of the system and can be done incrementally [13]. In particular,
it does not involve fixpoints and avoids state space exploration.

3 Knowledge-based Detection of False Conflicts

We propose a knowledge-based method for detecting false conflicts, that is states
where an interaction is enabled and all conflicting interactions are disabled.
The enabled interaction can be safely executed without any arbitration. In this
section, we consider a component B = πγ(B1, . . . , Bn) and an invariant I of B.

3.1 Knowledge and Indistinguishability

The knowledge of a set of atomic components L ⊆ {B1, · · · , Bn} is the set of
the facts that are true by observing the states of these components. The subset
L induces an equivalence relation on the global states satisfying I.

Definition 1 (Indistinguishability Equivalence for L). Given L, we define

the indistinguishability equivalence ∼L on global states satisfying I as q ∼L q′

iff ∀Bj ∈ L. qj = q′j.

L

P
L

I

L

KL¬P
L

I

L

KLP
L

I

Fig. 2. Knowledge-based approximation of P for observation L, using invariant I.

Intuitively, two states are indistinguishable for L if their restrictions to the
states of atomic components of L are identical. The equivalence classes of this
relation correspond to sets of global states that can be distinguished by knowing
only local states of atomic components satisfying L. Given an invariant I and
an arbitrary state predicate P =⇒ I, we define the predicate “L knows P” as
KLP (q) = I(q) ∧ (∀q′ I(q′) ∧ q′ ∼L q =⇒ P (q′)).

Figure 2 illustrates KLP with respect to P and I. Each global state within
I is a point characterized by two coordinates: the projections of this state on
the states of L and the states of its complement L = {B1, . . . Bn} \ L. On the
left, the gray region represents the characteristic set of P . In the middle, the
gray region represents the characteristic set of “L knows P” that is the set of
the global states where observation of their projection on the state space of L
suffices to assert “P is true”. On the right, the gray region represents the set
of the states where “L knows not P” that is the set of the global states where
observation on L suffices to assert “P is false”.

3.2 Conflict-free Semantics

For an interaction a, we denote by ENa the predicate that characterizes the set of

global states of I where a is enabled. Formally, if a = {pi}i∈I we define ENa
def
=

∧

pi∈aEN i
pi

∧ I. By EN i
pi

we denoted the local enabling condition of the port

pi in atomic component Bi = (Qi, Pi, Ti) that is EN i
pi

def
=

∨

(qi,pi,−)∈Ti
at(qi).

As pointed out in the introduction, we denote by # a conflict relation between
interactions. False conflicts for a correspond to the states where the predicate
FCa = ENa ∧

∧

a#b ¬ENb holds, that is states where a is enabled and all inter-
actions conflicting with a are disabled. We consider executions of the component
where only non-conflicting interactions are allowed.

Definition 2 (Conflict-free Semantics). Given a component B = πγ(B1,
. . . , Bn) and a conflict relation # , we define the conflict-free semantics of B
as a transition system (Q, γ,→FC), where →FC is the least set of transitions

satisfying:

a ∈ γ FCa(q) q
a
→πγ q′

q
a
→FC q′

The conflict-free semantics →FC is clearly included in the original semantics
→πγ of the component. The interest of this semantics is that it captures the set
of executions that can be realized without any conflict resolution mechanism.
Note that if we consider the priority conflict relation (i.e. we take # = π), then

FCa(q) is true only when q
a
→πγ and q

b
9πγ for all b with higher priority than

a. Thus in this particular case →FC=→πγ . The above semantic rule assumes
knowledge of the global state.

3.3 Observational Conflict-free Semantics

We now propose to restrict the execution semantics presented above by using
only a partial observation of the global state. We allow for each interaction a
to “observe” a set of atomic components La including the atomic components
involved in a.

Definition 3 (Observation). Given an interaction a, an observation is a set

of atomic components La such that support(a) ⊆ La.

Knowledge defines a natural way to describe the false conflicts that can be
detected based on an observation. That is, KLa

FCa characterizes the set of the
states where the observation La detects that a is in false conflict.

Proposition 1 (Monotoncity). The predicate KLa
FCa is monotonic with re-

spect to La, i.e. L
′
a ⊆ La implies KL′

a
FCa =⇒ KLa

FCa.

Proof. First, remark that if L′
a ⊆ La, then {q′|q′ ∼La

q} ⊆ {q′|q′ ∼L′
a
q}.

Then, KL′
a
FCa(q) implies that ∀q′, q′ ∼L′

a
q, FCa(q

′) and by the above remark
∀q′, q′ ∼La

q, FCa(q
′), that is, KLa

FCa(q). ⊓⊔
Notice that observing the whole system, that is for La = {B1, . . . Bn}, then

it is possible to detect all false conflicts, i.e. K{B1,...Bn}FCa = FCa.
We define a new semantics that allows only interactions detected to be in

a false conflict. In such a semantics, observation is used to decide whether a
conflict-free move is allowed or not.

Definition 4 (Observational Conflict-free Semantics). Given a compo-

nent B = πγ(B1, · · · , Bn), a conflict relation #, and a set of observations

{La}a∈γ, we define observational conflict-free semantics of B as a transition

system (Q, γ,), where is the least set of transitions satisfying:

a ∈ γ KLa
FCa(q) q

a
→πγ q′

q
a
 q′

Again, we clearly have included in →πγ . However, depending on the ob-
served atomic components, this semantics may not completely implement →FC .
We define two criteria characterizing different levels of false conflict detection,
namely basic and complete.

Definition 5 (Detection level). A set of observations {La}a∈γ is basic iff
∨

a∈γ KLa
FCa =

∨

a∈γ FCa. A set of observations is complete iff for each

interaction a ∈ γ: KLa
FCa = FCa

Theorem 1 below, relates the detection levels and observational conflict-free
semantics. Baseness ensures that observational conflicts-free semantics does not
introduce deadlocks. Completeness ensures that observational conflict-free se-
mantics corresponds exactly to the conflict-free semantics. This is particularly
interesting for the case of priority conflict where the conflict-free semantics is
the same as the original semantics of the component.

Theorem 1. Let πγ(B1, · · · , Bn) be a component, # a conflict relation and

{La}a∈γ a set of observations. Then, ⊆→FC and:

1. If {La}a∈γ is basic, then q ∈ Q is a deadlock for only if q is a deadlock

for →FC .

2. If {La}a∈γ is complete, then =→FC .

Proof. Since KLa
FCa =⇒ K{B1,··· ,Bn}FCa (proposition 1) we have ⊆→FC .

1. By contraposition, let q ∈ Q be a deadlock-free state for →FC , i.e. such
that ∃a ∈ γ, FCa(q). Baseness ensures that

∨

a∈γ KLa
FCa holds and thus ∃b ∈ γ

such that KLb
FCb(q). Thus q

b
 and q is a deadlock-free state for .

2. Assume that q
a
→FC q′. Then FCa(q) and completeness ensuresKLa

FCa(q).

Thus q
a
 q′. ⊓⊔

These results characterize to what extent conflict-free semantics, can be cap-
tured through partial observation. They can be used in a distributed implemen-
tation where the process responsible for executing interaction a can only see
the states of atomic components in La. However, adding observation increases
communication between processes, which may slow down execution. Therefore,
we propose in the next section heuristics to minimize the number of observed
atomic components, yet ensuring the required detection level.

4 Heuristics for Minimizing Observation

Given a BIP component and a conflict relation, we want to minimize the number
of observed atomic components while ensuring either baseness or completeness.
For practical reasons, we consider that a single process may coordinate the exe-
cution of several interactions. We call such a process an engine. All interactions
managed by the same engine share a common set of observed atomic compo-
nents. We consider that the mapping of interactions γ into engines is defined by
an arbitrary, fixed partition of γ as

⋃

1≤j≤m γj . An engine Ej is used to execute
interactions in γj while observing a set of atomic components Lj. With these
notations, minimizing observation means minimizing the sum

∑m
j=1 |Lj |.

We propose a solution to the minimizing observation problem based on simu-
lated annealing [9]. A pseudo-code for the heuristic is shown in Algorithm 1. This
heuristic allows on to search for optimal solutions to arbitrary cost optimization

Algorithm 1 Pseudo-code of Simulated Annealing
Input: An initial solution init, a cost function, an alter function.
Output: A solution with a minimized cost.
1: sol:=init
2: T :=Tmax

3: while T > Tmin do

4: sol′ := alter(sol)
5: ∆ := cost(sol′) - cost(sol)

6: if ∆ < 0 or random() < e
−∆
T then

7: sol:=sol′

8: end if

9: T := 0.99 × T
10: end while

11: return sol

problems. The search through the solution space is controlled by a temperature

parameter T . At every iteration, temperature decreases slowly (line 9) and the
current solution moves into a new, nearby solution still ensuring either baseness
or completeness (line 4). If the new solution is better (i.e. observes fewer com-
ponents), then it becomes the current solution. Otherwise, it may be accepted
with a probability that decreases when (1) the temperature decreases or (2) the
extra cost of the new solution increases (line 6). The idea is to temporarily al-
low a bad solution whose neighbors may be better than the current one. By the
end of the process, the temperature is low, which prevents bad solutions from
being accepted. Now, we provide initial solutions init as well as alter and cost

functions that are used to ensure either completeness or baseness.

Ensuring Completeness. According to Definition 5, checking for complete-
ness is performed interaction by interaction, Therefore, minimizing observation
can be carried out independently for each engine. Given the set of interactions
γj we are seeking for a minimal set of atomic components Lj , whose observation
ensures complete detection of false conflicts for all interactions in γj .

Algorithm 2 Function alter for ensuring complete detection of false conflicts
Input: A BIP component B, a subset of interactions γj , a conflict relation # and a solution Lj .
Output: A solution L′

j that is a neighbor of Lj .

1: L′
j:=Lj

2: choose Bi in L′
j \ support(γj)

3: L′
j:=L′

j \{Bi} //perturbation

4: while not complete(L′
j , γj) do

5: choose Bi in {B1, . . . , Bn} \ L′
j

6: L′
j:=L′

j ∪ {Bi} //completion
7: end while

8: choose B′
i in L′

j \ support(γj)

9: while complete(L′
j \ {B′

i}, γj) do

10: L′
j :=L′

j \ {B′
i} //reduction

11: choose B′
i in L′

j \ support(γj)
12: end while

13: return L′
j

The initial solution is obtained by taking the set of atomic components invol-
ved in interactions conflicting with those of γj , that is initj =

⋃

a∈γj
(support(a)

∪
⋃

a#b support(b)). At each iteration of the simulated annealing, a new solution
is computed using the alter function shown in Algorithm 2. First, one atomic
component is removed from the solution (perturbation), possibly breaking com-
pleteness. Then, new atomic components are added randomly until the solution
ensures complete detection again (completion). Finally, atomic components are
removed randomly (reduction).

After completion and during reduction steps, completeness is ensured by
checking the condition complete(Lj, γj) ≡

∧

a∈γj

(

FCa = KLj
FCa

)

. On termi-
nation, this ensures that the solution returned by the heuristic is complete.

The cost of the solution is obtained by counting the number of atomic com-
ponents additionally observed by each engine. That is, for an engine Ej the cost
of solution Lj is cost(Lj) = |Lj \ support(γj)|.
Ensuring Baseness. Baseness is achieved if for every state which contains false
conflicts, at least one engine detects one of them. Baseness is a global property
that can be ensured by cooperation between engines. On one hand, allowing an
engine Ej to observe additional atomic components may extend the set of false
conflicts detected by Ej . On the other hand, reducing observation of Ej , while
restricting the set of false conflicts detected, might not necessarily break the
baseness. Therefore, the solution L1, · · · , Lm to the minimizing observation en-
suring baseness cannot be built independently for each engine. Given a partition
γ1, · · · , γm of the interactions, we build a tuple of sets of atomic components
L = (L1, · · · , Lm) ensuring baseness.

Algorithm 3 Function alter for ensuring basic detection of false conflicts
Input: A BIP component B, a partition of interactions γ =

⋃
1≤j≤m γj , a conflict relation # and

a solution L = (L1, . . . , Lm),
Output: A solution L′ that is a neighbor of L.
1: L′:=L
2: choose k in J1,mK and Bi in L′

k \ support(γk)
3: L′

k:=L′
k \{Bi} //perturbation

4: while not basic(L′, {γ1, . . . , γm}) do

5: choose k in J1,mK and Bi in {B1, . . . , Bn} \ L′
k

6: L′
k:=L′

k ∪ {Bi} //completion
7: end while

8: choose k in J1,mK and B′
i in L′

k \ support(γk)
9: while basic((L′

1
, . . . , L′

k \ {B′
i}, . . . , L

′
m), {γ1, . . . , γm}) do

10: L′
k:=L′

k \ {B′
i} //reduction

11: choose k in J1,mK and B′
i in L′

k \ support(γk)
12: end while

13: return L′

The initial solution assumes that each engine Ej observes all atomic com-
ponents involved in interactions conflicting with those of γj , that is init =
(init1, . . . , initm). As for completeness, the alter function for baseness pre-
sented in Algorithm 3 computes a new solution based on the same three steps
(perturbation,completion,reduction) being performed on a tuple of sets of ob-
served atomic components, instead of a single set.

After completion and during reduction steps, baseness is ensured by the

condition basic (L, {γ1, . . . , γm}) ≡
(

∨

a∈γ FCa =
∨m

j=1

∨

a∈γj
KLj

FCa

)

. This

guarantees that the returned solution is basic.
Here the cost of the solution is the sum of the number of additional atomic

components observed by each engine. Thus, we define the cost function as
cost(L) =

∑m
j=1 |Lj \ support(γj)|.

5 Implementation and Experiments

In this section, we provide experiments related to detection of false priority
conflicts. We apply our simulated annealing heuristics to compute minimal basic
or complete solutions for two examples. Then we provide performance gains for
the corresponding distributed implementations.

5.1 Dining Philosophers

We consider a variation of the dining philosophers problem, denoted by PhiloN
where N is the number of philosophers. A fragment of this composite component
is presented in Figure 3. In this component, an “eat” interaction eat i involves
a philosopher and the two adjacent forks. After eating, philosopher Pi cleans
the forks one by one (cleanleft i then cleanright i). We consider that each eat i
interaction has higher priority than any cleanleft j or cleanright j interaction. We
evaluate two different partitions. In Partition 1, there is one engine Ei for every
eati interaction and one engine Ci for every pair cleanright i−1, cleanleft i. Only
the latter deals with low priority interactions and therefore may need to observe
additional atomic components. Partition 2 is coarser. One engine Ei manages
all interactions involving philosopher P2i or P2i+1, for 0 ≤ i < ⌈N/2⌉. Thus, for
N philosophers, there are ⌈N/2⌉ engines.

thinking

eating

eat

cleaning
clnl

clnr

clnl clnr

eatPi

free

used

cln eat

eat

cln

Fi

free

used

cln eat

eat

cln

Fi+1

eatieati−1

Ei

eati+1

cleanlefti cleanrighticleanrighti−1 cleanlefti+1

Ci Ci+1

Fig. 3. Fragment of the dining philosopher component. Braces illustrates Partition 1.

Computing complete solutions is done independently for each engine. Table 1
shows results of engine C0 for Partition 1 and engine E0 for Partition 2. The total

Eng. Comp./Part. Size true BI LI optimal

C0

Philo3 / 1 6 3 3 1 1
Philo4 / 1 8 5 5 2 2
Philo5 / 1 10 7 7 3 3
Philo10 / 1 20 17 17 8 8
Philo20 / 1 40 37 37 18 18
Philo100 / 1 200 197 197 108 98

E0

Philo3 / 2 6 1 1 0 0
Philo4 / 2 8 3 3 1 1
Philo5 / 2 10 5 5 2 2
Philo10 / 2 20 15 15 7 7
Philo20 / 2 40 35 35 18 17
Philo100 / 2 200 195 195 106 97

Table 1. Minimal observation for completeness.

Comp./Part. Size true BI LI

Philo3 / 1 6 9 9 0
Philo4 / 1 8 20 20 4
Philo5 / 1 10 35 35 6
Philo10 / 1 20 170 170 23

Philo3 / 2 6 4 4 0
Philo4 / 2 8 6 6 1
Philo5 / 2 10 17 17 3
Philo10 / 2 20 75 75 14

Table 2. Minimal observation for
baseness.

number of atomic components in the composite component is indicated in Col-
umn Size. Columns true, BI and LI provide the cost of the solutions obtained
when using respectively true, the boolean invariant and the linear invariant as
invariant I. The column optimal indicates the cost of an optimal solution.

∀i ∈ {0, 1, 2} (at(Fi.free) ∨ at(Fi.used)) (1)

∧ ∀i ∈ {0, 1, 2} (at(Pi.thinking) ∨ at(Pi.eating) ∨ at(Pi.cleaning)) (2)

∧ (at(P1.eating) ∨ at(P0.eating) ∨ at(P0.cleaning) ∨ at(F1.free)) (3)

∧ (at(P2.eating) ∨ at(P1.eating) ∨ at(P1.cleaning) ∨ at(F2.free)) (4)

∧ (at(P0.thinking) ∨ at(F0.used) ∨ at(P0.cleaning) ∨ at(P2.thinking)) (5)

∧ (at(P0.thinking) ∨ at(F1.used) ∨ at(P1.cleaning) ∨ at(P1.thinking)) (6)

∧ (at(P2.cleaning) ∨ at(F0.free) ∨ at(P2.eating) ∨ at(P0.eating)) (7)

∧ (at(F1.free) ∨ at(F2.free) ∨ at(F0.free)

∨at(P1.eating) ∨ at(P2.eating) ∨ at(P0.eating)) (8)

∧ (at(F2.used) ∨ at(P2.cleaning) ∨ at(P1.thinking) ∨ at(P2.thinking)) (9)

∧ (at(F2.used) ∨ at(P2.cleaning) ∨ at(P1.thinking) ∨ at(F0.free) ∨ at(P0.eating)) (10)

∧ (at(F1.free) ∨ at(P1.eating) ∨ at(F0.used) ∨ at(P0.cleaning) ∨ at(P2.thinking)) (11)

∧ (at(P0.thinking) ∨ at(F2.free) ∨ at(F1.used) ∨ at(P2.eating) ∨ at(P1.cleaning)) (12)

Fig. 4. Boolean invariant for the Dining Philosophers example with N = 3.

Here, the linear invariant gives better results than the boolean invariant,
which does not give enough information about the system to reduce observation
comparatively to the true invariant. For N = 3, we provide the boolean and
linear invariants respectively in Figures 4 and 5. In this case, the linear con-
straint (15) in linear invariant ensures that interaction cleanleft0 and interaction
eat1 cannot be enabled concurrently, otherwise, control locations P0.eating and
F1.free would be active and the sum in constraint (15) would be equal to 2.

(at(P0.thinking) + at(P0.eating) + at(P0.cleaning) = 1) (13)

∧ ∀i ∈ {0, 1, 2} (at(Fi.free) + at(Fi.used) = 1) (14)

∧ (at(P1.eating) + at(P0.eating) + at(P0.cleaning) + at(F1.free) = 1) (15)

∧ (at(P1.thinking) + at(P0.thinking) + at(F1.used) + at(P1.cleaning) = 2) (16)

∧ (at(P2.eating) + at(P0.thinking) + at(F1.used) + at(P1.cleaning) + at(F2.free) = 1) (17)

∧ (at(P2.cleaning) + 2 ∗ at(P0.eating) + at(P0.cleaning) − at(F1.used)

−at(P1.cleaning) + at(F2.used) − at(F0.used) = 0) (18)

∧ (at(P2.thinking) − at(P0.eating) + at(F0.used) = 1) (19)

Fig. 5. Linear invariant for the Dining Philosophers example with N = 3.

Thus, the priority cleanleft0 π eat1 never forbids execution of cleanleft0. A re-
lated boolean constraint, that is constraint (3) of boolean invariant guarantees
that at least one of these locations is active. However, this constraint is not
strong enough to discard the case where two of them are active.

The results for computing basic solutions are presented in Table 2. The col-
umn Size contains the total number of atomic components in the composite
component. The columns true, BI and LI contains respectively the cost of the
solutions obtained when using respectively true, the boolean invariant and the
linear invariant. For Philo3, baseness is achieved when each engine observes only
the components involved in the interactions it handles (i.e. no additional atomic
component), therefore the cost is 0.

Performance Evaluation. We used the tool-chain described in [3, 4] to gen-
erate automatically distributed code from the component. The generated code
consists of a set of C++ programs communicating through Unix sockets. We gen-
erate one program for each atomic component, one program for each engine and
one program for conflict resolution between engines (CRP). We executed these
programs in a distributed setting (on a UltraSparcT1 with 24 parallel threads)
during 60 seconds and counted the number of “eat” interactions.

Performance for Partition 1 (resp. Partition 2) is depicted in Figure 6 (resp.
7). We do not show performance for the boolean invariant because it falls back to
observing all components, as for the true invariant. Since Partition 2 is coarser
than Partition 1, it allows less parallelism as shown by comparing performance
of execution without priority. Priority limits the number of executions as it en-
forces a particular scheduling policy and reduces parallelism. For both partitions,
the fastest prioritized implementation is the complete one obtained by using the
linear invariant. When we observe all involved atomic components (i.e. the in-
variant is true), performance is worse because the lack of knowledge about the
reachable states entails more synchronization overhead. Finally, basic solutions
are slow because, while restricting the communication, they also restrict the
parallelism.

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5 6 7 8 9 10

N
um

be
r

of
 "

ea
t"

 in
te

ra
ct

io
ns

 d
ur

in
g

60
s

Number of philosophers

No priority
Invariant = True

Linear invariant - basic detection
Linear invariant - complete detection

Fig. 6. Performance for different detection
levels, using Partition 1.

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5 6 7 8 9 10

N
um

be
r

of
 "

ea
t"

 in
te

ra
ct

io
ns

 d
ur

in
g

60
s

Number of philosophers

No priority
Invariant = True

Linear invariant - basic detection
Linear invariant - complete detection

Fig. 7. Performance for different detection
levels, using Partition 2.

5.2 Jukebox

The second example is a jukebox depicted in Figure 8. It represents a system,
where a set of readers R1 . . . R4 access data located on disks D1, D2, D3. Readers
may need to access any disk. Access to disks is managed by jukeboxes J1, J2 that
can load any disk to make it available to the connected readers. Interactions
loadi,k and unloadi,k allows to load and unload the disk Di in the jukebox Jk.
Each reader Rj is connected to a jukebox through the readj interaction. Once
a jukebox has loaded a disk, it can either take part in a “read” or “unload”
interaction. Each jukebox repeatedly loads all 3 disks in a random order.

If unload interactions are always chosen immediately after a disk is loaded,
then readers may never be able to read data. Therefore, we add the priority
unloadi,k π readj , for all i, j, k. This ensures that “read” interactions will take
place before corresponding disks are unloaded. Furthermore, we assume that
readers connected to J1 need more often disk 1 and that readers connected to
J2 need more often disk 2. Therefore, loading these disks in the correspond-
ing jukeboxes is assigned higher priority: loadi,1 π load1,1 for i ∈ {2, 3} and
loadi,2 π load2,2 for i ∈ {1, 3}.

Interaction true BI(basic) BI(complete) LI(basic) LI(complete)

unloadi,k 5 3(k = 1) or 5(k = 2) 5 2 2
loadi,k 1 0 1 0 1
Table 3. Minimal observation cost to ensure baseness or completeness.

We use a partition assigning one engine per interaction. Results of the sim-
ulated annealing heuristic are presented in Table 3. Engines handling a “read”
interaction do not need to observe additional atomic components since there is
no interaction with higher priority. The boolean invariant allows removing some
observed atomic components, in the basic solution. As for PhiloN components,

D1

load unload

D2

load unload

D3

load unload

J1
load unload

data

read

R1

read

R2

J2
load unload

data

read

R3

read

R4

Fig. 8. Jukebox composite
component.

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

No priority

True
BI basic

BI com
plete

LI basic

LI com
plete

N
um

be
r

of
 "

re
ad

"
in

te
ra

ct
io

ns
 d

ur
in

g
60

s

Fig. 9. Performance of the jukebox component for
unprioritized and prioritized executions with differ-
ent invariants/detection levels.

the linear invariant is stronger than the boolean invariant. Therefore, the same
level of detection is achieved with less observed atomic components.

Performance Evaluation. We generate C++ code, as for the previous ex-
ample. We count the number of “read” interactions that take place during 60
seconds of execution, for different settings. In Figure 9, we provide results for a
version of the component without priorities, as well as results for the prioritized
component for the trivial invariant true, the boolean invariant (BI) or the linear
invariant (LI). For boolean and linear invariants, we provide performance for
both complete and basic implementations.

Notice that adding priority increases the number of “read” interactions exe-
cuted in 60 seconds. This is due to the fact that a disk is unloaded only if no read
is possible, that is only when unload is necessary to progress. Solutions obtained
for the boolean invariant require more observation than the ones obtained for
the linear invariant, therefore corresponding implementations are slower. More
interesting, the best performance is obtained for basic solutions. In that partic-
ular case, fewer atomic components are observed which allows more parallelism
in the composite component. This parallelism compensates the fact that the
detection of false conflicts is not complete.

6 Related Work

Distributed resource conflict resolution boils down to solving the committee co-

ordination problem [14], where a set of professors organize themselves in different
committees, a meeting requires the presence of all professors to take place and
two committees that have a professor in common cannot meet simultaneously.
Different solutions have been provided, using managers [14–16], a circulating
token [17], or a randomized algorithm without managers [18]. Solutions using
managers typically rely on a conflict resolution protocol, such as a solution to
the dining philosophers problem [19].

Similarly, implementation of priorities needs resolution of asymmetric con-
flicts. This can be achieved by direct observation as in [20] or [5] where managers
observe higher priority interactions to ensure their disabledness. Knowledge is
often used to drive action execution in distributed systems. Halpern and Moses
[8] defined a logic to reason about the knowledge of system processes. Knowledge
is used to control distributed discrete event systems [21] and build distributed
controllers for executing multiparty interactions with priorities [22].

In most papers, computing knowledge requires exact computation of reach-
able states [21, 22, 8]. Our method overcomes this difficulty by using invariants
which are over-approximations of the reachability set. Another common assump-
tion is that the partial state observed by a manager is limited to a neighborhood
determined by the architecture of the system [22]. We propose a framework
where observation can be adjusted for achieving a certain detection level.

7 Conclusion

Implementing multiparty interactions scheduled by using priorities requires ef-
ficient conflict resolution techniques. Most implementations do not distinguish
between real and false conflicts to reduce overhead due to conflict resolution.

Dynamic knowledge-based computation of false conflicts based on invariants
allows more efficient implementations. We provided simple criteria to define the
correctness of the obtained implementation. Baseness ensures preservation of
deadlock-freedom and completeness ensures equivalence with the fully-observed
model. Finally, the proposed heuristics allow minimization of the number of
components to observe and enhanced performance. Heuristics have been applied
to non-trivial examples, where the optimal is known, and gave satisfactory re-
sults. These have been used for distributed implementation. Experiments show
significant performance improvement. However, depending on the model, best
performance is achieved either for basic or complete observation.

Future work includes several directions. First, we plan to study in depth how
choices of detection levels affect performance of the obtained implementation. We
can also consider intermediate levels between basic and complete observation.
Such intermediate levels could, for instance, ensure complete detection of false
conflicts for some interactions and avoid introduction of deadlocks for the others.

Another improvement is to use static analysis techniques in order to take into
account parallelism. These techniques allow automatically computing a partition
of the interactions that does not reduce the degree of parallelism by grouping
possibly concurrent interactions. The allowed degree of parallelism can also be
used to measure the utility of an additional observation, i.e. how observing an
additional component can increase parallelism in the obtained implementation.

References

1. Gössler, G., Sifakis, J.: Priority systems. In: Formal Methods for Components and
Objects. Volume 3188 of LNCS. Springer Berlin / Heidelberg (2004) 314–329

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Software Engineering and Formal Methods (SEFM). (2006) 3–12

3. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level
component-based models to distributed implementations. In: EMSOFT. (2010)

4. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework for
automated distributed implementation of component-based models. Distributed
Computing (to appear)

5. Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Automated distributed implementation
of component-based models with priorities. In: EMSOFT. (2011) 59–68

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press (1995)

7. Halpern, J.Y., Fagin, R.: Modelling knowledge and action in distributed systems.
Distributed Computing 3 (1988) 159–179

8. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37 (July 1990) 549–587

9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598) (1983) 671–680

10. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional verification for
component-based systems and application. In: ATVA, Berlin, Heidelberg (2008)

11. Krckeberg, F., Jaxy, M.: Mathematical methods for calculating invariants in petri
nets. In: Advances in Petri Nets 1987. Volume 266 of LNCS. Springer Berlin /
Heidelberg (1987) 104–131

12. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-finder: A tool for com-
positional deadlock detection and verification. In: Computer Aided Verification.
Volume 5643 of LNCS. (2009) 614–619

13. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremen-
tal component-based construction and verification using invariants. In: Formal
Methods in Computer-Aided Design (FMCAD). (oct. 2010) 257 –256

14. Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1988)

15. Bagrodia, R.: Process synchronization: Design and performance evaluation of dis-
tributed algorithms. IEEE Transactions on Software Engineering (TSE) 15(9)
(1989) 1053–1065

16. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing
multiparty synchronization. Concurrency and Computation: Practice and Experi-
ence 16(12) (2004) 1173–1206

17. Kumar, D.: An implementation of n-party synchronization using tokens. In:
ICDCS. (1990) 320–327

18. Joung, Y.J., Smolka, S.A.: Strong interaction fairness via randomization. IEEE
Trans. Parallel Distrib. Syst. 9(2) (1998) 137–149

19. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions
on Programming Languages and Systems (TOPLAS) 6(4) (1984) 632–646

20. Ben-Hafaiedh, I., Graf, S., Quinton, S.: Building distributed controllers for systems
with priorities. Journal of Logic and Algebraic Programming 80 (2011) 194 – 218

21. Ricker, S., Rudie, K.: Know means no: Incorporating knowledge into discrete-event
control systems. Automatic Control, IEEE Transactions on 45(9) (sep 2000) 1656
–1668

22. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge
based controlling of distributed systems. In: Automated Technology for Verification
and Analysis - 8th International Symposium, ATVA 2010, Proceedings. Volume
6252., Springer (September 2010) 52–66

