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Abstract—The demand for more secure, available, reliable, and
fast networks emerges in a more interconnected society. In this
context, 5G networks aim to revolutionize how we communicate
and interact. However, studies using 5G data are sparse since
there are only a few number of publicly available 5G datasets
(especially about commercial 5G network metrics with real
users). In this work, we analyze the data of a commercial 5G
deployment with real users, and propose forecasting techniques
to help understand the trends and to manage 5G networks. We
propose the creation of a metric to measure the traffic load. We
forecast the metric using several machine learning models, and
we choose LightGBM as the best approach. We observe that
this approach obtains results with a good accuracy, and better
than other machine learning approaches, but its performance
decreases if the patterns contain unexpected events. Taking
advantage of the lower accuracy in the performance, this is used
to detect changes in the patterns and manage the network in
real-time, supporting network resource elasticity by generating
alarms and automating the scaling during these unpredictable
fluctuations.

Index Terms—5G Networks, NWDAF, Dimensionality Reduc-
tion, PCA, Forecasting, LightGBM

I. INTRODUCTION

Fifth Generation (5G) networks aim to revolutionize cellular
networks by supporting billions of devices connected to the In-
ternet without compromising the user’s Quality-of-Experience
(QoE). They support an elevated user demand, machine-to-
machine communication, a massive amount of Internet of
Things (IoT) devices, ultra-high-definition video and virtual
reality applications. Thus, 5G networks have to deal with high
scalability of devices, high data rate (10-50 Gbps), low end-to-
end latency (less than 5ms), while increasing energy efficiency
and reducing the cost [1]–[3].

Acknowledging the potential of 5G, by September 2023,
173 countries and territories have invested in this technol-
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ogy, from initial trials to network deployment and launches.
From those, 114 countries and territories had launched 3GPP-
compliant 5G services, and 113 had deployed 5G mobile
services [4].

3GPP proposed a function named Network Data Analytics
Function (NWDAF) to incorporate data analytics and machine
learning in 5G networks, which allows the implementation of
different use cases, such as monitoring and forecasting the
network load performance, studying and detecting network
anomalies, and analyzing and predicting traffic congestion [5].
On the other hand, the concept of network slicing enables
an end-to-end network behavior for different verticals in
the 5G networks [6]. We can use, for instance, Software-
Defined Networks (SDNs) to create slices as virtual networks,
not requiring infrastructure changes [7]. The big advantage
of creating slices is to serve multiple use cases and end-
users that expect different service requirements, in an isolated
manner with low latency, high bandwidth, high throughput,
high mobility and high security [7], [8]. The big advantage
of using network slicing in 5G and NWDAF is the ability to
optimize communication. Thus, network slicing can respond
to the need of the different use cases and several end-users,
providing infrastructure optimization and flexibility [7], but
its dynamic management requires an accurate understanding
of the traffic trends and their requirements at runtime.

There is a significant lack of public real-world 5G datasets
available from networks or experimental testbeds, as the
authors of [9] have recognized, which can impact the number
of studies on the subject. It is critical to investigate how 5G
networks are being used, understand 5G trends, and analyze
what can be needed as more users start to use 5G. The work
in [9] publicly released a 5G traffic dataset that was created
by measuring various packet traffic. This dataset contains
328 hours of data (almost two weeks). To simplify the use
of the dataset, the authors trained machine learning models
to generate two types of traffic. Compared to the original
dataset, they concluded that the generated traffic is similar to
the original one. The work in [10] published a synthetic 5G
network dataset based on a high-traffic event such as a major
sports game.

This work uses real commercial 5G data, provided by a
5G network operator, to analyze and obtain insights about the
trends in 5G usage and the observed patterns. To the best of
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our knowledge, this is the first work using real 5G commercial
network data, and therefore, the first one providing this type
of analysis and trend prediction with real data. We analyze
trends, the relationship between features and temporal patterns.
We propose a traffic load metric, and use Light Gradient-
Boosting Machine (LightGBM) to forecast the network traffic
with different horizons (1 day and 8 days) with high accuracy.
Furthermore, we observe that in most cases, the best results
are achieved using Gradient Boosting Decision Tree (GBDT)
as the boosting method. We also observe that forecasting can
be very useful in detecting data drift and can help manage
network resources. By managing network resources as needed,
we can achieve network resource elasticity. Furthermore, the
forecasting model could be incorporated into the NWDAF
to manage and optimize the resources needed for different
network slices.

The main contributions of this work are the following:
• Data exploration pipeline of 5G network metrics;
• 5G network data anonymization through feature reduction

using Principal Component Analysis (PCA);
• Research of a metric to measure the traffic load on 5G

networks;
• 5G network traffic load forecasting to assist network

management;
• Analysis of several machine learning algorithms, includ-

ing LightGBM, to predict the trends of 5G network data;
• Forecast network traffic load trends to help manage

network resources in the future timeframes.
The remainder of this paper is organized as follows. Sec-

tion II presents the related work. Section III presents the
methodology adopted. Section IV contains the results and
discussion. Lastly, section V concludes the paper and provides
ideas for future work.

II. RELATED WORK

This section presents related works on 5G network data
analysis, feature reduction, and algorithms that can be applied
to 5G contexts.

Analyzing 5G network datasets can be overwhelming, since
we can easily have hundreds of network metrics and thousands
or millions of nodes, having a high dimensionality dataset.
Feature reduction techniques can be used to solve the problem
of high dimensionality. Several techniques can be employed,
but we should consider that our high-dimensional dataset is a
multivariate time series; therefore, the chosen method should
preserve the properties of the time series data. In this context,
several methods have been used, such as PCA, Singular Value
Decomposition (SVD), kernel Principal Component Analy-
sis (kPCA), t-Stochastic Neighbor Embedding (t-SNE), and
AutoEncoders, among many others. Although they might be
proposed for general tabular data, they have been proven to
work well with multivariate time series [11], [12].

PCA [13] is a multivariate statistical model that aims to
extract the most significant information from a dataset. PCA
reduces the size of the dataset by representing it using fewer
components than the original set of variables. The new set of

features are orthogonal variables called principal components
that result from linear combinations of the original set of
variables. This can be achieved by the eigen-decomposition
and SVD. The first component of PCA explains the largest
variance of the data; the second component of PCA explains
the second largest possible variance, and so on. The work
in [14] proposed t-SNE, an unsupervised non-linear dimen-
sionality reduction technique based on matching distances
between distributions to reduce high dimensional datasets to
lower dimensions. This method is also widely used for tabular
and time series data [11], [12]. The work in [15] proposed
a framework based on Sparse Tensor Factorization (STF) to
perform dimensionality reduction for traffic analysis on 5G
data.

Regarding forecasting strategies, we can divide them into
historical, statistical, and machine learning methods. The ma-
chine learning models are the most popular and efficient of
these three categories. Over the years, several methods have
been proposed, some based on traditional machine learning
and others based on deep learning [16]. In our previous
work [17], we compared different deep learning models to
forecast traffic flows, such as Feed Forward Neural Networks
(FNNs), Long Short-Term Memorys (LSTMs), Convolutional
Neural Networks (CNNs) and a hybrid LSTM-CNN approach.
We observed that CNNs achieved the best performance and a
lower training time. A different approach, LightGBM, is a
tree-based model that proved, recently, very effective during
the fifth edition of the forecasting accuracy competition [18].
LightGBM is a GBDT that uses strategies such as Gradient-
based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB) to deal with big, and highly dimensional
datasets [19]. The work in [20] proposed using forecasting
algorithms (from AutoRegressive Integrated Moving Average
(ARIMA) to neural networks) to improve multi-slice 5G
network management, using 4G data. The authors developed
a real-time distributed forecasting framework and evaluated
its performance in a vehicular and mobile scenario. They also
proposed using a dynamic threshold for slice management and
avoid network traffic congestion.

To predict the quality of wireless IoT networks’ RSSI and
Packet Delivery Ratio (PDR), Miguel Sindjoung et al. [21]
use machine learning, namely Random Forest. The authors
did not use the values of these metrics; they converted them
into categories (good, intermedium, and bad) to classify the
quality of the links. They also tested other classification meth-
ods, such as Logistic Regression, Support Vector Machines
(SVMs) and Linear SVMs. The work in [22] proposed a
real-time 5G wireless communication forecasting framework
based on an LSTM network. The authors simulated a 5G
network in a container environment. The work in [23] showed
pratical use cases for NWDAF in 5G networks. They evaluated
two scenarios: network load performance forecasting, using
Linear Regression (LR), Recurrent Neural Network (RNN),
and LSTM models, and classification of network anomalies
using LR, and eXtreme Gradient Boosting (XGBoost). In this
case, the authors generated a synthetic dataset for 5G cellular
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networks. Several studies have been conducted to forecast
network traffic metrics, although, to the best of our knowledge,
none of them used real commercial 5G data.

There are several problems that can degrade the perfor-
mance of the models deployed across the network over time.
This phenomenon is known as model drift. There are two
types of model drift: data drift and concept drift, and each
one of these types can be divided into subtypes. Data drift
can be associated with changes in the data distribution, such
as covariate shift and prior probabilistic shift. Concept drift is
associated with changes in the relationship between features
and targets. The presence of model drift can lead to wrong
insights and harming decision-making. The main cause of
model drift is the lack of data representative of the entire
population [24]. Some solutions have been developed to deal
with model degradation, or model drift. In the context of 5G
networks, the work in [25] proposed a module for model drift
detection and adaptation using LSTMs. The authors simulated
a drift in the user behavior and were able to capture the
model drift. In the context of IoT Data Streams, the work
in [26] proposed the use of an adaptive LightGBM model
with Optimized Adaptive and Sliding Windowing (OASW)
for anomaly detection with concept drift adaptation. This
work tested two public IoT datasets and outperformed state-
of-the-art methods. The model provided high accuracy while
consuming low memory and processing time.

The choice of the model to be used in the forecast task
may vary according to the dataset characteristics. There are
advantages and disadvantages to using each statistical, tra-
ditional machine learning, or deep learning method. While
statistical methods are easier to explain, they also may work
better with less data. Classical machine-learning techniques
can be computationally less expensive and more explainable
than deep-learning methods. On the other hand, deep-learning
methods may capture more complex patterns, but require more
data and are less explainable. Due to the limited amount of
data available for training deep learning models, traditional
machine learning models are more suitable in this case.
Therefore, we selected traditional machine learning to predict
network traffic metrics.

III. METHODOLOGY AND METRICS

This section presents information about the network, the
data, the traffic load metric and the methodology performed
for the forecasting process.

A. Handling 5G commercial data

A commercial 5G network provider allowed us to explore a
dataset containing commercial 5G data. The dataset contains
27 weeks of hourly data (a little bit more than six months)
from several 5G base stations. For each base station, the
operator provided 134 attributes/features. The attributes are
fixed values about the base stations, and the features are
network related performance metrics which vary over time.
To focus our analysis, we select 13 base stations (named from

Fig. 1. Processing Pipeline

A to M) and 15 5G network metrics. Due to privacy issues of
the operator, the real map of the stations is not presented.

The processing pipeline is illustrated in Figure 1. We start
by cleaning and preprocessing the dataset. We separate the
dataset by base station, and obtain the data over time per base
station with the information from that base station. Then, we
select 13 base stations and 15 network metrics. Since some
of the network metrics divide the information by uplink and
downlink, and we do not need that type of differentiation, we
decided to merge those fields. For instance, we add the uplink
user data volume with the downlink user data volume. Then,
we standardize the dataset to have a mean of 0 and a standard
deviation of 1. After that, we test different feature reduction
techniques (PCA and t-SNE) to obtain fewer features per base
station.

B. Network Traffic Load Metric

In this section we propose a network traffic load metric
to anonymize the information about the base stations and
simplify the data analysis. We test two approaches: t-SNE
and PCA. However, we observe that PCA can capture more
patterns and variability using fewer components. Furthermore,
the results for the different base stations are more similar and
constant when using PCA than when using t-SNE.

Figure 2 contains the explained variance of PCA when using
a different number of PCA components for base station D. By
using two or more components in PCA, we can effectively
account for over 90% of the data’s variability. Increasing the
number of components beyond this point offers diminishing
returns in terms of information gain. Thus, we opted to pick
the first two components.

Figure 3 contains the correlation matrix between the se-
lected features and the PCA components. ’HS’ stands for
Handover Success, ’TPUT’ for Throughput, ’Tx’ stands for
Transmission, and ’RB’ stands for Resource Block. By apply-
ing PCA to the dataset, we observe that the first component of
the PCA is significantly correlated with most of the selected
features. The two features to which the first component is
not significantly correlated are the average user throughput
and the user data volume. Those features are captured in the
second component of PCA, and we can observe that they
are very correlated with the second component. We chose to
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Fig. 2. PCA: Explained variance (base station D)

Fig. 3. PCA: correlation matrix between features (base station D).

concentrate our analysis on the primary component of PCA, as
it effectively encapsulates the predominant patterns. However,
for visualization purposes, we retained the second component.
The components of PCA are a linear combination of the
features. The features that are more related to the first PCA
component can describe the data and give some notions of
traffic load.

We proceeded with additive decomposition of the first PCA
component. The additive decomposition divides the observed
values into three components. The first one contains the
seasonal patterns, the second includes the trend, and the third
has the remaining patterns that the previous components could
not capture. As shown in Figure 4, we can observe the weekly
and monthly patterns by performing additive decomposition
of the first component of PCA (example for the base station
E). Furthermore, we can also observe an increasing trend in
the traffic. This trend can be observed in most of the base
stations. This indicates an increase in the network traffic that
can be associated with the fact that more users are using the
5G network. These patterns may vary from base station to

Fig. 4. Additive decomposition of the first component of PCA (base station
E).

base station since they may exhibit different patterns. The base
stations E, H, I, J, K, and L all show a consistent upward trend.
On the other hand, stations A, C, and D have experienced a
sharp increase in the last month or two months. Stations F
and G, while showing an overall increasing trend, have had
some fluctuations. Finally, stations B and M exhibit a more
parabolic behavior.

Furthermore, we can conclude that the first component of
the PCA could capture the seasonality present in the dataset.
The residual component captures the noise existing in the
dataset, the outliers, and other patterns that the first two
components could not capture. The observed plot has four
peaks that are captured by the residual component. Based on
our analysis, we propose the creation of a traffic load metric
based on the first component of the PCA.

C. Model Selection and Evaluation

We select LightGBM to perform forecasting. LightGBM1

is an efficient and distributed framework for gradient boosting
that employs tree-based learning algorithms, such as traditional
GBDT, Dropouts meet Multiple Additive Regression Trees
(DART), and GOSS. This framework uses low memory, can
handle large datasets, and allows parallel and distributed
computing. It also allows the use of the Graphics Process-
ing Unit (GPU). Furthermore, it provides APIs in different
languages, such as Python, C, and R. We select a traditional
machine learning method, since we only have six months of
data; deep neural networks require more data for the training
process. Furthermore, we also add, as baseline models, LR,
Lasso, Ridge, and ElasticNet2. All these baseline models are
deterministic. Lasso, Ridge, and ElasticNet are regularization
techniques applied to LR to address issues like multicollinear-
ity and overfitting.

In forecasting scenarios, several evaluation metrics can be
used to measure the models’ performance by comparing the
actual values with the predicted ones. We select two evaluation

1https://lightgbm.readthedocs.io/en/stable/
2https://scikit-learn.org/stable/
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Fig. 5. Network Traffic in Weekends and Holidays (base station E)

metrics, Root Mean Squared Error (RMSE) and R2-Score, and
we decide to use R2-Score to choose the best model [16], [17].
Since we are working with time series, we use cross-validation
on a rolling basis without shuffling the data.

IV. RESULTS AND DISCUSSION

This section presents the analysis and discussion of the
results. It starts with a study about the relation of the network
traffic load with events. Thereafter, the forecasting results are
presented, showcasing a comparison of different models with
the selected LightGBM. It concludes by demonstrating how
the forecast can aid in detecting events and predicting the
network traffic load for the subsequent month.

A. Network Traffic Load and Events

We start by comparing both PCA components, including
the proposed traffic load metric, with weekends and holidays
data. We observe that the network traffic load (first PCA
component) decreases on the weekends and holidays for some
base stations, while for others, it increases, depending on the
location. For the particular case of base station E presented in
Figure 5, the network traffic decreases on the weekends and
holidays. This particular base station is located in an industrial
area; therefore, most people visit the area during the weekdays
due to their working routine. An example of a base station that
increases its network traffic load value during the weekends
and holidays is the base station near a shopping mall, where
most people shop during those days.

We also study the impact of major sports events on the
network traffic by comparing the values from a base station
close to a sports field to important sports events. Usually, this
sports field does not attract many sports fans. So, the baseline
use of the network is, on average, not significant. However,
there was an important sports event between two major teams
in August. As visualized in Figure 6, there was a peak in
the network traffic during the sports event. Furthermore, that
peak was propagated to the time after the event. This might
have happened because of the celebrations happening after

Fig. 6. Network Traffic and Major Sports Event (base station F)

the sports event. This is also noticeable in the second PCA
component.

We study a base station near a school and compare the
network traffic load metric with the school calendar. As can
be observed in Figure 7, the network traffic metric is highly
affected by school events. During the term, the regular event
is attending classes on a daily basis between 9a.m. and 7p.m..
Therefore, we did not use any color to indicate it in the
Figure. During the Easter holidays, school break, and teaching
break, we can observe a lower network traffic compared to the
normal days between April and mid-June. Furthermore, we can
observe slightly lower network traffic during the regular and
repeat exam seasons. During the summer break, the network
traffic decreases until the end of August, increasing with the
special exams session. It starts to increase during the special
exam session in September, and we can see the biggest values
during the beginning of the new school year in mid-September
and October of 2023. As we expected, the network traffic
metric is very affected by the events occurring nearby.

As we can observe in these three scenarios (weekends
and holidays, sports events, and school events), some events
contribute to changes in the patterns. The impact of these
events in forecasting depends on how frequent these events
are. For instance, the impact of weekends in forecasting is not
a problem since they occur frequently and at regular intervals;
however, the effects of holidays will be more significant since
they happen less frequently and their pattern is more difficult
to capture, especially when having only a small amount of
data. The major sports event was sporadic, meaning that it
will probably not repeat itself, and it will be more difficult
to forecast for those conditions. Regarding the school events,
with less than one year of data, it will be difficult for the
forecasting algorithm to learn their patterns.

B. Forecasting Network Traffic Load

Before starting the forecasting, we decided to select the best
temporal lags. The seasonal decomposition and autocorrelation
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Fig. 7. Network Traffic and School Events (base station A)

TABLE I
LIGHTGBM PARAMETERS

Parameter Value
Boosting type GBDT, DART, GOSS
Subsample ratio of the training instance 0.2, 0.5, 0.8
Subsample ratio of columns when building each tree 0.2, 0.5, 0.8
Number of leaves 15, 31, 127
Maximum depth -1, 3, 5, 7, 9
Learning rate 0.01, 0.05, 0.1
Number of estimators 50, 100, 200

plots gave us some insights regarding the best values for the
temporal lags. Figure 8 depicts the correlation matrix between
the first component of PCA and the temporal lags. As we can
observe, the chosen temporal lags, such as 24h (1 day before),
48h (2 days before), and so on, strongly correlate with the first
PCA component.

We also consider different parameters for LightGBM,
present in Table I, resulting in 3645 combinations of parame-
ters, and we repeat each experiment five times. Furthermore,
we fix the seeds for the different experiments, so that we
can reproduce the results. We experiment with three boosting
types: GBDT, DART and GOSS. The maximum depth of -1
means that there is no limit.

Table II and Table III contain the best results for the
different base stations obtained using the selected modes and
forecasting horizons of 24 and 192 steps ahead (1 day and 8
days), respectively. Regarding Table II, the best overall method
is LightGBM with an R²-Score of 0,9293±0,0208. LightGBM
achieves the best results for 6 base stations, Ridge Regression
for 4, and LR for 3 base stations. When predicting values for
the next day using LightGBM, all base stations have an R²-
Score greater than 0.89, and the best performance is achieved
for base station D. We can also observe that LightGBM is
the more stable method, having the lowest standard deviation,
especially when compared to Ridge and Linear regression. For
the forecasting horizon of 8 days, the best overall method is

Fig. 8. PCA: correlation matrix between temporal lags (base station D)

still LightGBM with an R²-Score of 0,8602±0,0768. For this
case, there are only three base stations where LightGBM is not
the best model, and LR performs better. Using LightGBM,
most base stations achieve an R²-Score greater than 0.85.
The worst results are obtained for base station A when
forecasting 192 steps ahead; this happened with all methods.
Base station A is the base station close to the school and is
highly affected by the events at the school. Once more, most
of the events that affect the network traffic in this area are not
seen, and it is more difficult for the model to forecast when
there are patterns that the model did not observe. The best
performance is achieved for base station I. We can observe
small losses when comparing the performance of forecasting
one day versus eight days ahead, as expected. Since we are
increasing the forecasting horizon, there will be an increase in
the error. The only exception is base station A, which presents
a significantly larger difference. Given that we have only six
months of data, meaning that there are patterns the model
never saw, we consider these results a good first baseline.
Furthermore, we also observe that Lasso regression achieves
the worst performance for both cases. In some situations, LR
might outperform LightGBM. This might be explained due
to the linearity present in the data, meaning that introducing
complexity might lead to overfitting. We could also use just
one model to forecast all stations; however, we would also
increase model dependency. If we needed to add more stations
or remove stations from the model, we would have to train the
model from the start. Furthermore, the train would be more
difficult if the amount of data in the new stations is lower than
the one of the old stations.

Regarding the best-boosting type, GBDT is the best for most
of the forecasts, giving the top results for 8 base stations when
forecasting one day, and 11 base stations when forecasting
eight days. GOSS and DART are similar, with GOSS being
the second best for 3 base stations in the first case and 1 base
station in the second one, and DART is 2 and 1, respectively.

The patterns and statistical properties observed in the base
station A are changing for the model, which means that we
are in the presence of data drift. Thus, we achieve a worse
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TABLE II
RESULTS: FORECAST 24 STEPS AHEAD (1 DAY)

LR Ridge Lasso ElasticNet LightGBMStation R²-Score RMSE R²-Score RMSE R²-Score RMSE R²-Score RMSE R²-Score RMSE
A 0,9538 0,3497 0,9538 0,3497 0,9216 0,4559 0,9471 0,3745 0,9443±0,0011 0,3842±0,0040
B 0,9516 0,5390 0,9516 0,5390 0,9392 0,6042 0,9546 0,5218 0,9524±0,0034 0,5340±0,0196
C 0,9200 0,7081 0,9200 0,7081 0,8968 0,8043 0,9114 0,7452 0,9176±0,0019 0,7186±0,0084
D 0,9449 0,5540 0,9449 0,5540 0,8938 0,7690 0,9123 0,6988 0,9566±0,0032 0,4912±0,0182
E 0,9444 0,5030 0,9444 0,5031 0,8904 0,7064 0,9155 0,6202 0,9410±0,0051 0,5176±0,0228
F 0,9438 0,5224 0,9438 0,5224 0,8978 0,7043 0,9166 0,6362 0,9467±0,0013 0,5087±0,0065
G 0,5658 2,0193 0,5658 2,0193 0,6232 1,8811 0,6003 1,9375 0,8982±0,0073 0,7406±0,0265
H 0,9467 0,5489 0,9467 0,5489 0,8933 0,7766 0,9261 0,6465 0,9455±0,0041 0,5546±0,0211
I 0,9479 0,8848 0,9479 0,8849 0,8892 1,2912 0,9099 1,1642 0,9380±0,0019 0,9655±0,0149
J 0,9116 0,7900 0,9116 0,7900 0,8803 0,9194 0,8956 0,8587 0,9107±0,0061 0,7937±0,0272
K 0,7602 0,9747 0,7602 0,9747 0,6898 1,1086 0,7269 1,0403 0,9022±0,0042 0,9721±0,0215
L 0,9181 0,7455 0,9180 0,7455 0,8895 0,8657 0,9028 0,8118 0,9253±0,0040 0,7113±0,0196
M 0,7872 0,7139 0,7872 0,7139 0,8283 0,6412 0,8266 0,6444 0,9021±0,0052 0,4840±0,0130

Avg±Std 0,8843±0,1145 0.7579±0,4163 0,8843±0,114 0,7579±0,4163 0,8564±0,0931 0,8868±0,3682 0,8727±0,1009 0,8231±0,3936 0,9293±0,0208 0,6443±0,1878

TABLE III
RESULTS:FORECAST 192 STEPS AHEAD (8 DAYS)

LR Ridge Lasso ElasticNet LightGBM
Station R²-Score RMSE R²-Score RMSE R²-Score RMSE R²-Score RMSE R²-Score RMSE

A 0,5728 2,0096 0,5728 2,0096 0,6125 1,9138 0,6044 1,9339 0,6261±0,0039 1,8799±0,0100
B 0,9032 0,9919 0,9032 0,9920 0,8652 1,1708 0,8862 1,0758 0,9009±0,0006 1,0036±0,0031
C 0,8857 1,1631 0,8857 1,1631 0,8551 1,3098 0,8623 1,2768 0,8901±0,0042 1,1402±0,0219
D 0,8806 0,9932 0,8806 0,9933 0,8420 1,1425 0,8597 1,0766 0,8655±0,0017 1,0538±0,0066
E 0,8590 1,0438 0,8590 1,0438 0,8622 1,0318 0,8685 1,0079 0,8706±0,0051 0,9993±0,0197
F 0,8618 0,9864 0,8618 0,9863 0,8363 1,0734 0,8648 0,9754 0,9038±0,0007 0,8224±0,0033
G 0,8097 1,0964 0,8097 1,0963 0,8011 1,1208 0,8158 1,0785 0,8396±0,0025 1,0073±0,0109
H 0,8660 0,9472 0,8660 0,9472 0,8591 0,9713 0,8850 0,8773 0,8900±0,0001 0,8580±0,0006
I 0,9320 0,8184 0,9320 0,8183 0,9087 0,9482 0,9310 0,8248 0,9393±0,0009 0,7729±0,0058
J 0,8871 1,0830 0,8871 1,0831 0,8398 1,2904 0,8546 1,2292 0,8874±0,0014 1,0814±0,0070
K 0,8114 1,2600 0,8114 1,2600 0,7975 1,3055 0,8114 1,2600 0,8136±0,0037 1,2522±0,0126
L 0,8926 1,0048 0,8926 1,0048 0,8560 1,1637 0,8736 1,0900 0,8903±0,0004 1,0153±0,0021
M 0,8530 0,9505 0,8530 0,9505 0,8278 1,0289 0,8408 0,9894 0,8652±0,0006 0,9103±0,0022

Avg±Std 0,8472±0,0891 1,1037±0,2930 0,8473±0,0891 1,1037±0,2930 0,8279±0,0707 1,1900±0,2484 0,8429±0,0779 1,1304±0,2769 0,8602±0,0768 1,0613±0,2783

performance when trying to predict bigger horizons. Even
though base station A’s performance is lower than the re-
maining ones, this is still useful for the network management.
The performance is lower because the network traffic usage
on the base station A increased in the last weeks with the
beginning of the new school year. In this case, the users
are mostly school students and staff. They are consuming
more resources, and the real needs surpass the forecasted
needs. If this pattern continues, eventually, more resources
will be needed to be available. So this means that we require
some additional intervention. We can throw an alert or act
to adapt the necessary resources. By applying forecasting
methods, we can help to manage the resources available for
the network. Therefore, forecasting is very useful for ensuring
network elasticity by forecasting the resources needed and by
identifying moments of unexpected fluctuations that require
changes in the resources available. Furthermore, the network
can help to predict and detect events, even though it might not
know the context of the events.

In order to understand how the network traffic load would
behave in the upcoming month, we calculate the estimated
increase or decrease in the network traffic load for October.
To achieve this, we use the best model for each station
to predict the whole month of October. As the PCA gives
negative values, we normalize the observed and forecasted
values between 0 and 1. Next, we calculate the mean of the
network traffic load for each month and use it to determine the
percentage of change from one month to the following one.

TABLE IV
FORECASTING THE TREND FOR THE NEXT MONTH

Station Min Max Forecast next month
A -15,05% 47,87% 3,65% ± 0,06
B -8,16% 6,43% 6,46% ± 0,02
C -3,22% 22,75% 2,28% ± 0,42
D -3,29% 4,80% 2,63% ± 0,09
E 2,05% 9,54% -2,78% ± 0,16
F -9,85% 8,10% -0,23% ± 0,07
G -4,16% 13,11% -0,20% ± 0,61
H 6,14% 20,33% 1,94% ± 0,05
I -2,38% 11,03% 3,52% ± 0,52
J 0,71% 14,33% 4,61% ± 0,13
K 0,36% 15,59% 2,29% ± 1,03
L 2,49% 11,26% 0,66% ± 0,11
M -17,04% 10,78% 5,64% ± 0,09

Avg±std 2,29% ±2,55

Table IV contains the minimum and maximum percentage of
change of the observed months and the forecasted percentage
of change for October. Depending on the station, we can
observe some changes in the network traffic load, including
both increases and decreases. However, on average, we can
observe an increase in the network traffic load, corresponding
to an increase in the usage of 5G. Using these models on the
NWDAF, network resources can be managed more effectively,
including resource allocation for each slice in a dynamic
approach.

The forecasting of the network usage can indicate the
necessity to create/modify network slices to guarantee specific
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requirements of bandwidth and latency for critical services
such as emergency use cases. A particular example of network
slicing appliance is the selection of User Plane Functions
(UPFs). Due to the utilization (and demand forecasting) of
a certain gNB, the network slices can be programmed to
utilize a different UPF to redirect the traffic through different
network resources, and to better utilize edge computing. The
orchestration of the UPFs is done by the Session Management
Function (SMF), and the registration of the network slices is
stored in the Network Slice Selection Function (NSSF).

V. CONCLUSIONS AND FUTURE WORK

Monitoring network metrics is a first step to improve the
network usage, resource allocation, network traffic optimiza-
tion, predictive maintenance, security and network slicing.
Integrating machine learning models with NWDAF in 5G
networks enables intelligent decision-making and automation,
leading to a more efficient, reliable, secure and proactive
network. 5G network datasets tend to have a high num-
ber of features, being highly dimensional, which can make
the analysis and application of models difficult. This work
proposes using PCA to simplify the study of 5G networks.
The proposed approach is a first step to build a forecasting
framework for 5G analysis and usage prediction. We achieved
good forecasting results for two forecasting horizons: 1 day
and 8 days. As expected, increasing the forecasting horizon
leads to a decrease in the performance. Our work showcases
the practical application of machine learning models using
NWDAF, which enables the support of dynamic network
slicing in the expansion of the 5G networks and deployments.
In future research, we plan to test more methods to propose
the best forecasting method for 5G expanding deployments.
Since we expect more data, we aim to experiment with deep
learning approaches. Furthermore, we also expect to contribute
to detecting data drift in 5G networks.
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