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Abstract—As the shift to 5G continues, the growing empha-
sis on software within network architecture poses new testing
hurdles. Testing becomes particularly challenging in diverse
network environments involving multiple vendors, where access
to the Core Network source code is limited. This study promotes
‘protocol fuzzing’, namely the assessment of how the network
responds to malformed or unexpected protocol messages, as
a viable and effective approach to tackle these challenges.
Our approach involves the development of a black-box fuzzing
tool serving as an intermediary between users and the Core
Network. We specifically address the fuzzing of the Access and
Mobility Management Function (AMF), owing to its accessibility
from external vantage points (UE and gNB). The methodologies
discussed here are readily adaptable to other 5G core network
functions. Validation of the fuzzer is carried out by testing it
on three open-source Core Network implementations, revealing
a number of implementation bugs, thus proving its effectiveness.

Index Terms—5G, mutation-based fuzzing, security assurance,
AMF, black-box, feedback

I. INTRODUCTION

The cellular network has experienced significant growth
to meet users’ increasing demand for connectivity. With the
introduction of the 5G, new usage possibilities have been
opened up, making security a crucial aspect. Although the 5G
Core Network has been designed with a “security by design”
approach, ensuring the presence of security features as an
integral part of network function development, the area of
“security assurance”, i.e. trust in the actual implementation
of security measures, remains a gap. It is widely recognised
that security assurance tests must be conducted by parties
outside the network manufacturer. As we shall see, this implies
the need to carry out tests without access to the source
code, introducing quite a few challenges. To address this
aspect of security assurance, the Third Generation Partnership
Project (3GPP), namely the organization which governs the
standardization process of mobile cellular systems, developed
a set of Security Assurance Specifications (SCAS), which
represent a comprehensive set of tests to assess the correct
implementation of security functions. These are positive tests:
they check whether the network is behaving correctly with
respect to the security specifications of the standard. This
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includes creating abnormal scenarios to uncover flaws in the
handling of corner cases. However, this approach does not
provide sufficient assurance of the security of the network.
As stated by the European Union Agency for Cybersecurity
(ENISA) [1]:

“Additional testing should be considered, which
could involve negative tests and fuzzing of individual
components, integrated systems and the network as
a whole.”

In the case of negative testing, the tests analyze the reaction of
the network to unexpected events not covered by the standard.
In this context, fuzzing is a type of negative testing that identi-
fies vulnerabilities by sending incorrect data (e.g., malformed
messages, larger-than-expected input, etc.) to the network.
Fuzzing can be classified based on how the mutated input
is generated and whether the execution mode is black-box or
white-box. This approach is widely used in various areas of
the software world [2]–[4], with very advanced techniques to
maximize findings (e.g., fuzzing with code coverage). The in-
troduction of software as a predominant aspect of the architec-
ture of 5G networks enables the inheritance of experience and
tools for fuzzing. However, applying the standard strategies as
they are does not yield satisfactory outcomes [5]. Moreover,
software fuzzing usually relies on the assumption that source
code is available, while we want to test commercial mobile
networks, so we need to assume a black-box approach. This
paper explores challenges in conducting a fuzzing campaign in
a 5G Core Network, specifically focusing on the Access and
Mobility Management Function (AMF), the vital component
linking the Radio Access Network (RAN) to the control plane.
We introduce a testing architecture to address these challenges,
presenting a proof-of-concept validated on three open-source
Core Network implementations.

The remainder of the paper is structured as follows. Section
II provides a brief background on the 5G Core Network and its
protocols, as well as some details on fuzzing methodologies.
Moreover, it also places our contribution in the context of
related works. In section III we motivate why standard fuzzing
techniques are not effective in the context of 5G, highlighting
what challenges a security tester must tackle. In Section IV we
present our testing architecture and how it can overcome the
challenges outlined. Section V discusses the proof-of-concept
implementation and experimental results. Finally, Section VI
presents the conclusions and future research directions.
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Fig. 1. 5G Core Network Architecture and Protocols

II. BACKGROUND AND RELATED WORK

A. 5G Core Network

The increasing demand for flexibility in 5G networks has
stimulated a transition from hardware components to network
functions, adopting the paradigm of Software Defined Net-
works (SDN) and technologies like Network Function Virtual-
isation (NFV) to realise this softwarization of the network. The
5G Core Network has brought another major innovation – the
service-based architecture – which enables the various network
functionalities of the control plane to operate autonomously
and intercommunicate using a standard API set. A 5G core is
composed of numerous network functions, each responsible
for a specific functionality. For instance, the Access and
Mobility Management Function (AMF) manages user access
to the network and handover between cells, the Session
Management Function (SMF) is responsible for managing
PDU sessions or the Authentication Server Function (AUSF)
manages user authentication and autorization. Nevertheless, it
must be highlighted that the interfaces between the control and
user planes are still point-to-point, as illustrated in Figure 1.

B. Protocols in 5G Core Network

Interactions between network components are minutely de-
fined in the 3GPP technical specifications. These provide for
the following protocols:

• HTTP: communication between control plane compo-
nents, within the Service-Based-Architecture (SBA),

• Next Generation Application Protocol (NGAP): Com-
munication between gNB and AMF,

• Non Access Stratum Protocol (NAS): Communication
between UE and AMF,

• Packet Forwarding Control Protocol (PFCP): Commu-
nication between Session Management Function (SMF)
and User Plane Function (UPF),

• GPRS Tunneling Protocol (GTP): Communication be-
tween gNB and User Plane Function (UPF), or between
two UPFs.

Network functions utilize the HTTP protocol to fulfill
internal control plane functionalities, such as the generation
of authentication vectors. In this new generation of Core
Networks, a service-oriented approach is applied, in which the

specification of network capabilities follows a systematic and
well-defined structure. This methodology not only improves
interoperability but also facilitates modular and agile network
design. The gNB and AMF communicates via the NGAP
protocol for overseeing mobility, session, and communication
management. Structured as a message-based protocol, NGAP
employs ASN.1 - a concise and standardized data represen-
tation format - and SCTP as transport protocol. The use of
ASN.1 ensures a compact representation of data, optimizing
bandwidth utilization. The NAS protocol governs signaling
communications between UE and AMF. As these messages
traverse the air interface, the gNB acts as a transparent relay,
seamlessly forwarding them to the core side. In particular,
these messages are encapsulated within NGAP messages.
Furthermore, the NAS protocol enhances the security of these
communications by providing both integrity and encryption.
PFCP is the control protocol for establishing, modifying and
releasing protocol data unit (PDU) sessions, as well as dynam-
ically allocating and deallocating resources for user plane data
streams. Finally, the GTP protocol takes care of encapsulating
user data during transport from the gNB to the UPF and vice
versa, thus allowing the UE to communicate with the data
network (e.g., the Internet).

C. Fuzzing approaches
The term fuzzing was first used in 1988 by Professor

Barton Miller at the University of Wisconsin. He was sending
commands to a UNIX system over a highly disturbed dial-up
connection. As a result, extra characters were frequently sent,
and he noticed that this often led to program crashes [6]. Over
time, fuzzing has gradually become more popular and more
sophisticated, different tools have been developed to apply it,
and different possible approaches to this testing method have
been standardized.

Fuzzing techniques can be divided into three kinds: black
box, white box, and gray box depending on how much
information they require from the target program at run-time
[7].

1) Black-box fuzzing: This approach assumes that no in-
formation of any kind is obtainable from the program under
consideration; inputs are generated without having information
related to internal implementation or coverage achieved, but
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with predefined random mutations, often relying on knowledge
of which inputs are valid or not to define mutation rules.

2) White-box fuzzing: White-box fuzzing is a testing
method that analyzes deeply a program’s internal logic. It
employs dynamic symbolic execution and heuristic search
algorithms to thoroughly explore a program’s execution paths.
White-box fuzzing requires knowledge of the target program
to guide test case generation.

3) Grey-box fuzzing: Grey-box fuzzing operates between
black-box and white-box fuzzing, leveraging partial knowl-
edge of the target program to uncover software errors ef-
fectively. A common technique in grey-box fuzzing is code
instrumentation, providing real-time code coverage. This in-
formation guides mutation strategies, enhancing the creation
of test cases to explore more execution paths or identify bugs
efficiently [8].

Probably the most crucial aspect of a successful fuzzing
campaign is creating good test cases that will interact with
the target in a way likely to expose any defects. There are
three main approaches to creating the test cases or inputs for
use in a fuzzing campaign; mutation, generation and evolution.

• Mutation-based fuzzing starts from a seed of valid
inputs, which are repeatedly modified or corrupted to
generate new test cases,

• Generation-based fuzzing works by creating test cases
based only on some kind of model that describes a valid
input, like a grammar or a format specification,

• Evolution-based fuzzing also referred to as guided
fuzzing, creates new test cases based on the response of
the target program to previous test cases. This can be
an extension of either mutation or generation fuzzing, as
either technique can be guided to create the new test cases
[9].

D. Related Work

Fuzzing is a growing testing technique in the field of
software testing, and there are several fuzzers that operate in
white-box mode, passing input directly to specific functions
in the code, such as [10].

However, this approach is not scalable as it requires a
significant effort to analyze each implementation. In fact,
for each fuzzing campaign, it is necessary to thoroughly
analyze the code to determine the functions to be tested
and write ad-hoc tests that are unlikely to be generalized to
other implementations. Moreover, in the case of closed source
implementations, this approach is not feasible. Our approach
overcomes these limitations by using an implementation ag-
nostic approach, relying on what is defined by the standard.

However, this approach is less applicable for network test-
ing, as network packets are the required input in such cases.
Therefore, there has been the development of several fuzzers,
which can send network packets, particularly for widely em-
ployed protocols [11]–[13]. Previous attempts tried to apply
one of them, AFLnet, to NGAP testing, but were unsuccessful.
The tool necessitates code instrumentation for mutation-based
guided fuzzing, making it unsuitable for a purely black-box

Fig. 2. White-box approach vs. Black-box approach to fuzzing

approach. It is better suited for protocols following a sequential
request-response model, unlike our situation where we may
encounter multiple sequential messages in the same direction,
and not always have response messages.

However, applying generic network fuzzers to mobile net-
works entails several additional challenges and does not pro-
duce the desired results, as general-purpose fuzzers can only
detect very basic bugs. We attempted to create our own tool
to address this problem. A similar effort has been undertaken
for LTE, although with a generation based approach instead
of a mutation based one, and related studies are [14]–[16].

Regarding the fuzzing of the 5G Core Network, there are
two interesting works, [17], [18], which complement our
approach as they focus on the verification of the interface
between the UE and the Radio Access Network, also using
NAS messages, although the underlying protocol is different.
Another related work is 5Greplay [19], [20], which focuses
on testing the Core Network, including our own protocols, but
employs a different approach. 5Greplay is indeed designed to
replay network packets with and without modifications. This
tool also allows the creation of specific test cases by replaying
a pcap trace. However, the main functionality of 5Greplay
is the modification of pcap traces by filtering or duplicating
packets, and it has several limitations when it comes to fuzzing
the message fields: it does not allow in-depth editing and is
limited to reading and editing the packet header fields. We
drew inspiration from this tool but extended our focus to
include fuzzing the message body as well. OSS-Fuzz [21],
a project which aims to deploy guided in-process fuzzing as a
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standard in open-source software development, contains some
work related to Open5GS, a 5G Core Network open-source,
that, while limited to open-source implementations, performs
work on the NAS protocol that complements ours. Specifically,
it focuses on fuzzing the decoding function, which we are not
testing, as we propose correctly encoded messages.

III. CHALLENGES IN FUZZING 5G CORE NETWORK

Fuzzing the components of a 5G Core Network cannot be
conducted simply by applying the approaches and practices
employed in the software world. In this section we discuss
the challenges that limit the feasibility of typical approaches
and their effectiveness during testing. While some of this
challenges are not specific to 5G, the overall complexity of
the network means that many problems of different nature
occur simultaneously, making them more difficult to deal with.
Moreover, often software-fuzzing solution are tailored for a
specific program, while we aim to realize a tool that can be
generally applied to different core network implementations,
adding another layer of complexity. We focus primarily on the
AMF, the pivotal function of the control plane that manages
the access and mobility aspects of UEs, as it presents all the
obstacles that can be experienced. Furthermore, this network
function exposes one of the few Core Network interfaces that
can be accessed by the external world, namely interface N1 by
which any UE can interact through the NAS protocol. What is
presented in this section can be easily adapted and generalized
for other network functions.

A. White-box approach

The approach commonly used in software fuzzing assumes
that the source code is available, a specific function is identi-
fied for testing and the fuzzed parameters are passed as input
to the function under test. The major problem in employing
this method is the near impossibility of obtaining the source
code of a commercial network, given the competitive nature
of the market. But even assuming that the code is available,
there are several other challenges:

1) External dependencies: The Core Network architecture
resembles a microservices architecture, where various network
functions collaborate. The AMF relies on interactions with
other network functions for proper functioning. This complex-
ity in testing arises because the entire Core Network must
be active and available during test. Otherwise, it becomes
necessary to simulate the responses that the AMF require. Both
these solutions add complexity.

2) Implementation Challenges and Scalability Issues: It is
quite difficult to pinpoint a specific area for fuzzing, due to the
function complexity. Based on the analysis of open-source im-
plementations, the AMF is generally an asynchronous function
with numerous threads and message queues, so it is not easy
to follow a specific path in the code. Moreover, identifying
which function to fuzz is a challenge of itself, that needs to
be repeated for every different Core Network implementation,
considering that they probably do not share a common struc-
ture and common functions. This, together with the difference

in programming used in different implementations means that
it is not possible to use the same tools, which are often
language-dependent, on multiple cores, posing a significant
scalability issue.

3) State initialization: The AMF, being a stateful function,
tailors its responses based on its current state. Running tests
requires initializing this state. This again poses complexity and
scalability problems, since it amounts to initializing complex,
and often different between different implementations of the
Core Network, data structures. Moreover, when a crash occurs,
distinguishing whether it results from a bug or incomplete state
initialization becomes challenging due to the complex nature
of the initialization process.

B. Black-box approach

The black-box approach does not require access to the
source code, but rather an access point to interact with the
component under test. This approach is more suitable in
this context. It happens very often, in fact, that vendors do
not give direct access to their commercial implementations
when contracting third-party services to test and debug their
networks, and moreover, a black-box approach can be used
to test a network from an outside perspective. The approach
would seem simpler than the white-box approach and would be
scalable across multiple implementations, since the interfaces
are standard. However, pitfalls lie hidden that can nullify this
methodology.

1) Protocol restrictions: The protocols employed in the
5G core have precise structures and encodings, as explained
in subsection II-A. Therefore, sending messages that do not
conform to the specifications will result in the interruption
of processing at the initial stages, during the parsing/decoding
phase. Although this methodology is excellent for stressing the
component on message structure management aspects, on the
other hand it is ineffective on its own for testing the remaining
functionalities. Indeed, a fuzzer that is unaware of input struc-
tures is unlikely to be able to explore all possible processing
paths of the component in a reasonable amount of time (in
the vast majority of cases it will stop at the initial phases).
Therefore, the basic fuzzing technique should be enriched with
the use of structure-aware fuzzing [22]. However, the security
aspects associated with the NAS protocol must be taken into
account. Part of the messages, in fact, require encryption and
integrity to be processed properly. These rely on specific ses-
sion keys generated by the key agreement procedures provided
by the standard (e.g. 5G-AKA). Alterations to the packet must
not compromise integrity, as any such alteration would cause
the network to reject the packet and consider it as an attempted
attack. Similarly, modifications that alter the ciphertext could
lead to corruption of the plaintext message structure, resulting
in decoding/parsing errors.

2) Procedure restrictions: Communication in the network
is strictly defined by a set of procedures. For each of these
procedures, the entities involved and the sequence of messages
to be exchanged are specified, covering possible alternatives
and how to handle anomalies. It is therefore essential to

© 2024 International Federation
for Information Processing (IFIP).

ISBN: 978-3-903176-61-420



Fig. 3. Fuzzing framework modular system architecture.

adhere to the procedural aspects in order to explore further
the behavior of the component under test. The employment of
structure-aware fuzzing by itself in these circumstances may
not be effective in performing a complete test.

IV. 5G FUZZING ARCHITECTURE

This section presents the proposed architecture for man-
aging fuzzing in the 5G Core Network. This architecture
is designed with a modular structure, strategically aimed at
improving manageability and providing flexibility for seamless
future extensions. Each module encapsulates specific function-
ality, enabling clear separation and simplifying maintenance
and upgrades. This modular approach not only streamlines the
management process, but also facilitates the integration of ad-
ditional components without disrupting the existing structure.
Figure 3 shows the system architecture and the connections
between its primary modules, assuming the Core Network is
deployed in a containerised environment.

A. Input generation

One of the main challenges in implementing a fuzzing
system is the generation of inputs. Our solution is based on a
mutation-based approach with adaptations to the system we
are testing. Following this approach, the basic idea would
be to use communication traces (e.g. pcap files) representing
various scenarios (e.g., registration, deregistration, handover,
etc.) as the starting seed corpus and let the fuzzer carry the
alteration work. However, applying this approach in a raw way
does not give the expected results. As a matter of fact, in
order to reach a specific state to be tested, it is necessary to
respond consistently to the messages sent by the AMF. As an
example, let us consider the case where we want to test the
network function for user session management aspects (i.e.,
PDUs, Protocol Data Unit Sessions). To achieve this state, the
UE has to first perform the registration phase, with associated
authentication. This requires a precise exchange of packets, the
content of which must be specific and tailored to the needs
of the AMF. Specifically, during the authentication and key
agreement phase, the AMF sends a fresh challenge (i.e. never
sent before) and the UE must reply with a result strictly linked

to that challenge. A possible solution to this scenario would
be to disable the verification aspects. However, this would
involve access to the source code, thus invalidating the initial
assumptions. Furthermore, this identical approach would have
to be applied to all similar situations in the standard, which
requires effort and expertise.

The approach we selected involves creating messages at run-
time, intercepting them and modifying them before sending
them back to the AMF. A proxy component was developed
to act as an intermediary between the AMF and the RAN.
Basically, this component transparently forwards NGAP/NAS
messages between the gNB and the AMF. Hooks can be added
to this component to process each message that passes through
it. In this scenario we register our fuzzing module as a hook.
The proxy is part of the ScasDK development kit; more details
are available in the dedicated paper [23]. In order to have a
modular system, we avoided including the code responsible for
simulating RAN and UE in the proxy, and instead used generic
simulators. Using this approach, we can make sure that the
message being considered is consistent with the state of the
network and contains the required information, and then fuzz
it. Decoupling the proxy, fuzzers and simulators has several
advantages: we can perform the same message exchange with
both modified and unmodified messages, to be sure that the
exchange without fuzzers works properly. We can also easily
replace the chosen simulators with updated versions or with
different simulators in order to have an updated system without
modifying proxy and fuzzer.

B. Fuzzer

The fuzzer was also designed as a modular system, in-
cluding modules responsible for generating the seed, mapping
the seed to specific changes in the packet, and managing
encryption and integrity. The processing of each packet is
done sequentially over three steps: pre-processing, fuzzing, and
post-processing. During the pre-processing phase, the packet
is prepared so that the fuzzer can process it properly. This
includes decoding the traffic according to ASN.1 specifications
and, if necessary, a decryption step in case the packet includes
a NAS message. Furthermore, there is a specific module
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for generating session keys. Indeed, session keys are strictly
dependent on data known a priori by the UE and the network
(e.g. OPC, subscriber key, etc.) and data exchanged during
authentication (e.g. RAND value, encryption and integrity
algorithms). The former are configured in the module at
startup, the latter are acquired by transparently extracting
them from the communication. When the module acquires
all the necessary data, it derives the encryption and integrity
keys, which are then employed by other modules. During the
fuzzing phase, the dedicated module can introduce various
modifications to the network packets. The fuzzer decides how
to modify each packet based on a sequence of bytes, called a
seed. For each change to be made, the fuzzer requests the seed
from an appropriate generation module. Both NAS and NGAP
packets consist of a header followed by a series of information
elements (IEs). Based on the input seed, a particular IE is
selected in the message and its fields are modified, mapping
the seed to the allowed values. This modification assigns a
specific value to the IE taking into account the correct data
type for each field. Different message types correspond to
different IEs in the message, so the mutation process must be
aware of the message type in question, and the same random
seed is mapped to make different changes to different message
types. Some seeds are alternately mapped to make changes
to the header, which consists of procedure code, message
type, implemented security type, and message authentication
code, if necessary. Other seeds are used to send the packet
without internal changes, but with some delay or repeatedly.
Finally, the post-processing phase deals with preparing the
modified message so that the network can process it properly.
This includes encrypting the message and generating the
new integrity signature, in the case of a NAS message, and
encoding it according to the ASN.1 standard.

Fig. 4. Fuzzer module internal architecture.

C. Monitoring and Feedback

There are various ways to accomplish this task. For a purely
black-box approach, a heartbeat system can be implemented

using another gNB that consistently attempts to communicate
with the core and verify its response. Alternatively, a simpler
solution is viable if we are willing to compromise with a grey-
box system. In this case, if the AMF and the monitor operate
on the same hardware, the monitor can continuously assess
the AMF’s status using the PID or a container-specific API
in the case of a containerized environment. While the monitor
does not require access to the Core Network’s code, it is not
totally decoupled from the core due to this constrain.

Guided fuzzing brings an additional responsibility for the
monitoring system: gathering feedback from the AMF to
determine whether the applied seed is promising for future
changes. This can be achieved with instrumentation to obtain
code coverage, following an approach similar to the one
proposed by AFL [24], although this approach involves having
at least code binaries. If we want a completely black-box
system, code coverage is not an applicable metric, and the pro-
posed approach involves intercepting the AMF response and
establishing criteria to discern whether a particular message
type indicates positive or negative feedback.

D. Post Analysis and Test Repeatability

The verification of a previously observed finding is impor-
tant. Being able to verify a finding provides some guarantee
that it is not product of chance but that the observed phe-
nomenon is stable [25]. Fuzzing is a testing method that relies
on random changes, so we need to capture the introduced
random element to allow the same test to be repeated. As a first
approach to support the analysis phase, we save a pcap trace of
the communication for each execution. This simplifies the root
cause analysis phase and, considering that reading messages
from a pcap trace and sending them to a network interface is
a relatively simple process, it may seem like the solution for
performing repeatability tests. However, this approach present
several critical point:

• In a 5G Core Network, authentication is based on a
challenge-response method: a random sequence of bytes
is sent by the AMF, encrypted by the user and sent back,
to prove that they know the encryption key of the user
they claim to be. If a new registration procedure is started,
a different challenge needs to be encrypted, so simply
replaying old message will not work. This problem can be
solved by going to recompute the authentication response
message each time instead of replaying a past message,
but we may lose information about how the message
fields were fuzzed, making the test invalid.

• Similarly, for each message, it would be necessary to
recompute integrity and encryption. However, there is
a risk of losing information if the fuzzing process has
altered the header fields related to these calculations.

• In the testing process, the timing of sending is crucial,
but the pcap trace does not retain information such as
the delay before sending a specific message. As commu-
nication is not solely based on a request-response pattern,
determining when to send a message for the test to be
accurately reproduced poses a challenge.
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For all these reasons, we opted for a different approach.
Replication of the test is achieved by saving the random
seed used for modifications and conducting a new test where
messages are generated by UE and RAN but modified using
the same random seed. In this situation we keep as much of
the same information as possible between tests.

V. PROOF-OF-CONCEPT IMPLEMENTATION AND RESULTS

A. Implementation

The fuzzing framework, implemented in Python, utilizes
pycrate [26] - a preexisting library facilitating the encoding
and decoding of messages in the ASN.1 format. This library
also offers additional functionalities for encoding, decoding,
encryption, and MAC code generation (assuming knowledge
of cryptographic keys) for NAS messages, and can be used
to obtain network packets’ structure. We employed Ueransim
[27], an open-source project offering UE and RAN compo-
nents along with a CLI for command transmission, to simulate
these elements. Sending different command through the CLI
we are able to trigger different procedure and have a wider
range of fuzzable messages. To seamlessly integrate with
our system, we created a Python controller to interact with
Ueransim, which is the fourth main module showed in Figure
3.

The fuzzer needs to be aware of the NAS or NGAP message
type being processed, as each message type corresponds to
different information elements. Currently, the fuzzer focuses
on a subset of possible messages related to registration, setup,
update, and release of communication sessions, as well as
deregistration. Messages related to cell handover have not
been considered at this stage, although we aim to integrate all
possible NAS and NGAP procedures in the future. However,
we have implemented a class that takes a sequence of random
bytes as a seed and can apply it to any information element.
With a nearly complete list of information elements, expanding
to integrate other message types only requires configuring the
appropriate combination of IEs according to the appropriate
structure.

The monitoring system was implemented as a grey-box
monitor, designed to observe the state of the AMF container.
To align with the validation architecture, we utilized APIs tai-
lored for monitoring Docker containers. However, the modular
structure of the system provides flexibility in replacing the
monitoring component as needed, especially when conducting
tests on networks deployed in a different mode. Additionally,
this flexibility allows the integration of a feedback mechanism
for mutation-based guided fuzzing.

It is possible to display on screen all messages sent to and
from the AMF during the framework’s execution, aiding in
debugging in case of a crash. Moreover, to ensure persistent
tracking, a module in the proxy has been implemented to save
intercepted data onto a pcap trace, generated using the Python
Scapy library.

B. Validation and Results

1) Testing Methodology: The validation process involved
testing three different open-source 5G Core Networks,
Open5GS, free5GC e OAI 5GC [28]–[30]. All Core Networks
have been deployed using a Docker container for each net-
work function, orchestrating them with Docker Compose. The
versions considered for each core are respectively 2.6.4 for
Open5GS, 3.3.0 for Free5GC and 1.5.1 for OAI.

Tests were initially designed to uncover bugs during the
registration phase. Subsequently, the approach shifted to al-
lowing a smooth registration process, enabling further testing
of session setup phases and deregistration. Forty tests were
performed on each core for each of these test cases. Each
test was deemed concluded when the monitoring function
detected a crash or when the fuzzing epoch ended without
causing issues in the AMF. A fuzzing epoch was considered
finished if the proxy did not intercept any messages from
the AMF or the RAN for over a minute. The wait time
depends on the network’s speed, favoring smaller values for
efficient testing, yet avoiding premature epoch endings with
excessively small values. Overall, this testing method is quite
slow. Different tests have vastly different execution time,
depending on the seed considered and which changes are
introduced. On average, a single tests takes approximately
from a couple of minutes to half an hour.

2) Preliminary results: Our framework successfully uncov-
ered bugs in each tested core, identifying some that were
already flagged as issue to resolve, and also unveiled previ-
ously unknown bugs. The known issues served as benchmarks
to assess the effectiveness of our automated approach. We
discovered a total of 7 bugs. Bugs seems more commonly
related to NAS instead of NGAP fuzzing, probably due to
the added complexity of NAS specification, which are not in
ASN.1 format. The objective of these tests was to validate the
framework, and the underlying causes of the newly discovered
bugs have not been investigated yet. Table I shows our
findings.

Core Network Registration Session setup Deregistration
Open5GS 2.6.4 2 0 2
Free5GC 3.3.0 1 0 0
OAI 5GC 1.5.1 2 1 0

TABLE I
BUGS FOUND

3) Analysis of a known bug: To provide an example of the
types of bugs identified and to illustrate why detecting them
would be challenging without this form of testing, we show-
case a known bug in Open5GS. The identified bug pertains
to the handling of an Information Element containing the 5G
Mobily Identity, specifically the UE identifier, which can be of
various types. This identifier is included in different message
types, with the registration request being a primary example.
Due to flawed validation checks, a specific type of identifier,
the SUPI (Subscription Permanent Identifier), is mishandled,
resulting in an AMF crash. The SUPI, although typically
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based on IMSI (International Mobile Subscriber Identity), can
also rely on other implementation-specific parameters. It is in
this nonstandard scenario that the crash occurs. Additionally,
executing identical tests with the same random seeds on all
Core Networks exposed variations in execution between OAI
and the other two cores. We will not delve into the causes
of these differences, our primary focus was on validating the
framework rather than investigating the root causes of distinct
bugs, but this difference may mean that one of the networks
is not conform to 3GPP specification. In general, confronting
executions between multiple networks offers an interesting
way to discover bugs which do not result in an immediate
crash but cause the network to not respond properly, so we
aim to integrate a module for automatic trace comparison.

VI. CONCLUSION

The analysis on different Core Networks demonstrated the
effectiveness of this method in detecting implementation bugs,
particularly useful for unexpected situations not considered
during development. Analysis on several Core Networks also
allowed us to evaluate the performance of our tool. Specific
challenges emerge in handling NAS messages versus NGAP
messages, with crashes concentrated when fuzzing NAS PDU.
The complexity of 3GPP specifications for NAS messages, im-
plemented outside the ASN.1 coding rules, could contribute to
this complexity. It is crucial to carefully evaluate the execution
parameters to optimize test time and results, considering the
significant execution time of these types of tests.

Many improvements evaluated during design and then not
included in this first iteration of development can be intro-
duced:

• Insertion of a feedback mechanism to improve the muta-
tion system, making it no longer solely random but driven
by coverage and state.

• Increasing the tested area by inserting new types of NAS
PDUs and NGAP PDUs.

• Increasing the area of Core tested, for example by per-
forming fuzzing on 5GSM packets (NAS packet used in
session handling and forwarded from the AMF to the
SMF) to test other network functions.
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