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Abstract—In the context of 5G and beyond cellular networks,
this paper delves into Active Queue Management (AQM) imple-
mentation in high-latency environments within disaggregated Ra-
dio Access Network (RAN) deployments, addressing bufferbloat
while improving overall end-to-end network performance. While
researchers investigate AQM algorithms to mitigate bufferbloat
in monolithic RAN deployments, they overlook the inherent
capabilities of disaggregation in 5G and beyond cellular networks,
which involves intricate cross-layer communication among dis-
tinct network entities housing different protocol stack layers. Our
study explores the 5G architecture, investigates previous research
on AQM, identifies challenges arising from these algorithms in
disaggregated network configurations, and proposes a compre-
hensive scheme for managing AQM in these configurations. To
facilitate our approach, we leverage RAN Intelligent Controller
(RIC) entities equipped with Artificial Intelligence (AI) and
Machine Learning (ML). We evaluated our novel solution by
implementing a previously proposed AQM algorithm, known
as Dynamic RLC Queue Limit (DRQL), in a disaggregated
RAN deployment within a high-latency network environment and
assessing its effectiveness through the Quality of Service (QoS)
achieved at the NITOS testbed, utilizing OpenAirInterface5G
(OAI5G).

Index Terms—5G, QoS, AQM, AI, ML, LSTM, Disaggregated
RAN, RIC, OpenAirInterface5G.

I. INTRODUCTION

The fifth-generation (5G) technology promises to revolu-

tionize how we communicate and interact with the world

around us. Unlike its predecessors, 5G is not just about

faster speeds but also about providing a platform for a

range of innovative services. To achieve this, 5G has intro-

duced three service categories [1], called Enhanced Mobile

Broadband (eMBB), Ultra-Reliable Low-Latency Communica-

tions (URLLC), and Massive Machine-Type Communications

(mMTC). eMBB supports high-speed data applications and

services, URLLC focuses on applications that demand ultra-

reliable and low-latency communication, and mMTC enables

communication between loads of devices while consuming

little energy and transmitting at low data rates.

Modern networks employ large buffers for efficient re-

source utilization, affecting these services with the bufferbloat

phenomenon [2]. As network buffers become excessively

large, low-latency-sensitive flows face prolonged delays and

unavoidable sojourn times within these buffers, leading to

high latency and consecutively degraded network performance.

High latency reduces the available bandwidth for eMBB,

undermines the low-latency requirements of URLLC, and

causes network congestion and increased network resource

consumption in mMTC. Thus, bufferbloat presents a notewor-

thy issue in modern networks, resulting in delays, congestion,

and suboptimal overall performance. AQM is a technique

used to prevent bufferbloat by actively managing the size

of the buffers in network devices and entities. It aims to

replace traditional passive queue management techniques, such

as drop-tail and drop-head, to manage increasing network

congestion by maintaining buffers at a reasonable size, pre-

venting them from becoming extensively large and causing

congestion or delays. The literature has introduced several

AQM algorithms to manage queues across different protocol

stack layers within the 5G architecture. However, many of

these algorithms primarily target 5G’s monolithic deployment,

often neglecting its disaggregated characteristics. Regarding

disaggregation, the network protocol stack layers, including

their functions and corresponding queues, are split between

separate network entities. As a result, these algorithms may

prove inadequate in disaggregated network deployments.

As the 5G specification does not address AQM in disag-

gregated deployments, it is crucial to integrate it within the

5G framework or consider it for future generations of cellular

networks. Consequently, our research focuses on formulating

a comprehensive approach to manage AQM algorithms within

5G and beyond networks. We leverage AI/ML within each

RIC to tackle challenges in disaggregated network deploy-

ments. To showcase the effectiveness of using AI/ML in

such environments, we evaluate an AQM algorithm where

the information exchanged between the 5G network entities

is forecasted. Subsequently, we evaluate the performance of

this AQM algorithm in monolithic and disaggregated 5G

networks, utilizing either exchanged or forecasted information,

to measure the degree of improvement achieved.

This paper comprises five primary sections. Section I pro-

vides a comprehensive introduction to the bufferbloat phe-

nomenon and AQM. Section II delves into the existing lit-

erature on AQM in 5G networks. In Sections III and IV, the

proposed implementation is described and assessed through an

evaluation framework. We conclude this paper in Section V

while discussing future research directions of AQM beyond

5G networks.

II. RELATED WORK

All AQM algorithms operate on the fundamental principle

of minimizing the number of packets in the queues by discard-

ing packets without data starving the transmission channel.
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Research has shown that maintaining small queue sizes can

significantly reduce sojourn times, resulting in lower latency

[3]. The literature contains a wide range of AQM algorithms

that operate per-queue independently of any communication

between multiple 5G layers that may reside in separate

network entities, thus eliminating the need for coordinated

decision-making. Such examples are Random Early Detection

(RED) [4], Controlled Delay (CoDel) [5], Fair Queuing CoDel

(FQ-CoDel) [6] and Proportional Integral Controller Enhanced

(PIE) [7]. The application of RED in cellular networks, which

probabilistically discards packets at the RLC network stack

layer, has been evaluated in [8]. Meanwhile, [3] presents the

adoption of CoDel in cellular networks, where packets are

dropped based on their sojourn time, reducing the overall

latency. These algorithms function in a queue-agnostic manner,

handling each queue independently without requiring addi-

tional information.

While algorithms like these are adequate, they may not be

optimal, as they do not consider the network as a whole.

Addressing this limitation requires the development of more

sophisticated algorithms that need cross-layer communication

for coordinated decision-making. Examples of such algorithms

include Stochastic Fair Queuing (SFQ) [9], 5G Bandwidth De-

lay Product (5G-BDP), UPF-SDAP Pacer (USP), and DRQL

[10]. Rather than relying on dropping packets, these algorithms

limit transmission buffer sizes to manage network congestion.

In [11], the successful implementation of SFQ in LTE net-

works, also known as Dynamic RLC Queue Management, has

been reported and demonstrated promising results. In SFQ,

communication between the RLC and PDCP layers is neces-

sary. 5G-BDP, on the other hand, necessitates communication

among the MAC, RLC, and SDAP layers. In this regard, the

MAC layer interfaces with the RLC layer, while the SDAP

layer interfaces with the MAC layer. Moreover, USP mandates

communication between the SDAP and RLC layers and the

User Plane Function (UPF) in the 5G Core Network (5G-CN).

UPF communicates with the SDAP layer, and in turn, the

SDAP layer communicates with the RLC layer.

Finally, DRQL relies on the communication between the

SDAP and RLC layers, as it operates by having the SDAP

layer continuously querying the RLC layer for its buffer’s

maximum allowed capacity and occupancy. This information

helps determine whether to forward packets or not. As the

RLC buffers fill up, the MAC layer extracts as much data

as the radio channel can support. When the MAC pulls a

full RLC buffer, it becomes starved, indicating that it can

handle more data and leading to an increase in the RLC

buffer’s maximum allowed capacity. However, if the MAC

layer extracts only a portion of the data from the RLC buffer,

leaving some data in the buffer indicates the necessity to

reduce the maximum allowed capacity to match the radio

channel capacity. While this paper concentrates on the DRQL

algorithm due to its simplicity, the proposed scheme can

apply to any AQM algorithm that necessitates cross-layer

communication between layers located in separate network

entities.

III. AQM IN DISAGGREGATED NETWORKS

A. 5G Architecture and Proposed AQM Solution

Although there is rich literature on AQM in 5G and beyond

networks, it mostly assumes a monolithic 5G-RAN. In the

context of 5G cellular networks, a base station previously

known as Node-B (NB) is now called Next-Generation NB

(gNB), which distinguishes it from the Enhanced NB (eNB)

used in 4G networks. Contrary to the monolithic eNB’s design,

the gNB’s design focuses on virtualization and cloud-native

capabilities. The optimization of gNB’s functionality and the

cloudification of the network is the result of the functional

splits introduced by 3GPP, allowing the gNB to disaggregate

into multiple entities. These entities are the Centralized Unit

(CU) and the Distributed Unit (DU). The most widely adopted

functional split option is the 3GPP 7.2x split [12], according

to which CU supports the higher layers of the protocol

stack encompassing SDAP, PDCP, and RRC, Meanwhile, DU

supports the lower layers, including RLC, MAC and PHY. The

CU comprises the control plane (CU-CP), which includes the

RRC layer, and the user plane (CU-UP), which contains the

SDAP layer, as more thoroughly described in [13]. Figure 1

also illustrates the protocol stack layers in control and user

planes in monolithic and disaggregated RAN deployments,

using a green and a red vertical line, respectively.
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Fig. 1: Control and user planes in monolithic and disaggre-

gated gNB deployment.

The integration of most AQM algorithms into 5G-RAN

requires some minor architectural modifications. Despite the

typical 5G-RAN architecture only allowing for RLC queues

at DU entities, the exploitation of several AQM algorithms

requires the existence of SDAP queues at CU entities, as

Figure 2 depicts. Each CU has a set of SDAP queues mapped

to different QoS flows, each identified by a unique QoS Flow

Identifier (QFI). Each downlink packet is tagged with its ap-

propriate QFI by UPF, according to its Packet Detection Rule

(PDR), and then inserted into the respective SDAP queues at

CU. The SDAP scheduler is in charge of forwarding these

packets to the appropriate Data Radio Bearer (DRB) at the

RLC layer of DU. Furthermore, as we have already mentioned,

some AQM algorithms rely on cross-layer communication,
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which takes place between protocol stack layers situated on

different CU and DU entities. In DRQL, for instance, commu-

nication between SDAP at CU and RLC at DU is necessary.

In the case of a monolithic gNB, CU and DU entities coexist

on a single host machine, facilitating almost instantaneous

communication between them. In contrast, a disaggregated

gNB might separate CU and DU entities onto different network

nodes, unavoidably introducing communication delay between

them. Hence, a disaggregated gNB can significantly impact the

performance of latency-sensitive AQM algorithms.

QFI-0

QFI-M

SDAP Queues

CU

DRB-0

DRB-N

RLC Queues

DU

MAC
Scheduler

SDAP
Scheduler

5GCN

UPFTC

Fig. 2: RLC and SDAP queues in dissagregated gNB.

Our proposed solution for AQM utilizes AI/ML to

address the challenges posed by the communication delay

in disaggregated gNB deployments. We adopt the Software-

Defined Networking (SDN) approach and O-RAN specifica-

tion, according to which 5G-RAN decouples part of the control

plane and moves to the RIC entities that exploit AI/ML. To

avoid the delay introduced by the communication between

CU and DU, the RIC entities can predict the state of DU

for decision-making at CU rather than relying on their direct,

high-latency information exchange. To be more precise, RIC

entities can monitor the behavior and status of the DU, such

as fluctuations in its queues, and make predictions about

its future state by analyzing historical patterns. Then, CU

leverages the forecasts produced to make informed decisions

on packet forwarding. To thoroughly assess the effectiveness of

our approach, we conducted a comprehensive evaluation of the

DRQL AQM algorithm in a disaggregated RAN deployment,

which was previously evaluated exclusively in the context of

a monolithic gNB, as documented in [10].

B. RIC Assisted DRQL

As with most AQM algorithms, DRQL establishes seamless

cross-layer communication between CU and DU. For suc-

cessful downlink traffic transmission from CU to DU, DRQL

necessitates precise measurements of RLC queue status. These

measurements provide information about the actual sizes and

limits of the RLC queues, enabling efficient packet pacing

and resource allocation. The efficient DRQL operation in a

disaggregated gNB requires time-critical delivery of the RLC

queue measurements from DU to the SDAP layer at CU.

Although CU can request this information from DU using its

control interface, due to communication delay, the information

provided refers to a previous RLC queue status, hindering the

real-time decision-making at CU. Denoting the symmetrical

and bi-directional communication delay between CU and DU

as Tc, the information that CU requested at t0 − 2Tc and

received at t0 was generated by DU at t0 −Tc. Consequently,

the SDAP scheduler might make suboptimal decisions re-

garding packet forwarding, relying on outdated information.

Furthermore, since the SDAP requires this information for

every available packet residing in its queues to facilitate

packet forwarding, the delay associated with acquiring this

information contributes to an overall latency increase while

concurrently diminishing throughput.

In our approach, instead of SDAP repeatedly querying

measurements of the RLC queue status whenever there is

a packet to be forwarded, we employ RIC to predict these

measurements, analyzing historical data. Periodically, DU

informs the two separate RIC entities, named Non-Real Time

RIC (Non-RT RIC) and Near-Real Time RIC (Near-RT RIC),

of its current RLC queue measurements. It’s worth noting that

5G network control loops determine the use of different RIC

entities. There are near-real time loops, carried out by CU

entities and the Near-RT RIC, last between 10ms and 1s, while

non-real time loops, executed by the Non-RT RIC, last longer

than 1s1.
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SDAP Queues

CU

KPM (TRD)
KPM

DRB-0

DRB-N
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DU

MAC
Scheduler

SDAP
Scheduler

Control (TRC)

 Report (TRD) 

Near-RT RIC

 Trained Model Non-RT RIC

TC

RIC

RAN

Fig. 3: Communication between RIC entities and the CU and

DU.

The Non-RT RIC trains the AI/ML models using the col-

lected measurements and transfers them into the Near-RT RIC.

Its data collection and, therefore, training processes are per-

formed in a monolithic network deployment, ensuring the

specified, proper DRQL operation and valid monitoring of the

anticipated fluctuations in the RLC queues whenever the MAC

scheduler extracts data, every Transmission Time Interval

(TTI). The Near-RT RIC utilizes the trained AI/ML models

to make informed control decisions through its microservices,

named xApps, based on the current received measurements,

1These two loop types are Loop 2 and 3, respectively, since Loop 1 is the
real-time control loop performed by DUs and RUs and operates on timescales
of 1ms.
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Fig. 4: Timing of Near-RT RIC, CU and DU.

as Figure 3 depicts. To collect the RLC queue measurements,

Near-RT RIC continuously requests E2SM-KPM [14] using

report messages received from the DU. The Near-RT RIC

forecasts the RLC queue fluctuations and notifies the CU of

the anticipated RLC queue status. The CU can use the data

received from the Near-RT RIC to avoid the Tc latency.

C. Crucial Factors for In-Time Forecasting

The communication latencies between the Near-RT RIC

and the CU or the DU, named TRC and TRD respectively,

must be considered for efficient model training and inference.

As the left part of Figure 4 illustrates, the Near-RT RIC

periodically sends report messages to the DU every Tr to

obtain the RLC queue measurements. These report messages

reach the DU with a TRD latency, and when a report request

is received, the DU responds to the Near-RT RIC with the

requested information. Therefore, the latter receives these

responses periodically at intervals of Tr, with each response

also incurring the TRD latency.

As illustrated in the right part of Figure 4, the Near-RT RIC

periodically uses N responses from the DU, collected over a

duration NTr, to predict M values related to the RLC queue

status, representing a duration of MTw. The inference process

duration of the model, named Tm, is factored in when making

predictions, ensuring accurate RLC queue predictions at the

precise moment. The model also considers the previously

mentioned latencies, including TRD and TRC . Therefore, the

Near-RT RIC incorporates the TRD, TRC , and Tm latencies

in its predictions, which delivers to CU after a cumulative

elapsed time of TRD + Tm + TRC from the time reference

at the DU, corresponding to the most recently received RLC

measurement. The CU receives these predictions repeatedly

with a period of Tm.

Finally, since the Non-RT RIC conducts model training on

datasets extracted in real-time timescales, the trained models

can exclusively perceive and forecast the fluctuations in the

RLC queues that transpire within these timeframes. However,

the SDAP scheduler diverges from the received predictions

by not restricting packet transmissions to these timescales but

instead forwards packets as soon as they become available

at the SDAP queues. As a result, for a point in the Tw =
Tm/M interval between two consecutive predictions given by

Near-RT RIC, the RLC queue status must be estimated by CU

on its own. Since the RLC status information comprises nu-

merical values, our proposed implementation considers a linear

variability of the RLC queue status across multiple packets

within the Tw time window and provides predictions with their

corresponding confidence intervals. Given the received values

xn and xn+1 representing the RLC status at time points tn
and tn+1 = tn + Tw, the CU can perform linear interpolation

to estimate the RLC status, x, for forwarding a packet at t
within the tn and tn+1 interval. This estimation is achieved

through the formula x = xn + xn+1−xn

tn+1−tn
(t − tn), where x is

the estimated RLC status at time t ∈ [tn, tn+1].

IV. EVALUATION FRAMEWORK

This section dissects the evaluation parameters, the 5G

configuration, and the measurement methodologies employed

to simulate and assess our proposed solution. It’s worth

highlighting that the simplicity of our experimental setup is a

result of constraints in hardware and computational resources.

Furthermore, it’s essential to emphasize that the research’s

primary focus is not solely on the ML approach but rather

serves as a proof of concept, with the potential for expansion

to accommodate more intricate environments.
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A. 5G Configuration

Our implementation, named OAI5G-DRQL, is an exten-

sion of the original OAI5G [15], a 5G-RAN implementation,

where we introduced several enhancements to the SDAP layer,

including multiple SDAP queues and a Round-Robin (RR)

scheduler for packet forwarding. We have also modified the

RLC layer, enabling it to dynamically adjust the limits of

its queues based on the incoming packet volume. Moreover,

we extended the currently implemented KPM sent from DU

to CU to accommodate additional RLC queue-specific infor-

mation, as expected in E2SM-KPM. The Radio Frequency

(RF) Simulator, provided by OAI5G, simulates the physical

layer of 5G-RAN and allows testing without an RF board,

while NR-UE emulates a commercial off-the-shelf (COTS)

User Equipment (UE) connected to 5G-RAN. A Python3

Non-RT RIC performs data preprocessing and model training,

while FlexRIC [16] is the Near-RT RIC as it connects to

the 5G-RAN nodes via the E2 interface, allowing monitoring

and control via report and control messages. Additionally,

we deploy the 5G-CN using OAI5G Core Network [17].

To accurately configure delays between network entities, we

deploy the CU, DU, UE, Near-RT RIC, and Non-RT RIC on

a shared computational NITOS node, utilizing traffic control

(tc). Finally, a separate node is hosting the 5G-CN.

B. Dataset Creation

In the context of predicting the behavior of RLC queues

in a supervised learning manner, creating a comprehensive

dataset under a range of network conditions is imperative.

The developed dataset should encompass bufferbloat scenarios

and provide insights into the behavior of network entities

when operating in the presence of an AQM algorithm. In our

case, we employ iperf3 [18] and ping [19] to incorporate

bufferbloat into our dataset by creating simultaneous high-

throughput and latency-sensitive downlink traffic with

varying throughput and interval parameters for encap-

sulating different network application requirements. By

adjusting the downlink transmission rate in iperf3, we repli-

cate diverse network applications, including file downloading,

video streaming, and cloud gaming. Additionally, varying

the ping interval allows us to emulate different network

requirements associated with applications like online gaming

and video conferencing.

More specifically, the developed dataset contains the RLC’s

queue limits and actual sizes, sampled at Tr = 1 ms under

DRQL in a monolithic network deployment, characterized

by Tc = 0. Employing combinations of different parame-

ters in iperf3 and ping creates distinct network down-

link conditions. These combinations include UDP traffic at

[1, 10, 40, 100] Mbps alongside ICMP transmission with inter-

vals of [1, 10, 100] ms, ensuring the accuracy and relevance

of the trained models’ predictions across diverse applications.

Therefore, the compiled dataset includes entries representing

the RLC’s queue limit and actual size, along with the respec-

tive timestamps of these observations.

C. ML for Queue Fluctuation Predictions

Our preliminary studies and experiments indicate

that Long Short-Term Memory (LSTM) models outper-

form Seasonal Autoregressive Integrated Moving Average

(SARIMA) and Random Forests for time-series forecasting of

RLC’s queue fluctuations in DRQL. Thus, Non-RT RIC uses

LSTM to develop and train a pair of time series forecasting

models to predict the forthcoming fluctuations of the RLC’s

queue limits and actual sizes, respectively. Additionally, the

Non-RT RIC deploys both models to the Near-RT RIC,

facilitating decision-making through forecasting.

The Non-RT RIC initiates model training by initially pre-

processing the provided dataset. In the preprocessing stage,

the Non-RT RIC scales the data in the [0, 1] range using

MinMaxScaler, provided by scikit-learn [20], and splits the

dataset into 70% training, 20% validation, and 10% test sets.

The feature-label pairs are derived using a rolling window ap-

proach, preserving causality by refraining from data shuffling.

The input features consist of N data points, representing a time

duration of NTr, while the output labels comprise M data

points, equivalent to a duration of MTw = Tm, as previously

noted. Therefore, for a given set of features N , the labels

become M following a time interval of TRD + Tm + TRC

to account for DU to Near-RT RIC, model inference, and

Near-RT RIC to CU delays. Finally, to ensure consistency and

simplicity in our feature-label alignment, we define Tw = Tr.

The Non-RT RIC employs TensorFlow [21] with Keras

[22] to handle the development and training of the

LSTM models, while KerasTuner optimizes training hy-

perparameters for precise forecasting results. We employ

tensorflow.keras.sequential for both models to

stack multiple layers. We specify that the input layer for the

two models is an LSTM layer consisting of N nodes. Keras-

Tuner determines the parameters for the subsequent layers,

including their quantity and configurations. Additionally, we

add a dropout layer, in the range of 0 to 0.5 and a step size of

0.1, that helps prevent overfitting by randomly deactivating

a fraction of neurons during training. The final layer is a

dense layer, which is fully connected and produces predictions

aligned with the dimensions of our target labels, denoted as

M in this context. We utilize the Mean Squared Error (MSE)

as our chosen loss function, effectively penalizing errors and

providing remarkable overall model performance. Finally, the

choice of optimizer algorithm is pivotal in shaping how errors

propagate through the network. The Adam optimizer is an

excellent choice since it strikes an optimal balance between

learning the most relevant and less frequent features.

It’s important to emphasize that accurately forecasting the

precise limits and actual sizes of RLC’s queues is complex,

necessitating supplementary data from all CU and DU entities.

However, in our straightforward proof-of-concept implemen-

tation, minor discrepancies in our predictions only lead to

marginal reductions in throughput or increases in latency

due to minimal packet drops within a single Transmission

Time Interval (TTI). Furthermore, determining the model’s
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inference duration Tm is a formidable task, and therefore, we

calculate it as the mean inference duration obtained from mul-

tiple observations of model inference. Finally, the significance

of available hardware and network infrastructure, influencing

the inference duration and latency between CU and DU,

along with their corresponding Near-RT RIC, respectively,

becomes evident in prediction accuracy since lower inference

duration and reduced latency create a shorter rolling window

for predictions. Given additional computing power, we could

facilitate parallel model inference, thereby reducing the fore-

casting horizon and enhancing result accuracy. Nevertheless,

within this uncomplicated implementation, such enhancement

remains unnecessary.

D. Conducted Experiments

The experiments investigate the impact of coexisting high-

throughput and latency-sensitive traffic on overall network

performance, particularly in achieved throughput and latency,

within a 5G network environment. Downlink UDP traffic is

generated from 5G-CN at a rate of 50 Mbps, while at the

same time, latency-sensitive ICMP packets are also transmitted

downlink to the UE at 100 ms intervals. We measure the

throughput of the UDP traffic and the Round Trip Time

(RTT) of the ICMP traffic, which escalates as the packet’s

sojourn time increases. As illustrated in Figure 5, the UE

establishes a single Packet Data Unit (PDU) session with

distinct QFIs for UDP or ICMP packets, and a single RLC

Acknowledge Mode DRB is responsible for transmitting and

receiving both QoS flows.

SDAP Queues

CU

RLC Queue

DU

iperf3QFI-0
(UDP)

QFI-1
(ICMP) ping

DRB-0
(UDP/ICMP)

 UDP 

 ICMP 

Fig. 5: ICMP and UDP SDAP QFI Queues Mapped to a Single

RLC DRB.

We conduct three sets of experiments in either a disag-

gregated or monolithic 5G-RAN deployment, distinguished

by Tc ≈ 10 ms and Tc ≈ 0, respectively. In the first set,

we use the original OAI5G implementation, where SDAP

forwards packets as soon as they become available to the RLC

layer without querying RLC’s status. It’s important to note

that the original OAI5G implementation utilizes a drop-tail

approach for AQM in the RLC queues. This approach restricts

the queue size and discards incoming packets that surpass this

limit. We adjust the RLC queue limit to mitigate the drop-

tail approach and increase queue occupancy to assess network

performance in scenarios where the queues are congested, and

therefore bufferbloat is more likely to occur. In the second

set of experiments, we use our OAI5G-DRQL without

RIC to eliminate the direct CU-DU communication. Finally,

in the third set of experiments, we evaluate OAI5G-DRQL,

where the Near-RT RIC utilizes the trained LSTM models to

provide the CU with the anticipated RLC status in advance,

and the DU is not involved. The Near-RT RIC is collocated

with the CU, thus the delay between Near-RT RIC and DU is

TRD = Tc ≈ 10 ms, while the delay between Near-RT RIC

and CU is TRC ≈ 0.

When Near-RT RIC is used, the two LSTM models analyze

N = 1000 data points of RLC queue statistics, which

correspond to a duration of 1000Tr = 1000 ms. Each model

forecasts M = 400 values, representing the RLC queues status

during the next 400Tw = 400 ms, from when the CU receives

these forecasts. The Near-RT RIC generates these predictions

accounting for the model inference time Tm ≈ 400 ms and

the reporting latencies TRC ≈ 0 and TRD ≈ 10 ms, using

1000 ms of historical data to predict for the next 400 ms after

a time interval of TRD +Tm +TRC ≈ 410 ms, starting at the

generation of the latest DU KPM used.

Through these experiments, we demonstrate the perfor-

mance contrast between the original OAI5G without AQM

and the proposed OAI5G-DRQL but without RIC, when

confronted with bufferbloat in monolithic and disaggregated

deployment scenarios. We also evaluate our RIC assisted

OAI5G-DRQL, striving to mitigate the issues that surface in

OAI5G-DRQL without RIC within high latency disaggregated

deployments and achieve performance parity with the latter,

implemented in non-latency monolithic deployments.

E. Experiment Results
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Fig. 6: Maximum achieved downlink throughput.

1) Throughput results: Figure 6 shows a graphic represen-

tation of the throughput achieved for each set of experiments.

It is evident from the results that each approach exhibits a

relatively low initial throughput, which gradually stabilizes

and eventually achieves a higher throughput level. The ob-

served low initial throughput is because the RLC queues are

empty at the beginning of the experiments. As the queues fill
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up, the MAC scheduler can pull more data from the RLC

queues, resulting in higher throughput. The inherent capacity

limitations of the wireless channel are a ceiling that stabilizes

the maximum achievable throughput.

In the first set of experiments, the CU in the original

OAI5G maintains a consistent packet forwarding rate. Thus,

throughput remains largely unaffected by the monolithic or

disaggregated deployment, represented by a red circle-pointed

line or a pink triangle-pointed line, respectively, averaging

between the median of these two lines at around 41.2 Mbps.

In the second set of experiments, the OAI5G-DRQL with-

out RIC outperforms the original OAI5G in a monolithic

deployment, succeeding a throughput almost equal to 46
Mbps, illustrated as the median of the blue cross-pointed line.

This increase in throughput can be attributed to the dynamic

fluctuation of the RLC queues in response to the available

radio channel capacity. These fluctuations ensure that the MAC

scheduler processes precisely the amount of data required

within a single TTI , avoiding RLC queue starvation and

overflow. On the other hand, in a disaggregated deployment,

OAI5G-DRQL without RIC features very low throughput at

almost 1 Mbps, represented by the blue x-pointed line. This

sharp throughput decrease arises from the fact that every

packet reaching the CU undergoes the high-latency DRQL

request-response process in SDAP, causing a bottleneck at CU,

leading to RLC queue starvation and underutilization of the

radio channel.

This is the rationale behind the usage of RIC in a disaggre-

gated environment. As we see in the third set of experiments,

OAI5G-DRQL with RIC effectively avoids the latency-heavy

CU-DU communication, resulting in a throughput almost equal

to 37 Mbps, which is the median of the black diamond-pointed

line. This performance is slightly worse than the 41.2 Mbps

throughput of the original OAI5G, but this is a tolerable price

for the significantly higher performance of OAI5G-DRQL

in terms of RTT, as it is presented below. We should also

mention that the RIC is collocated with the DU in the same

NITOS node, resulting in fewer available CPU resources for

the MAC scheduler, which likely reduces the throughput of

our scheme. In an actual non-experimental deployment with

separate CPUs for each network entity, our implementation’s

throughput would be higher.

2) RTT results: The RTT is also examined in the context of

high throughput to assess the effectiveness of our implemen-

tation. In Figure 7, we utilize a logarithmic scale to visualize

the lower and higher RTT values throughout our experiments

within the same graph.

In the original OAI5G of our first set of experiments, SDAP

forwards packets as they become available without employing

an SDAP scheduler, which causes a significant disparity in

the volume of UDP packets compared to ICMP packets in

the RLC queues and causes ICMP packets to lag significantly

behind the UDP packets. As illustrated by the circular and

triangular-pointed lines, this imbalance results in a linear

increase in RTT over time, regardless of whether a commu-

nication delay exists between the CU and DU. Compared to
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Fig. 7: Achieved RTT.
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Fig. 8: Queues occupancy and RLC ICMP and UDP packet

ratio and distribution in (a) disaggregated OAI5G-DRQL with-

out RIC and in (b) every other implementation and deployment

option.

the monolithic deployment, the rate of RTT growth slightly

increases in the disaggregated deployment due to an increase

in the initial acceleration of accumulation of UDP packets in

the RLC queues.

In the second and third experiment sets, we compare

OAI5G-DRQL without RIC in a monolithic and disaggregated

deployment alongside OAI5G-DRQL with RIC in a disaggre-

gated deployment. In both these cases, downlink traffic does

not experience the additional DRQL communication overhead,

avoiding SDAP scheduler impedance and ensuring robust

decision-making on packet forwarding. The corresponding

results are depicted with the cross-pointed and diamond-

pointed lines, resulting in approximately 84 ms and 114 ms

average RTT, respectively. The additional 20 ms of the average
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RTT in the disaggregated environment occurs due to the

additional Tc ≈ 10 ms it takes for an ICMP packet to travel

from CU to DU and back. As counterintuitive as it seems,

OAI5G-DRQL without RIC features decreased RTT, almost

equal to 30 ms, depicted with the x-pointed line. Since each

traffic flow possesses a unique QFI and the SDAP scheduler

operates in a Round-Robin fashion, it systematically forwards

UDP and ICMP traffic interchangeably. However, despite the

higher arrival rate of UDP packets at SDAP, DRQL forwards

them at a notably slower pace, relative to their volume, due

to the additional Tc latency, resulting in fewer UDP packets

ahead of ICMP packets in the RLC queue, and thus lower

RTT for them, as illustrated in Figure 8a. It’s worth noting that

these lower RTT values come at the expense of significantly

reduced throughput. On the other hand, Figure 8b shows the

increased occupancy of UDP packets in front of ICMP packets

in the RLC queue, resulting in slightly increased but justifiable

latency in every other implementation and deployment option.

In summary, the RIC’s assistance in OAI5G-DRQL en-

hances throughput compared to OAI5G-DRQL without RIC,

approaching the monolithic deployment while maintaining

relatively low RTT values. These improvements enable ad-

dressing bufferbloat with improved AQM in disaggregated

high-latency deployments.

V. CONCLUSIONS & FUTURE WORK

This paper introduces and evaluates an innovative scheme

that addresses AQM in disaggregated 5G and beyond cellular

networks. During the evaluation process with the proposed

OAI5G-DRQL, the traffic exhibited a stable and low RTT

when compared to the linearly increasing RTT of the original

OAI5G, at the cost of a minor throughput decrease of approx-

imately 11.7% and 9.3%, in disaggragated and monolithic de-

ployments respectively. Our solution allows for the adaptation

of various AQM algorithms, initially designed for traditional

monolithic deployments, to be utilized in disaggregated net-

works while maintaining stable latency and high throughput

levels. We selected the DRQL AQM algorithm due to its

simplicity; however, for a more comprehensive assessment

of the proposed scheme’s effectiveness in handling AQM in

disaggregated networks, future work should include testing

other algorithms like SFQ, 5G-BDP, and USP. Testing such

algorithms would offer additional insights into the scheme’s

capacity to tackle AQM challenges in disaggregated networks.

Moreover, to further validate the effectiveness of our proposed

scheme, it should also be evaluated under real-life scenarios

using traffic generated by multiple users. To explore more

alternatives, we should also compare the accuracy of other

AI/ML models that use different KPM from different protocol

stack layers based on the AQM algorithm implemented and

the network’s requirements. Finally, we will examine how

straightforward the development of AI/ML models can be in

the previously mentioned scenarios and the scheme’s ability

to make accurate predictions in more complex environments.
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