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Abstract—Low-rate and low-power wireless communications
are still the main drivers for innovative industrial automation
and the Internet of Things (IoT). Physical mobility is one
of the most important challenges for them. Common wireless
technologies and protocols, e.g., WirelessHART and ISA100.11a
Wireless for industrial process plants, ZigBee for building au-
tomation, or 6LoWPAN and 6TiSCH in context of the IoT, are
based on the IEEE 802.15.4 standard. Event-based simulation
is the method of choice for analyzing network protocols and
algorithmic applications of such distributed sensor applications.
Performance measurements and holistic evaluations, however, are
greatly influenced by the underlying hardware resources, physical
layer protocols, and radio channel conditions, which are usually
not considered or highly abstracted in network simulations. In
this paper we present SEmulate, a hybrid system for seamless
(network) simulation and hardware-based emulation for wireless
sensor networks based on the IEEE 802.15.4 protocol standard,
which takes the hardware aspects into account by applying an
Hardware-in-the-Loop (HIL) approach.

Index Terms—Hardware-in-the-loop, Radio-in-the-Loop, sim-
ulation, emulation, wireless sensor networks, cross-layering, co-
simulation, OMNeT++

I. INTRODUCTION

The Internet of Things (IoT) and embedded wireless devices
are very specific in terms of hardware, radio technologies, and
network protocols. From the perspective of (wireless) commu-
nication protocol architectures (and apart from the proprietary
hardware software solutions that still exist), the 802.15.4 spec-
ification of the Institute of Electrical and Electronics Engineers
(IEEE) is the predominant standard. It constitutes the basis
for wireless network access in industrial process plants, wire-
less building automation, and consumer electronics. Precisely,
common and widely used technologies and protocols like
WirelessHART, ISA100.11a, ZigBee, 6LoWPAN, or 6TiSCH
are based on this standard.

Traditional evaluation methods for wireless communication
architectures and protocols are usually based on simulation
techniques. The network simulation approach simplifies the
construction of layered communication protocol architectures
and application models for networked systems. A special
problem represents the simulation of the lower layers, in
particular the Physical Layer (PHY) because it is still difficult
to model all hardware-related aspects and details of the spec-
ification. Models for the PHY and the physical radio channel

conditions usually base on abstracted mathematical functions
of varying complexity. In wireless systems the PHY is a very
complex layer that can be divided into several domains (e.g.,
bits, symbols, samples, analog waveforms). These different
domains are too complex to model in event-based simulation
systems. The radio channel and communication side effects are
typically simplified or completely omitted in such simulations.

Radio Channel Emulation is an approach that connects the
physical radio antenna ports of the devices to an emulator
testbed. The radio channel is then reproduced with the help of
analogous Radio Frequency (RF) hardware or Digital Signal
Processors (DSPs) in a laboratory setup in real-time. In this
context, emulation allows us to manipulate and reproduce
wireless channel conditions like signal fading, interferences,
and noise. Normally, the emulated channel properties can be
adjusted at run time by means of software. Since real devices
and radio hardware are used to transmit and receive RF signals,
the radio channel emulation provides a much more realistic
picture than traditional network simulation can do. The draw-
back is that network protocols and applications are fixed in
custom-developed device firmware which do not provide any
degrees of freedom for experimenting with different protocols,
communication architectures, or parameters.

In this paper we present SEmulate, a system for a seamless
(network) simulation and hardware-based emulation of Wire-
less Sensor Networks (WSNs) based on the IEEE 802.15.4
standard. For this hybrid evaluation system, we apply a
Hardware-in-the-Loop simulation setup, as it is widely de-
ployed in automotive industry. In contrast to the latter, which
mainly tests single devices, we connect several hardware
devices in an emulated environment to support a common
generic and high-level network protocol simulation.

Our hybrid approach leverages on the strengths and benefits
of the individual approaches to enable precise and likewise
flexible tests for WSNs. Thus, we are able to study the effects
of varying radio channel conditions and network topologies on
the whole network, as well as the protocol behavior of single
wireless sensor nodes which are difficult to reproduce in real
testbeds. Furthermore, we provide actual measured values of
the PHY (e.g., link quality, peak channel energy) for further
processing on higher protocol layers to simulate WSN cross-
layer approaches.
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The remainder of the paper is structured as follows. Section
II gives a short overview about related work regarding WSN
and IoT protocol simulation, radio channel emulation, and
HIL simulation approaches. In Section III we introduce our
simulation and emulation concept SEmulate as a solution for
a precise evaluation of wireless systems by means of HIL. In
the subsequent sections we detail the three main components
of the SEmulate system architecture. In Section IV we describe
the simulator implementation. Section V presents the stream
forwarder. Next in Section VI we consider the emulation
hardware. Finally in Section VII, we present some selected
evaluations of parts of the system. We conclude the paper
with some final remarks and give a short outlook on the next
research steps.

II. RELATED WORK

A. WSN and IoT Protocol Simulation
Event-based network protocol simulators are based on soft-

ware building blocks that model the communication protocol
stack. A popular open source Discrete Event Simulation (DES)
simulator is OMNeT++, which is well-known in academia.
OMNeT++ has a great and active community, as well as
several add-on frameworks for protocol simulation like INET.
Simulation models for common communication protocols of
the network layer and especially the upper layers of the
communication protocol stack are widely available [1]. Re-
garding the Data Link Layer (DLL) and in particular the
Physical Layer, the details of available models for wireless
transmission systems and their specific focus vary greatly.
In addition, modern wireless protocol standards like IEEE
802.15.4 typically support a multitude of alternative PHYs
for various application-specific use cases. Modeling all these
PHYs with their complex internals and modulation schemes
represents a huge challenge.

Looking at the physical process modeling domain, there are
precise simulation modules and evaluations for IEEE 802.15.4
PHY [2] in Matlab1 in which different modulation techniques
(e.g., QPSK, BPSK, ASK, GFSK) and the resulting waveform
generation are modeled. In general, only a few communication
protocols are modeled in Matlab. As consequence, Matlab
is not able to provide a holistic evaluation of WSNs and
communication systems.

With the new IEEE 802.15.4 model [3] for OM-
NeT++ / INET, a model has been designed that is very close
to the original standard in terms of the complex and versatile
Medium Access Control (MAC) layer functionality and the
general PHY requirements and services. We modeled the ad-
dressed two layers with all connection interfaces, service prim-
itives, and all Protocol Data Unit (PDU) definitions according
to the general modeling guidelines for IEEE 802.15.4 [4].
Some common modulation techniques though (e.g., QPSK)
are not integrated neither in the 802.15.4 model nor in the
OMNeT++ / INET’s radio models, yet.

1End-to-End IEEE 802.15.4 PHY Simulation in Matlab:
https://www.mathworks.com/help/supportpkg/zigbee/examples/
end-to-end-ieee-802-15-4-phy-simulation.html

Another pretty accurate but functionally limited IEEE
802.15.4 simulation model is presented by Amin & Abdel-
Hamid [5]. Its particular focus relies on the Guaranteed Time
Slot (GTS) mechanism of the MAC layer. It has been built
to demonstrate GTS attacks. The model does not implement
all MAC-specific PDUs and MAC layer specifications (e.g.,
the CSMA-CA protocol), but only GTS-relevant features.
Furthermore, the PHY is not implemented at all in this model
because it is not needed for demonstrating GTS attacks.

Other IEEE 802.15.4 simulation models have already been
referred to in [3] and [5], respectively. To sum up, there is no
all-embracing IEEE 802.15.4 model for WSN simulation up
to now.

B. Radio Channel Emulation
Experience with the evaluation of the radio channel for

a small number of nodes is reported in [6]. The authors
set up a two-hop relay network in which the actual sensor
node hardware is packed into RF-shielded boxes and attached
by means of coax cables and analogous RF hardware to an
emulation environment with a two-channel wireless emulator.
Thus, they can avoid direct transmissions from the source to
the sink. In addition, they added a controllable RF environment
for tests using different fading characteristics among the nodes.
As a result, they could demonstrate, how such a testbed
can obtain and repeat the performance setup for a particular
channel environment. This evaluation method, however, is
laboratory-based and very specific to the target application
scenario.

Beshay et al. [7] demonstrate an Field Programmable Gate
Array (FPGA)-based emulation system that allows more com-
plex wireless experiments. This system emulates the signal
propagation, fading, bidirectional links, and node mobility in
custom topologies. With so-called multi-tap fading generators,
they are able to use user-defined parameters for signal fading
and time delay of multiple channels for repeating experiments
under identical channel conditions. The tests were performed
with two wireless nodes, but the authors proclaim a potential
scalability of the system up to hundreds of nodes. Systems that
emulate the propagation of radio signals based on a FPGA are
usually called hardware channel simulators.

There are a few commercial solutions for channel emulation
available23. However, these systems are very expensive, par-
tially obscure, and limited in the number of networked nodes.
Continuing more precisely, these systems are not suitable
for scalable experiments with interactions (and interferences)
among multiple nodes with a high degree of connectivity.

C. HIL & Co-Simulation
Hardware-in-the-Loop (HIL) simulation approaches are

practically established in automotive or robotic application
domains. In these areas HIL approaches are used to ver-
ify existing hardware module implementations. Normally, a

2RFnest™: https://www.i-a-i.com/product/rfnest/
3PROPSIM Channel Emulation Solutions: https://www.keysight.com/en/

pc-2697334/propsim-channel-emulation-solutions
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simulator provides a virtual environment and is generating
input for the connected hardware Device Under Test (DUT).
In the area of embedded wireless systems, in contrast, HIL
simulation approaches and related methods are rarely applied
(cp. [8]) and, if so, they often focus on a specific application-
domain like cross-platform development [9] and automatic
code generation [10].

In the area of vehicular networking, there is a hybrid system
concept in which a Vehicular Ad Hoc Network (VANET)
simulation is combined with real-time systems in HIL fashion
[11]. In this very specialized hybrid evaluation system concept
for large-scale VANET scenarios, discrete-event simulation
and real-time hardware are integrated to run concurrently.

Staub et al. [12] propose an emulation framework for IEEE
802.11 ad-hoc networks in OMNeT++. With VirtualMesh,
they integrate real nodes with virtual interfaces and fully
virtualized nodes into a single simulated environment. The
network stack of real and virtualized nodes is subdivided
into two different domains. The real nodes correspond to real
device hardware that is set up to generate real traffic on the
application, transport, and Internet layer. The MAC layer and
the physical medium of all nodes as well as the network
topology including physical effects are entirely simulated.

The emulation system of Weingärtner et al. [13] follows a
similar approach for IEEE 802.11. They integrate instances
of custom operating system drivers for wireless devices to
enable the simulator-integration of real-world network soft-
ware. Traffic among simulated nodes and the device driver
is exchanged with so-called gateway nodes at the MAC
layer. Fully simulated nodes, in contrast, provide the entire
protocol stack in the simulation. Furthermore, the simulation
models the MAC and the PHY layers, as well as the wireless
channel and virtual node mobility. They enable real-world
wireless networking software investigation inside a simulation-
controlled environment.

Wehner & Goehringer [14] present a HIL coupling concept
that supports a real-time message exchange with external
hardware interfaces. They provide a gateway functionality
in OMNeT++ that basically enables a message forwarding
between different real-life devices. The primary focus of
their approach is to translate PDUs of different proprietary
communication technologies, e.g., EnOcean and Z-Wave. They
do not consider any simulation of higher protocol layers and
no simulation or emulation of the radio channel.

We presented our first experiences of bridging network
simulation and real device hardware to increase the eval-
uation accuracy of the lower layers of the protocol stack
in [15]. After starting with a simple test setup with OM-
NeT++ / INET’s PCAPRecorder, we continued developing a
holistic IEEE 802.15.4 WSN evaluation approach. Thereafter
in [16], we have introduced a basic methodology for improv-
ing simulation-driven wireless sensor network evaluations by
means of HIL.

The following sections gives a detailed overview of the
further development of our methodology with the SEmulate
emulation system concept.

III. THE SEMULATE SYSTEM

The basic methodology of the SEmulate system follows
the layered protocol architecture in networked communication
systems. It applies a multidisciplinary concept for coupling
network protocol simulation with radio channel emulation us-
ing radio Hardware-in-the-Loop. Figure 1 shows the protocol
stack and the interaction with the communication medium of
an IEEE 802.15.4 based sensor node to which we refer below.

IEEE 802.15.4 PHY
PD-SAP PLME-SAP

RF-SAP

Physical Medium

IEEE 802.15.4 MAC
MCPS-SAP MLME-SAP

PD-SAP PLME-SAP

Next higher layers

network protocol simulation

transceiver 

chip hardware

wired radio emulation

Fig. 1. Node Communication Model Architecture

A. Coupling Concept
The protocol stack splits in two parts. The respective proto-

col layers are assigned to different simulation and emulation
evaluation domains. We have placed the hardware-independent
layers in a pure event-based simulation domain because logical
protocol sequences and algorithmic procedures can be readily
modeled with defined system states and state changes over
time. For the simulation of the higher layers of the protocol
stack, a great variety of protocols and models is available
in OMNeT++ / INET, which we do not explicitly introduce
here. The IEEE 802.15.4 MAC layer is also placed in the
simulation domain. It defines all mechanisms and features for
segmentation and reassembly, queuing, and error detection of
data frames. It also cooperates though with the PHY layer
in the time domain for multiple access or radio resource
management, which is often highly abstracted or completely
absent in pure simulations.

Referring to Figure 1, we share all PHY-relevant accesses
from the MAC layer for data and management service func-
tionality with the execution on the real transceiver chip hard-
ware. The radio chip on the target hardware can send/receive
data frames on/from the radio channel and to transfer accurate
measurements of the actual channel state to the simulated
MAC. Using real hardware on the PHY layer mitigates the
major drawbacks of abstracted physical measurements in typ-
ical WSN simulations.

We use radio channel emulation to overcome the disadvan-
tages of hard-to-predict radio environments which are common
in regular wireless testbeds. By means of the interactions with
the PHY layer, the MAC, and the higher layers, we are able to
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observe protocol behavior under different channel conditions.
Furthermore, we lay the foundation for accurate cross-layer
optimizations of protocols, functions, and applications that
refer to the actual, fine-grained radio state in a repeatable and
controllable physical environment.

The type of the system coupling of [11] introduces a
comparable coupling concept, but is not applicable to our
methodology, as it defines very concrete interfaces in a com-
pletely different context. The approaches of Staub et al. [12]
and Weingärtner et al. [13] demonstrate how to generate traffic
from the upper network layers of real devices for a MAC
and PHY layer simulation. This is exactly in contrast to our
methodology of combining the simulation of higher layer
protocols with accurate PHY and radio emulation.

Our approach of combining simulation and radio channel
emulation with a HIL concept for WSN testing is called Radio-
in-the-Loop (RIL) in the following.

B. System Architecture

The SEmulate architecture is depicted in Figure 2. It con-
sists of two subsystems - the simulation and the emulation
domain - and an intermediate component - the stream for-
warder. In the simulation domain we set up OMNeT++ with

OMNeT++ Simulator Emulation
Hardware

Stream
Forwarder

PCAP

Eth

Fig. 2. SEmulate RIL System Architecture

customized models for IEEE 802.15.4 and interfaces to the
emulation domain. We simulate the MAC layer and the higher
layers of the protocol stack in OMNeT++ (see network proto-
col simulation in Figure 1). The emulation domain is provided
by the SEmulate control and hardware subsystem. The PHY
layer at hardware-level and the wired radio emulation of our
methodology are realized in this domain. The modular stream
forwarder forms the link between the two domains. Thus, we
provide a generic stream processing system that is able to
bridge between different and interchangeable subsystems, the
simulator OMNeT++ and the SEmulate hardware system in
our case.

In order to support the interoperability among the archi-
tecture’s components there is a strong need for a consistent
semantics and data interpretation in all involved subsystems.
Within the computer network community, PcapNG (formerly:
PCAP) is considered as a de facto standard for network
packet readings from a Network Interface Controller (NIC).
We have chosen it as control and data exchange protocol
among all involved subsystems, not least because it supports
the individual extensibility of frame formats with embedded
optional fields and the capability of carrying data frames from

multiple network interfaces within one single data stream.
We break with the regular usage that PcapNG streams only
carry DLL frames. For the internal message processing and
handling, we have implemented a subset of PcapNG, the three
basic block types that are relevant for our use case:

• Section Header Block (SHB) (init PcapNG stream)
• Interface Description Block (IDB) (set device interface)
• Enhanced Packet Block (EPB) (process packet)

IV. RIL SIMULATOR IMPLEMENTATION

In order to make the simulated nodes capable to connect
to real sensor nodes on the emulation hardware platform, we
have added some emulation features and interface modules
to the OMNeT++ IEEE 802.15.4 simulation model [3], as
mentioned in subsection II-A. In the following we give a
detailed overview of our simulation model architecture and its
modules. Figure 3 depicts the emulation and interface modules
as well as the event and information flows from a simulated
node to the host system. It serves as basis for the further
explanation of our RIL simulator implementation.

IEEE802154
ExtInterface

IEEE802154
Serializer

PCAPRT
Scheduler

Stream Socket

PCAP frame

SDU 
frame

Simulation           Socket     Simulation           Socket     

IEEE802154
ExtHost

n+1IEEE802154
MACLayer

IEEE802154
ExtPHY

IEEE802154
ExtHost

nIEEE802154
MACLayer

IEEE802154
ExtPHY SDU msg

2

3

...

4

5

I) S cenario III) SchedulingII) Dispatching

1

PCAPNG
Reader

6

Fig. 3. IEEE 802.15.4 simulation modules in OMNeT++ / INET

A. IEEE 802.15.4 Simulation Modules

I) Scenario: For the emulation mode, we created the
IEEE802154ExtHost which acts as representation of a
sensor node module in the hardware system. This module
is derived from the standard wireless host of our simu-
lation model [3], as mentioned in Section II, but it has
no radio interface and is not able to communicate with a
virtual/simulated wireless channel. Instead of a PHY layer
simulation module with gates to a radio interface, we apply
an IEEE802154ExtPHY module (ref. 1� in Figure 3) that
models the handling and transfer of all management and data
services standardized in IEEE 802.15.4 to the external PHY.
The IEEE802154ExtPHY module can be considered as an
abstract PHY with no IEEE 802.15.4-related functionality
within the simulation.
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II) Dispatching: The communication of the virtual
nodes in the simulation scenario is transferred via the
IEEE802154ExtInterface module (ref. 2� in Figure 3).
This dispatcher module adds an identification of the node and
serializes the internal message representation of the simulation
module to an ordinary byte format (ref. 3� in Figure 3)
which is transferred for processing to the scheduler then. We
have modeled all specific MAC PDUs and created respective
serializer functions to convert these two message representa-
tions into each other. Since there is no specification in the
IEEE standard of how PHY Service Data Units (SDUs) are
represented internally, we have added a simple byte format
(see Figure 4 for an example PHY SDU). In the case of

type: get 
confirm length PHY 

state
attribute 
identifier attribute value

type specific formatheader

Fig. 4. Example IEEE 802.15.4 ’PLME GetConfirm’ frame format

the PHY data service, the encapsulated MAC frame is also
serialized. Hence, the serializer module is responsible for
converting between the two message representations of PHY
SDUs and MAC PDUs. For the encapsulated higher layer
protocols, we also need to call or add additional higher layer
protocol serializers that should be provided by the higher layer
simulation models.

B. Simulator Host Interface and Runtime Environment

The basic concept for connecting an OMNeT++ simulation
with a host system was first published in [17]. We have adapted
and extended this approach to enable the RIL-related node op-
erations over the PcapNG frame format. Our implementation
focuses on stream sockets (ref. 5� in Figure 3) for sending
and receiving packets to and from the outside world.

III) Scheduling: The PACP Real-Time Scheduler (ref. 4�
in Figure 3) is a custom stream socket scheduler that focuses
on the transmission and reception of PcapNG data streams
via a socket connection. Our first experiments are based on a
Transmission Control Protocol (TCP) socket implementation.
Since the simulator and the stream forwarder are running on
the same Linux host system in our case, we also implemented
and primarily use Unix Domain Sockets (UDSs). UDS com-
munication is faster than TCP communication on the local
host system due to the reduced protocol and network driver
overhead.

The socket transmission of SDUs from the dispatcher
simulation module is very straight-forward. We generate the
specific PcapNG header fields and send out the resulting
frame. For the return path of the messages, we have to
identify the PcapNG frames from the socket byte stream in the
receiving process. As PcapNG frames do not necessarily have
to arrive completely with current bytes read, the scheduler
incorporates in the PCAPNGReader (ref. 6� in Figure 3)
which builds the resulting frames from stream segments.

V. STREAM FORWARDER

The Stream Forwarder is the intermediate system between
the simulation and emulation domain. The multi-threaded
application processes PcapNG frames to and from multiple
inputs and outputs and enables the manipulation and display
of the exchanged PcapNG frames.

This approach allows us to connect between the different
evaluation systems. We use in-band signaling for the syn-
chronization based on the PcapNG frame format. PcapNG
can handle multiple interfaces (IDBs) with own link layer
protocols and options. Hence, our application can aggregate or
filter data from different end devices to compose a single data
stream for further processing in the simulation system. The
stream forwarder has a modular structure with the following
connection interfaces on Linux systems:

• Transmission Control Protocol (TCP),
• Unix Domain Socket (UDS),
• Representational State Transfer (REST),
• Serial Port Terminal, and
• Pseudo Terminal (for virtual device hardware).

A great advance of this solution is that the simulation system
does not need any information about the emulation domain
or implement possibly specific interfaces. Figure 5 depicts a
possible setup as a Terminal Forwarder with one simulation
interface and multiple connected hardware devices.

Terminal Forwarder

SHB IDB IDB EPB EPB

pcapng_queue

Aggregate/Filter

to/from 
OMNeT++

to/from 
device 

Socket 
(TCP)

Serial Port 
Terminal

Serial Port 
Terminal

...

to 
Wireshark

Fig. 5. Example of a Forwarder setup with multiple serial devices

The stream forwarder is not allowed to lose any packets that
arrive at the various interfaces at the same time. Therefore,
we have implemented every single interface connection and
the central forwarder logic as separate threads. As a common
data structure for processing the PcapNG data of different
interfaces, we have implemented a thread-safe queue. For
example, in order to consolidate packets from different hard-
ware instances into a single output stream to the simulator,
we manipulate each packet to ensure the correct interface
assignment of each individual PcapNG frame of this hardware.
Vice versa, we have to dispatch all packets from the simulation
domain to the respective hardware devices based on the
interface identifier.

Furthermore, we have implemented an interface to the de
facto standard packet analyzer Wireshark (ref. Figure 5). Thus,
we are able to send the PcapNG frames at run time to the
standard input of the Wireshark application for monitoring
and further processing of the transmitted streams. A custom
packet dissector visualizes the IEEE 802.15.4 PHY SDUs for
analyzing and debugging purposes (ref. Figure 6).
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Fig. 6. IEEE 802.15.4 SDU dissector in Wireshark

VI. EMULATION HARDWARE

As the control and hardware subsystem is very complex and
extensive, we only focus our explanations on details about
the emulation architecture and its features, in particular the
simulation/emulation firmware of the nodes and the hard-
ware/emulation system architecture. We omit details about the
control, processing, and management components here, as they
are not relevant in the context of the emulation procedure.

A. Simulation/Emulation Node Firmware
To enable the inter-operation with real transceiver chip

hardware including the transmission and receiving of real
radio packets we have extended the WSN operating system
Contiki [18]. We have implemented the transmission and
receiving of PcapNG protocol frames via a serial interface
to process the encapsulated PHY SDU messages in the chip
hardware and to eventually access the physical radio channel
on the emulated environment. The pseudo-code in Algo-

Algorithm 1: Nodes Transceiver Process
Precondition : Init radio driver in promiscuous mode

Function receive() . radio driver callback

generate DATA indication PHY SDU
serialize and send indication via PcapNG

return
while (true) do

wait until PcapNG serial interface event occur
deserialize encapsulated request PHY SDU
Function handle Message(&msg)

decode/exec cmd . e.g., driver operation

generate confirmation PHY SDU
serialize and send confirmation via PcapNG

return
end

rithm 1 illustrates the transceiver event processing, derived
from our current Contiki-based implementation. The required
promiscuous mode enables a network interface to pass all
network traffic captured from the medium to the host system.
Hence, we have introduced the event processing of PcapNG
frames and IEEE 802.15.4 PHY SDUs for the operation
with radio driver software in Contiki. The implementation
is currently running on sensor nodes with ATmega128RFA1
radios4, but the simulation/emulation firmware can also used

4ATmega128RFA1: https://www.microchip.com/ATmega128RFA1

for other hardware platforms provided in Contiki with only
tiny adjustments regarding the serial interface configuration
and promiscuous mode activation on the device.

B. Hardware System Architecture
Based on the architectural design, the hardware subsystem

is able to emulate up to 1000 sensor nodes. The basic hardware
component is an Emulation Panel that can be equipped with
up to eight wireless sensor nodes on intended slots. The
interconnection of panels and the configuration assembly of
the nodes are variable, but a panel can also operate seperately.
Multiple panels in the SEmulate emulation hardware system
are (apart from the power supply) connected via a control and
a RF network.

Control Network: The hardware control network is based
on a switched Ethernet network which connects all emulation
panels of the system. All commands, both the RF settings for
the wired emulation as well as the panel, and node control are
enabled via a controller on each panel. They are dispatched and
processed at the central control server which communicates
with each panel via a separate TCP connection. For example,
the SendTransparentData command primitive is used to
transmit the PHY SDUs to the nodes on the panels. In turn, the
command cmdSetAttenuation enables the adjustment of
the signal attenuation within the RF network which will be
explained below.

RF Network: The RF network is based on the combination
of high-frequency components and wireless sensor nodes on
the panels via coaxial cables. Figure 7 represents one single
emulation panel as undirected graph. Each additional panel
connects to the output of the predecessor panel via its own
input (see P3 and P0 in Figure 7). The weights of the edges
represent the signal attenuation on each link. The RF network

14

0,211 12
22

3

27

0

11,8 11,8 11,8 11,8

11,8 11,8 11,8 11,8

K0 K1 K2 K3

P1

K4 K5 K6 K7

P0 P3 P4P2

Panel input output

sensor 
nodes

attenuator

Fig. 7. RF network representation of one emulation panel (P4 corresponds
to the input from another panel). With the attenuator module, we can adjust
the signal attenuation between adjacent panels.

has both fixed (non-adjustable) and variable (adjustable) signal
attenuations in the signal path of the coaxial environment.
Hence, we can adjust the signal attenuation at each output
path of a panel and thus between groups of nodes.

In order to reproduce a (virtual) WSN with nodes at the
coordinates in a concrete radio topology on the emulation
hardware, we use existing models of signal propagation and
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fading [19]. For the resulting signal attenuation values between
pairs of nodes, the appropriate panels and sensor node slots on
the emulation hardware as well as the values for the respective
signal attenuators must be assigned. We already presented
initial solutions and a basic algorithm for this problem by
means of linear optimization in [16].

VII. EVALUATION

In order to be used as an evaluation system the SEmulate
system must meet the requirements of implementation accu-
racy. Furthermore, it has to ensure requirements for different
kinds of system performance. As the implementation of SEmu-
late is still ongoing, we present first results of accuracy aspects
and some evaluations of submodules in this chapter.

A. RIL Scenario
For a small-scale scenario, we performed tests covering the

entire test track from simulation via the forwarder to (in this
case virtual) device hardware. In our simulation we defined a
small test setup of two IEEE 802.15.4 nodes competing to start
a Wireless Personal Area Network (WPAN). The forwarder
application was configured in a way so that it could connect
to OMNeT++ via UDS and to the virtual device hardware via
pseudo terminals. In this purely functional evaluation we were
able to verify the correct protocol message sequences of the
IEEE 802.15.4 protocol between the simulated MAC and em-
ulated PHY layer and thus the accuracy of the procedure (see
Figure 8 and Figure 84–Data transmission message sequence
chart in [20]).

Fig. 8. IEEE 802.15.4 data transmission message sequence in OMNeT++

B. Stream Forwarder
In terms of throughput, the forwarder has to ensure a

transparent reception, processing, and transmission of PcapNG
frames. We carried out some performance measurements by a
stress test of the forwarder application. For example, in one
test setup, the forwarder connected to two test applications via
a TCP interface each. For the transmission of maximum sized
IEEE 802.15.4 data frames between the two test applications
(10k data frames with 127 bytes each – overall data amount of
1.52 MB), we measured a TCP throughput of 91.5 Mbit/s from
the sender test application to the forwarder and 91.4 Mbit/s
from the sender to the receiver test application with 0%
packet loss.5 Since these measurements show a 0.11% TCP
throughput decrease caused by the forwarder, we assume that
our threaded interfaces and packet handling routines do not
have a significant influence on the overall throughput.

5We performed our measurements on an Ubuntu Linux (64 bit) virtual
machine with 7 vCPUs (Intel Xeon X3470 Quad Core @ 2.93 GHz).

C. Emulation Hardware
In order to assess the attenuation aspect of the emulation

hardware we performed some Received Signal Strength In-
dication (RSSI) measurements to determine the actual signal
attenuation values for the different step attenuator values, as
depicted in Figure 7. In each case, the signal attenuation was
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Fig. 9. Attenuation measurements

determined for pairs of nodes on adjacent panels. As we can
see in Figure 9, the majority of the measured values are within
a tolerance range of 2-3 dBm. Thus, we are able to emulate
large-scale fading in WSNs.

VIII. CONCLUSIONS

With SEmulate, we have introduced a new tool chain for
pure protocol simulation with an emulation concept for the
PHY layer and the physical radio channel. Our approach
allows the protocol simulation to execute all procedures and
features defined in the IEEE 802.15.4 standard on real target
hardware and provide valid RF measurements for the simu-
lated MAC layer to improve higher layer protocol behavior
and cross-layer studies under more realistic and reproducible
radio conditions.

Nevertheless, SEmulate still requires further evaluations
regarding performance aspects in large-scale scenarios and the
feature set of the channel emulation domain. As next step,
we will roll out large-scale emulation scenarios and plan to
improve and extend the implementation of individual system
components to support simulations of more complex WSN
scenarios. After these extensive tests it will also be possible
to provide more accurate details on the runtime and delays in
the system. We will improve and conclude the automated exact
emulation of the network radio topology and enable support
for node mobility. Furthermore, we plan to add a controllable
interference and noise injection into the signal path of the
emulation hardware.

As chip implementations for IEEE 802.15.4 only provide
a specific MAC/PHY configuration in practice, we are also
working on the integration of flexible and reconfigurable
Software Defined Radio (SDR) modules as IEEE 802.15.4 RIL
gateways. This extension opens up interesting opportunities for
rapid prototyping of cross-layer communication approaches
regarding the PHY in addition.

Finally we will extend our simulation model to support the
latest features of the IEEE 802.15.4 specification. In addition,
the model must be ported to the current simulation framework
version.
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