
Sibilla: A Tool for Reasoning about
Collective Systems

Nicola Del Giudice , Lorenzo Matteucci , Michela Quadrini ,
Aniqa Rehman , and Michele Loreti(B)

University of Camerino, Camerino, Italy
{nicola.delgiudice,lorenzo.matteucci,

michela.quadrini,aniqa.rehman,

michele.loreti}@unicam.it

Abstract. Sibilla is a Java framework designed to support the analysis
of Collective Adaptive Systems. These are systems composed by a large
set of interactive agents that cooperate and compete to reach local and
global goals. Sibilla is thought of container where different tools support-
ing specification and analysis of concurrent and distributed large scaled
systems can be integrated. In this paper, a brief overview of Sibilla fea-
tures is provided together with a simple example showing some of the
tool’s practical capabilities.

Keywords: Collective systems · Specification languages · Property
specification and verification

1 Sibilla in a Nutshell

Sibilla1 is a modular tool, developed in Java, to support quantitative analysis of
Collective Adaptive Systems (CAS). This tool is thought of as a container where
new components can be easily added to integrate new analysis techniques and
specification languages. In this section, we first provide an overview of Sibilla
back end. Then the specification languages that are currently available in our
tool are presented. Finally, the user interfaces provided by Sibilla are described.

1.1 Sibilla Back End

Sibilla back end consists of four components: Models, Simulation, Tools and Run-
time.

1 The tool is available on GitHub at https://github.com/quasylab/sibilla and on Soft-
ware Heritage with id swh:1:dir:fe015fb0a6fb6f5ee7cd6c58d446ab14168f39d4.

This research has been partially supported by Italian PRIN project “IT-MaTTerS” n,
2017FTXR7S, and by POR MARCHE FESR 2014–2020, project “MIRACLE”, CUP
B28I19000330007.

c© IFIP International Federation for Information Processing 2022
M. H. ter Beek and M. Sirjani (Eds.): COORDINATION 2022, LNCS 13271, pp. 92–98, 2022.
https://doi.org/10.1007/978-3-031-08143-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08143-9_6&domain=pdf
http://orcid.org/0000-0002-5194-0823
http://orcid.org/0000-0001-6161-5584
http://orcid.org/0000-0003-0539-0290
http://orcid.org/0000-0002-6028-9016
http://orcid.org/0000-0003-3061-863X
https://github.com/quasylab/sibilla
https://archive.softwareheritage.org/browse/directory/fe015fb0a6fb6f5ee7cd6c58d446ab14168f39d4/?origin_url=https://github.com/quasylab/sibilla&revision=93e9df6da8bb54b97c23fc5c90eea3ae2afd5678&snapshot=57f30d2e52f5d9c7a4a7200d65dff52fea40259b
https://doi.org/10.1007/978-3-031-08143-9_6

Sibilla: A Tool for Reasoning About Collective Systems 93

Models. This component provides interfaces and classes that can be used to
describe a Stochastic Process [14]. This is a collection of random variables
{X(t)|t ∈ T ⊆ R≥0}. These random variables take values on a measurable set
S representing the state space of the stochastic process. Random variable X(t)
describes the state of the process at time unit t ∈ T . Different types of stochas-
tic processes can be considered depending on the index set T (discrete time vs
continuous time) or the properties of the considered process (such as Marko-
vian Processes). The classes provided in the Models permits describing these
processes together with some utility classes for their analysis (such as transient
analysis of Markov Chains). These classes provide the base on top of which
different specification languages can be implemented (see Sect. 1.2).

Simulation. When one considers a system composed of a large number of entities,
exact numerical analysis of stochastic processes is often hard or even impossi-
ble to be used. This is mainly due to the problem of state space explosion. For
this reason, Sibilla provides a set of classes that permits supporting simulation
of stochastic processes. First of all, these classes permit sampling a path from
a model. This represents a possible computation/behaviour that can be expe-
rienced in the model. Classes to extract measures from a path and to collect
statistical information are also provided. The classes for simulation samplings
and statistical analyses rely on the The Apache Commons Mathematics2.

Sometimes, even simulation can require a remarkable computational effort.
For this reason, in Sibilla a framework has been integrated that permits sup-
porting simulation to follow a multi-threading approach. The framework, based
on Java Concurrency API, supports the execution of simulation tasks according
to different scheduling policies that can be tailored to fit with the parallelism
of the hosting architecture. Currently, a framework that permits dispatching
simulation tasks over multiple hosts is under development.

Tools. This component provides a set of tools that can be used to analyse the
data collected from Sibilla simulator. Currently the following tools are available:
computation of first-passage-time and reachability analysis.

The first-passage-time is used to estimate the average amount of time needed
by a model to reach a given condition. The latter consists of a predicate on
the states of the considered process. Reachability analysis permits estimating
the probability that a given set of states (identified by a condition) can be
reached within a given amount of time by passing through states satisfying a
given predicate. We will see in Sect. 1.2 how the specific syntax and format of
used conditions depend on the used specification language.

The above mentioned tools strongly rely on statistical inference techniques.
Note that, thanks to the Sibilla modularity, other tools can be easily integrated.

Runtime. Sibilla runtime provides the classes that permit access to all the fea-
tures provided by our tool. The runtime in fact plays the role of the controller in

2 https://commons.apache.org/proper/commons-math/.

https://commons.apache.org/proper/commons-math/

94 N. D. Giudice et al.

the standard Model-View-Controller pattern [13] and it is used by the Sibilla user
interfaces (see Sect. 1.3). Sibilla runtime is structured in modules. Each module is
associated with a specification language. When a module is selected, the runtime
environment will start working with the corresponding language.

1.2 Sibilla Specification languages

In this section, a brief overview of the specification languages currently included
in Sibilla is provided. These languages permit describing stochastic processes with
different features and using different primitives. As we have already remarked,
one of the main features of Sibilla is that the tool is not focused on a specific
language, but it can be extended to consider many formalism. This feature is
useful whenever one is interested in the study languages that are equipped with
constructs and primitives thought to model specific application domains (see for
instance [2,11,12]).

Currently, in Sibilla three specification languages are fully integrated: Lan-
guage of Interactive Objects, Language of Population Model, and Simple Lan-
guage for Agent Modeling.

Language of Interactive Objects (LIO). This is a formalism introduced in [8]
where a system consists of a population of N identical interacting objects. At
any step of computation, each object can be in any of its finitely many states.
Objects evolve following a clock-synchronous computation. Each member of the
population must either execute one of the transitions that are enabled in its
current state (by executing an action), or remain in such a state. This choice
is performed according to a probability distribution that depends on the whole
system state. The stochastic process associated with a LIO specification is a Dis-
crete Time Markov Chain (DTMC) whose states consists of a vector of counting
variables associating each state with the number of agents in this state. LIO
models have been used to describe a number of case studies in different applica-
tion domains [6–8].

Language of Population Models (LPM). A Population Model [4] consists of a set
of agents belonging to given set of species. A system evolves by means of reaction
rules describing how the number of elements of the different species changes.
Rules are applied with a rate, which is a positive real value, that depends on the
number of agents in the different species. The stochastic process associated with
a LPM specification is a Continuous Time Markov Chain. Those models have
been widely used to model different kinds of systems in different application
domains ranging from ecology and epidemics to cyber-physical systems.

Simple Language for Agent Modelling (SLAM). This is an agent-oriented spec-
ification language. A system consists of a set of agents that interact in order
to reach local and global goals. Each agent is equipped with a set of attributes.
Some of these attributes are under the control of the agent and are updated
during its evolution, while others depend on the environment where the agent

Sibilla: A Tool for Reasoning About Collective Systems 95

operates, and their values are updated as the time is passing. The latter are used
in particular to model the fact that an agent is able to sense its environment. In
SLAM, agents interact via explicit message passing via attribute based commu-
nication primitives [1,9,10]: an agent sends messages to other agents satisfying
a given predicate. The stochastic process associated with a SLAM specification
is a Timed Process where actions and activities may have a duration sampled
by generic distributions.

1.3 Sibilla front ends

To simplify the integration of Sibilla has several interpreters to allow smooth
interaction between user and tool. For each specification language there is its
own interpreter that allows simple creation of models so that the user can create
his own model without necessarily knowing Java technicality. Then the user can
easily perform analyses and interact with its own model in different ways, for
example, by using the shell provided. The user can also use Sibilla by coding in
Python, thus allowing the use of web-based interactive development environment
like Google Colaboratory or Jupyter Notebook (see Subsect. 1.3). The current
version of the tool allows to execute simulations in two ways: either via command
line tool (denominated Sibilla shell), via Python scripts. Moreover, a Docker
image is available to simplify deployment of the tool.

Sibilla Shell. This is a command line interpreter that can be used to interact
with the Sibilla core modules and permits performing all the analysis outlined
in the previous section. This front end can be either used interactively3 or in a
batch mode to execute saved scripts.

Python Front End. Python is one of the easiest to learn and versatile language,
and it has been established as one of the most used languages, especially in
the context of data analysis. For these reasons, Sibilla also provides a Python
front end that permits interacting with Sibilla back end from Python programs.
This front end relies on the Pyjnius library [15] that simplifies the interaction
between Python and Java classes. The use of this front end permits using many
of the available Python libraries likes, for instance, Matplotlib4 that simplifies
data visualisation. Moreover, Sibilla can be used within a web-based IDE such
as Jupyter notebook/lab [5] and in Google Colaboratory [3]. This significantly
increases the portability of the tool which can then be used without the need to
install anything on the local machine.

Docker. Sibilla can be built by using Gradle. However, this needs some familiarity
with the Java ecosystem. To simplify the deployment of Sibilla, a docker image is
provided for creating containers that already have all the needed dependencies,
and that can be easily executed in the Docker framework.

3 The full list of shell commands is available at the Sibilla web site.
4 https://matplotlib.org.

https://matplotlib.org

96 N. D. Giudice et al.

2 Sibilla at Work

In this section, we use a simple example to show how Sibilla can be used to
support analysis of a simple scenario5. We consider a classical epidemic example
based on the Language of Population Model : the SEIR Model. The goal of the
model is to represent the spread of an infection disease. The model, whose spec-
ification is reported in Listing 1.1, consists of four species (or compartments): S,
an individual that is susceptible; E, an individual that has been exposed to the
virus but is not yet infected; I, an individual that is infected; R, an individual
that is immune.

param lambdaMeet = 10 . 0 ; /∗ Meeting ra t e ∗/
param prob In f e c t i on = 1 . 0 0 ; /∗ Probab i l i t y o f I n f e c t i o n ∗/
param incubat ionRate = 2 . 0 0 ; /∗ r a t e o f I n f e c t i o n ∗/
param lambdaRecovery = 0 . 5 ; /∗ r a t e o f recovery ∗/
param s c a l e = 1 . 0 ;

const s t a r tS = 99 ; /∗ I n i t i a l number o f S agents ∗/
const s t a r t I = 1 ; /∗ I n i t i a l number o f I agents ∗/

s p e c i e s S ;
s p e c i e s E;
s p e c i e s I ;
s p e c i e s R;

r u l e exposure {
S | I −[#S∗%I ∗ lambdaMeet∗ prob In f e c t i on]−> E | I

}
r u l e i n f e c t i o n {

E −[#E∗ l ambdaInfect ion]−> I
}
r u l e recovered {

I −[#I ∗ lambdaRecovery]−> R
}

system i n i t = S<s t a r tS ∗ s ca l e >| I<s t a r t I ∗ s ca l e >;

p r ed i c a t e a l lRecovered = (#S+#E+#I==0) ;

Listing 1.1. SEIR model in Sibilla

We can observe that a specification can contain a set of parameters. These
are real values that can be changed after the model is loaded. The parameters
considered in our model are the agent meeting rate (lambdaMeet), the probabil-
ity of infection (probInfection), the rate of incubation (incubationRate) and the
recovery rate (recoverRate).

A set of rules are used to describe system dynamics. The simper form of the
rule is the following:

rule <rulename> {
<species>(|<species>)* -[<exp>]-> <species>(|<species>)*

}

5 Detailed Sibilla documentation is available at https://github.com/quasylab/sibilla/
wiki.

https://github.com/quasylab/sibilla/wiki
https://github.com/quasylab/sibilla/wiki

Sibilla: A Tool for Reasoning About Collective Systems 97

Fig. 1. Sibilla running at Google colaboratory

where <rulename > is the name of the rule, <species > is a species name and
<exp> is the expression used to compute the rule rates. Expressions are build by
using standard mathematical operators and the two special operators %X and #X:
the former returns the fraction of agents of species X while the latter amounts
to the number of agents of species X. In our SEIR scenario, such operators are
used in the rule exposure:

rule exposure {
S|I -[#S*%I*lambdaMeet*probInfection]-> E|I

}

The initial configurations of a system are described in the form

system <name> = <species>(|<species>)*;

When multiple copies of the same species X are in the system, the form X<n>
can be used, where n is a numerical value.

In Fig. 1 the analysis of the SEIR model with Sibilla is performed in Google
Colaboratory. We can observe how results of the simulation are represented as
a plot. Moreover, we can also compute the average time needed to eradicate the
infection. This can be obtained in terms of the first passage time of the condition
#E+#I=0, namely when then number agents that are either exposed or infected is
0. At the same time, reachability can be used to compute the probability that in
a given time unit t 90% of the agents recovered while never happens that more
than 10% of agents are infected.

3 Concluding Remarks

In this paper, a brief overview of the framework Sibilla has been provided. Sibilla
is a Java framework designed to support the analysis of Collective Adaptive

98 N. D. Giudice et al.

Systems. It is thought of as a container where different tools supporting speci-
fication and analysis of concurrent and distributed large scaled systems can be
integrated. A simple example has been used to show basic features of Sibilla.

As future work, we will plan to integrate in Sibilla a Graphical User Interface.
The goal is to improve the usability of our tool for users that are not familiar with
formal methods. Moreover, we plan to extend the analysis tools available in Sibilla
in order to consider model checking tools in the spirit of [6]. Finally, we plan to
integrate an optimization module that, by relying on machine learning-assisted
inference tools, permits identifying the best parameters that maximize/minimize
given goal functions.

References

1. Alrahman, Y.A., Nicola, R.D., Loreti, M.: Programming interactions in collective
adaptive systems by relying on attribute-based communication. Sci. Comput. Pro-
gram. 192, 102428 (2020)

2. Bettini, L., et al.: The Klaim project: theory and practice. In: Priami, C. (ed.) GC
2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-40042-4 4

3. Bisong, E.: Google Colaboratory, pp. 59–64. Apress, Berkeley, CA (2019)
4. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of

collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)
5. Kluyver, T., et al.: Jupyter notebooks - a publishing format for reproducible com-

putational workflows. In: Loizides, F., Schmidt, B. (eds.), Positioning and Power in
Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press (2016)

6. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approx-
imated model-checking for self-organising coordination. Sci. Comput. Program.
110, 23–50 (2015)

7. Latella, D., Loreti, M., Massink, M.: FlyFast: a mean field model checker. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 303–309. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 18

8. Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: Fourth international conference on the
quantitative evaluation of systems (QEST 2007), pp. 3–18. IEEE (2007)

9. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 4

10. Nicola, R.D., Duong, T., Loreti, M.: Provably correct implementation of the ABC
calculus. Sci. Comput. Program. 202, 102567 (2021)

11. Nicola, R.D., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a markovian exten-
sion of a calculus for services. Electron. Notes Theoret. Comput. Sci. 229(4), 11–26
(2009)

12. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming. ACM Trans. Autonom. Adapt. Syst. 9(2), 1–29 (2014)

13. Reenskaug, T., Wold, P., Lehne, O.A., et al.: Working with objects: the OOram
software engineering method, chapter 9.3.2, pp. 333–338. Citeseer (1996)

14. Ross, S.M., et al.: Stochastic processes, vol. 2. Wiley, New York (1996)
15. K. Team and other contributors. pyjnius. https://github.com/kivy/pyjnius

https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1007/978-3-662-54580-5_18
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://github.com/kivy/pyjnius

	Sibilla: A Tool for Reasoning about Collective Systems
	1 Sibilla in a Nutshell
	1.1 Sibilla Back End
	1.2 Sibilla Specification languages
	1.3 Sibilla front ends

	2 Sibilla at Work
	3 Concluding Remarks
	References

