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Abstract. We formally define and implement a translation from domain
models in the LEMMA modelling framework to microservice APIs in the
Jolie programming language. Our tool enables a software development
process whereby microservice architectures can first be designed with the
leading method of Domain-Driven Design (DDD), and then correspond-
ing data types and service interfaces (APIs) in Jolie are automatically
generated. Developers can extend and use these APIs as guides in order
to produce compliant implementations. Our tool thus contributes to
enhancing productivity and improving the design adherence of microser-
vices.

1 Introduction

Microservice Architecture (MSA) is one of the current leading patterns in dis-
tributed software architectures [22]. While widely adopted, MSA comes with spe-
cific challenges regarding architecture design, development, and operation [5,29].
To cope with this complexity, researchers in software engineering and program-
ming languages started proposing linguistic approaches to MSA: language frame-
works that ease the design and development of MSAs with high-level constructs
that make microservice concerns in the two different stages syntactically mani-
fest.

Concerning development, Ballerina and Jolie are examples of programming
languages [21,23] with new linguistic abstractions for effectively programming
the configuration and coordination of microservices. Concerning design, Model-
Driven Engineering (MDE) [3] has gained relevance as a method for the spec-
ification of service architectures [1], crystallised in MDE-for-MSA modelling
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languages such as MicroBuilder, MDSL, LEMMA, and JHipster [15,16,26,32].
Jolie’s abstractions have been found to offer a productivity boost in indus-
try [13]. LEMMA provides linguistic support for the application of concepts
from Domain-Driven Design [6,26], and has been validated in real-world use
cases [27,30].

Recently, it has been observed that the metamodels of LEMMA’s modelling
languages and the Jolie programming language have enough contact points to
consider their integration [11]. In the long term, such an integration could bring
(quoting from [11])

“an ecosystem that coherently combines MDE and programming abstrac-
tions to offer a tower of abstractions [19] that supports a step-by-step refine-
ment process from the abstract specification of a microservice architecture
to its implementation”.

The aim is to provide a toolchain that enables people to apply MDE to the
design of microservices in LEMMA, and then seamlessly switch to a program-
ming language with dedicated support for microservices like Jolie in order to
develop an implementation of the design. To this end, three important parts of
the metamodels of LEMMA and Jolie need to be covered and integrated [11]:

1. Application Programming Interfaces (API), describing what functionalities
(and their data types) a microservice offers to its clients;

2. Access Points, capturing where and how clients can interact with the API;
3. Behaviours, defining the internal business logic of a microservice.

Since the API is the layer the other two build upon, in this paper we focus on con-
cretising the relationship between LEMMA and Jolie API layers. To this end, we
contribute a formal encoding between a meaningful subset of LEMMA’s Domain
Data Modelling Language (DDML) and Jolie types and interfaces. This encod-
ing enables systematic translation of LEMMA domain models, which, follow-
ing Domain-Driven Design (DDD) [6] principles, capture domain-specific types
including operation signatures, to Jolie APIs. Our second contribution, LEMMA-
2Jolie implements our encoding as a code generator that allows automatic trans-
lation of LEMMA domain models to Jolie APIs. Specifically, LEMMA2Jolie not
only shows the encoding’s feasibility and practicability, but also constitutes a
crucial contribution towards improving the adoption of DDD in microservice
design, which in practice is often perceived complex given the lack of formal
guidelines on how to map DDD domain models to microservice code [2]. We
have evaluated LEMMA2Jolie in the context of a nontrivial microservice archi-
tecture that had previously been used to validate LEMMA [27], which covers
all the aspects of the formal encoding. The generated Jolie code is as expected,
in the sense that it is faithful to the formal encoding and the model defined in
LEMMA. We use snippets of this code to exemplify our method throughout the
paper.

In general, LEMMA2Jolie is a concrete proof that the work started in [11]
constitutes a bridge between the two communities of programming language
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CTX ::= context id {CT}
CT ::= STR | COL | ENM

STR ::= structure id [〈STRF〉] {FLD OPS}
STRF ::= aggregate | domainEvent | entity | factory

| service | repository | specification | valueObject
FLD ::= id id [〈FLDF〉] | S id [〈FLDF〉]
FLDF ::= identifier | part
OPS ::= procedure id [〈OPSF〉] (FLD) | function (id | S) id [〈OPSF〉] (FLD)
OPSF ::= closure | identifier | sideEffectFree | validator
COL ::= collection id {(S | id)}
ENM ::= enum id {id}
S ::= int | string | unspecified | . . .

Fig. 1. Simplified grammar of LEMMA’s DDML. Greyed out features are out of the
scope of this paper and subject to future work.

and MDE research, converging on linguistic approaches to MSA—for instance,
one can take our insights and apply them to integrate other MSA modelling and
programming languages.

The remainder of the paper is organised as follows. Section 2 introduces and
exemplifies the encoding between LEMMA’s DDML and Jolie APIs. Section
3 describes the architecture and implementation of LEMMA2Jolie. Section 4
presents future work and concludes the paper.

2 Encoding LEMMA Domain Modelling Concepts in
Jolie

This section describes and exemplifies domain modelling with LEMMA (cf.
Sect. 2.1), and the development of types and interfaces with Jolie (cf. Sect. 2.2).
Next, it reports a formal encoding from LEMMA domain models to Jolie APIs
and illustrates its application (cf. Sects. 2.3 and 2.4).

2.1 LEMMA Domain Modelling Concepts

LEMMA’s DDML supports domain experts and service developers in the con-
struction of models that capture domain-specific types of microservices. Figure 1
shows the core rules of the DDML grammar1.

The DDML follows DDD to capture domain concepts. DDD’s Bounded Con-
text pattern [6] is crucial in MSA design as it makes the boundaries of coherent
domain concepts explicit, thereby defining their scope and applicability [22]. A

1 The complete grammar can be found at https://github.com/SeelabFhdo/lemma/
blob/main/de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext.

https://github.com/SeelabFhdo/lemma/blob/main/de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
https://github.com/SeelabFhdo/lemma/blob/main/de.fhdo.lemma.data.datadsl/src/de/fhdo/lemma/data/DataDsl.xtext
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LEMMA domain model defines named bounded contexts (rule CTX in Fig. 1).
A context may specify domain concepts in the form of complex types (CT ),
which are either structures (STR), collections (COL), or enumerations (ENM).

A structure gathers a set of data fields (FLD). The type of a data field is
either a complex type from the same bounded context (id) or a built-in primi-
tive type, e.g., int or string (S). The unspecified keyword enables continuous
domain exploration according to DDD [6]. That is, it supports the construction of
underspecified models and their subsequent refinement as one gains new domain
knowledge [25]. Next to fields, structures can comprise operation signatures
(OPS) to reify domain-specific behaviour. An operation is either a procedure
without a return type, or a function with a complex or primitive return type.

LEMMA’s DDML supports the assignment of DDD patterns, called features,
to structured domain concepts and their components. For instance, the entity
feature (rule STRF in Fig. 1) expresses that a structure comprises a notion
of domain-specific identity. The identifier feature then marks the data fields
(FLDF ) or operations (OPSF ) of an entity which determine its identity. For
compactness, we defer the detailed presentation of the considered DDD features
to Sect. 2.4, when discussing their relationship with our encoding to Jolie.

The DDML also enables the modelling of collections (rule COL in Fig. 1),
which represent sequences of primitives (S) or complex (id) values, as well as
enumerations (ENM), which gather sets of predefined literals.

The following listing shows an example of a LEMMA domain model con-
structed with the grammar of the DDML [27].

The domain model defines the bounded context BookingManagement and
its structured domain concept ParkingSpaceBooking. It is a DDD entity whose
bookingID field holds the identifier of an entity instance. The entity also clusters
the field priceInEuro to store the price of a parking space booking, and the
function signature priceInDollars for currency conversion of a booking’s price.

2.2 Jolie Types and Interfaces

Jolie interfaces and types define the functionalities of a microservice and the
data types associated with those functionalities i.e., the API of a microservice.
Figure 2 shows a simplified variant of the grammar of Jolie APIs, taken from [21]
and updated to Jolie 1.10 (the latest major release at the time of writing).

An interface is a collection of named operations (RequestResponse),
where the sender delivers its message of type TP1 and waits for the receiver
to reply with a response of type TP2—although Jolie also supports oneWays,
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Fig. 2. Simplified syntax of Jolie APIs (types and interfaces)

where the sender delivers its message to the receiver, without waiting for the
latter to process it (fire-and-forget), we omit them here because they are not
used in the encoding (cf. Sect. 2.3). Operations have types describing the shape
of the data structures they can exchange, which can either define custom, named
types (id) or basic ones (B) (integers, strings, etc.).

Jolie type definitions (TD) have a tree-shaped structure. At their root,
we find a basic type (B)—which can include a refinement (R) to express con-
straints that further restrict the possible inhabitants of the type [9]. The possible
branches of a type are a set of nodes, where each node associates a name (id)
with an array with a range length (C) and a type T .

Jolie data types and interfaces are technology agnostic: they model Data
Transfer Objects (DTOs) built on native types generally available in most archi-
tectures [4].

Based on the grammar in Fig. 2, the following listing shows the Jolie equiv-
alent of the example LEMMA domain model from Sect. 2.1.

Structured LEMMA domain concepts like ParkingSpaceBooking and their
data fields, e.g., bookingID, are directly translatable to corresponding Jolie
types.

To map LEMMA DDD information to Jolie, we use Jolie documentation
comments (///) together with an @-sign. It is followed by (i) the string begin-
Ctx and the parenthesised name of a modelled bounded context, e.g., Booking-
Management; (ii) the DDD feature name, e.g., entity; or (iii) the string endCtx
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to conclude a bounded context. This approach enables to preserve semantic
DDD information for which Jolie currently does not support native language
constructs. The comments serve as documentation to the programmer who will
implement the API. In the future, we plan on leveraging these special comments
also in automatic tools (see Sects. 2.4 and 4).

LEMMA operation signatures are expressible as RequestResponse opera-
tions within a Jolie interface for the LEMMA domain concept that defines the
signatures. For example, we mapped the domain concept ParkingSpaceBooking
and its operation signature priceInDollars to the Jolie interface ParkingSpace-
Booking_interface with the operation priceInDollars.

2.3 Encoding LEMMA Domain Models as Jolie APIs

In the following, we report an encoding from LEMMA domain models to Jolie
APIs that formalises and extends the mapping exemplified in Sect. 2.2. Figure 3
shows the encoding.

The encoding is split in three encoders: the main encoder [[ · ]] walks through
the structure of LEMMA domain models to generate Jolie APIs using the
encoders for operations ((( · ))) and for structures (�� · ��), respectively.

The operations encoder (( · )) generates Jolie interfaces based on procedures
and functions in the given models by translating structure-specific opera-
tions into Jolie operations. This translation requires some care. On one hand,
LEMMA’s procedures and functions recall object methods in the sense that
they operate on data stored in their defining structure. On the other hand,
Jolie separates data from code that can operate on it (operations). Therefore,
the encoding needs to decouple procedures and functions from their defining
structures as illustrated in Sect. 2.2 by the mapping of the LEMMA domain con-
cept ParkingSpaceBooking and its operation signature priceInDollars to the Jolie
interface ParkingSpaceBooking_interface with the operation priceInDollars .

Given a structure X, we extend the signature of its procedures with a
parameter for representing the structure they act on and a return type X for the
new state of the structure, essentially turning them into functions that transform
the enclosing structure. For instance, we regard a procedure with signature (Y ×
· · · × Z) in X as a function with type X × Y × · · · × Z → X. This approach
is not new and can be found also in modern languages like Rust [18,33] and
Python [24]. The operation synthesised by the (( · )) encoder accepts the id_type
generated by the [[ · ]] encoder that, in turn, has a self leaf carrying the enclosing
data structure (ids). The encoding of functions follows a similar path. Note
that, when encoding self leaves, we do not impose the constraint of providing
one such instance (represented by the ? cardinality), but rather allow clients to
provide it (and leave the check of its presence to the API implementer).

The main encoder [[ · ]] and the structure encoder �� · �� trans-
form LEMMA types into Jolie types. contexts translate into pairs of
///@beginCtx(context_name) and ///@endCtx Joliedoc comment annotations.
All the other constructs translate into types and their subparts. When trans-
lating procedures and functions, the two encoders follow the complementary
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scheme of (( · )) and synthesise the types for the generated operations. The other
rules are straightforward.

Fig. 3. Salient parts of the Jolie encoding for LEMMA’s domain modelling concepts.

2.4 Applying the Encoding

This subsection illustrates the application of the encoding from Sect. 2.3 using
the Booking Management Microservice (BMM) of a microservice-based Park
and Charge Platform (PACP) modelled with LEMMA [27]. The PACP enables
drivers of electric vehicles to offer their charging stations for use by others. Its
BMM manages the corresponding bookings based on domain concepts that were
designed following DDD principles [6] and expressed in LEMMA’s DDML.

In the following paragraphs, unless indicated, the encoded Jolie APIs respect
the DDD constraints expressed by the considered features.

Aggregate and Part. In DDD, aggregates prescribe object graphs, whose
parts must maintain a consistent state [6]. Aggregates are always loaded from
and stored to a database in a consistent state and within one transaction. A
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DDD aggregate consists of at least an entity or value object (see below). The
following left listing shows the PSB aggregate in the LEMMA domain model for
the BMM.

PSB is a structured domain concept with the aggregate feature (cf.
Sect. 2.1) and it clusters the field timeSlot, which has a structured type and is
a part of the aggregate. Notice that for this domain model, LEMMA’s DDML
would emit warnings, because (i) a DDD aggregate must specify a root entity;
and (ii) a part should either be an entity or value object [6]. We extend the PSB
aggregate below to gradually fix these issues, thereby explaining the semantics
of DDD entities and value objects.

In the Jolie encoding (on the right), we have as many type definitions as we
have structures in the LEMMA model.

Entity and Identifier. Instances of DDD entities are distinguishable by a
domain-specific identity [6], e.g., a unique ID. The following left listing extends
the PSB aggregate with the entity feature and an identifier field.

LEMMA’s DDML requires the entity feature on an aggregate to signal that
its fields prescribe the structure of its root entity. The identifier feature can be
used to mark those fields that determine the identity of an entity instance. In
the example above, the value of bookingID is marked to identify PSBs.

The Jolie encoding of entity and identifier fields is straightforward.
Next to fields, DDML supports the identifier feature on a single function

of an entity to enable identity calculation at runtime. To illustrate this approach,
the following listing models the bookingID of the PSB root entity as a function.
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Following our encoding (cf. Sect. 2.3), we create the Jolie type bookingID_type
for the bookingID identifier function. The type’s self leaf enables imple-
menters to access the fields of the PSB and define how to compute the identifier.

Factory. DDD factories make the creation of objects with complex consistency
requirements explicit [6]. LEMMA’s DDML considers factories to constitute
functions that return instances of aggregates, entities, or value objects. The
following left listing illustrates the usage of factories by specifying the factory
function create as part of the PSB aggregate. This function shall create PSB
instances for a given time slot timeSlot and a priceInEuro.

As opposed to the encoding for LEMMA identifier functions (see above),
we do not encode a self leaf in Jolie types such as create_type for LEMMA
factory functions. Since the semantics of factories is that of generating an
instance of the enclosing structure, it would not make sense to pass to it one of
those instances as a self leaf. Consequently, we could include a rule in Fig. 3 which
avoids the generation of said self leaf (this is more an issue of minimality of the
generated code, since we set the leaf as optional (?)). Additionally, we can enforce
a check on Jolie operations like create following immediately after ///@factory-
commented types by making sure their input types do not contain the produced
type, e.g., PSB. Complementary, we can also check that the response type of
Jolie-encoded factory operations coincides with the produced type.

Specification and Validator. DDD specifications are domain concepts
that make business rules, policies, or consistency specifications for aggregates
explicit [6]. A specification must comprise one or more validators, which are
functions with a boolean return type that reify the specification’s predicates.
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LEMMA’s DDML provides the features specification and validator to
mark structures as specifications and identify their validators. Below we extend
the BMM’s domain model with the BookingExpiration specification. Its isExpired
validator returns true if a parking space booking PSB instance has expired.

Since the specification is a field-less structure, we do not create a corre-
sponding type BookingExpiration as it would be empty. Instead, and as per
our encoding (cf. Sect. 2.3), we create the ///@specification-annotated type
isExpired_type for the isExpired validator within the interface BookingEx-
piration_interface. From the point of view of the consistency of the annota-
tions, following the namespace convention from Fig. 3, we can check that the
///@validator actually accepts the related structure. To do this, we follow the
“breadcrumbs” left by our encoders. First, we find a ///@validator-commented
RequestResponse (e.g., isExpired) and we make sure its response type is bool.
Then, we follow the request type (e.g., isExpired_type) to make sure that: i) the
///@validator has an associated ///@specification (e.g., isExpired_type) type
and ii) the type has one leaf, which is the structure the validator validates.

Value Object. As opposed to entities, DDD value objects cluster data and
logic, which are not dependent on objects’ identity [6]. Thus, value objects serve
as DTOs for data exchange between microservices [22]. In asynchronous commu-
nication scenarios, value objects can model domain events emitted by a bounded
context during runtime [7]. For example, all PACP microservices interact with
each other via domain events [27].

LEMMA’s DDML supports the valueObject and domainEvent features to
mark structured domain concepts as value objects and possibly as domain events.
The following left listing illustrates the usage of the valueObject feature.
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Above, we extend the BMM’s domain model with the PSB_VO value object:
a DTO for the PSB aggregate that slightly changes it type to make its represen-
tation more general. Namely, PSB_VO separates the currency from the value
of the price. The timeSlot field remains the same, but we make sure it is also a
valueObject.

The LEMMA domain model also shows the definition of bounded contexts
in the DDML. All three structures PSB, PSB_VO, and TimeSlot are enclosed
by the BookingManagement context on which the BMM operates exclusively.

The encoding from LEMMA to Jolie follows Fig. 3 without exceptions.
Notice, in particular, the “opening” ///@beginCtx(BookingManagement) and
“closing” ///@endCtx comments for the context. With those comments, we are
declaring that the types (and interfaces) that appear between them belong to the
context BookingManagement. In LEMMA, contexts indicate a boundary within
which (complex) types belonging in the same context can co-exist and interact
(e.g., by being part of the inputs and output of procedures and functions).
Then, as seen above, valueObjects exist to allow data to cross boundaries, by
defining data types (e.g., structures) purposed to act as DTOs.

While the encoding from LEMMA’s DDML ensures that, at the API
level, the coherence defined by contexts and valueObjects is preserved, e.g.,
there exists no type with leaves whose types belong in different contexts nor
interfaces belonging in a context that accept types from another context, unless
///@valueObjects. However, behaviours that users write can arbitrarily combine
data structures and operators and possibly break the coherence of contexts.

In the future, we would like to devise static checks able to enforce the coher-
ence of LEMMA’s DDML contexts also in behaviours, e.g., by tracing the con-
texts in which values belong—from the types of the operations that generated
them, via receptions—and prohibit mixing values that belong in different con-
texts (e.g., by forbidding to use them with operations belonging in different con-
texts, although their types might be compatible). This static check would also
handle the exception of values whose types are annotated as ///@valueObjects,
which are the only ones allowed to be used in a mixed way (i.e., in operations
that take or produce ///@valueObject-annotated types.).
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Fig. 4. LEMMA2Jolie phases to generate Jolie APIs from LEMMA domain models.

Additional Features. Our encoding captures the repository and closure
features of LEMMA’s DDML (cf. Fig. 1). Checks regarding the sideEffectFree
feature follow the same considerations of the valueObject feature: we need to
inspect a service behaviour to make sure its does not modify the values obtained
from ///@sideEffectFree-commented operations. services are a generalisation of
the specification feature, where we have a structure that contains only func-
tions and procedures—LEMMA further specialises services into, domain-
Services, infrastructureServices, applicationServices, which are subject
to future works.

3 LEMMA2Jolie: A Code Generator to Derive Jolie
APIs from LEMMA Domain Models

This section presents our LEMMA2Jolie tool, which implements the encoding
presented in Sect. 2. In the sense of MDE, LEMMA2Jolie is a model-to-text trans-
formation [3] that generates Jolie APIs from LEMMA domain models.

Architecture. As depicted in Fig. 4, LEMMA2Jolie consists of three phases to
derive Jolie APIs from LEMMA domain models.

In the Parsing phase, LEMMA2Jolie instantiates an in-memory object graph
conforming to the metamodel of the DDML [26] from a given LEMMA domain
model. The object graph allows systematic traversal of the model elements to
map them to the corresponding Jolie code (cf. Sect. 2.3) in the following Template
Execution phase. As the phase name indicates, LEMMA2Jolie relies on template-
based code generation [3] to transform in-memory LEMMA domain models to
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Jolie. That is, we prescribe the target blocks of a Jolie program as strings involv-
ing static Jolie statements and dynamic variables which are evaluated at runtime
to complement the prescribed target blocks with context-dependent information,
e.g., the name of a bounded context in a specific LEMMA domain model. After
template execution, the Serialisation phase stores the evaluated templates to
physical files with valid Jolie code.

Implementation Overview. We implemented LEMMA2Jolie in Xtend2, which
is a Java dialect that integrates a sophisticated templating language (see below).
Furthermore, LEMMA2Jolie relies on LEMMA’s Java-based Model Processing
Framework3, which aims to facilitate the development of model processors such
as code generators. To this end, the framework provides built-in support for pars-
ing models constructed with languages that are based on the Eclipse Modelling
Framework [31]—as is the case for all LEMMA modelling languages including
the DDML. Additionally, the framework prescribes a certain workflow for model
processing and enables implementers to integrate with it using Java annotations.

Listing 1 describes the implementation of LEMMA2Jolie’s code generation
module which integrates with the Code Generation phase of LEMMA’s Model
Processing Framework. The module is responsible for template execution and
the eventual serialisation of Jolie code.

A code generation module is a Java class with the @CodeGenerationMod-
ule annotation that extends the AbstractCodeGenerationModule class (Lines 1
and 2). LEMMA’s Model Processing Framework delegates to a code generation
module after it parsed an input model in the modelling language supported
by the module. To specify the supported language, a code generation module
overrides the inherited getLanguageNamespace method to return the language’s
namespace, which in the case of LEMMA2Jolie is that of LEMMA’s DDML
(Line 4).

The entrypoint for code generation is the execute method of a code gener-
ation module. It can access the in-memory object graph of a parsed model via
the resource attribute. Lines 6 to 13 show the execute method of LEMMA2-
Jolie’s code generation module. In Line 7, we retrieve the root of the model as an
instance of the DataModel concept of the DDML’s metamodel (cf. Fig. 4). Next,
we call the template method generateContext (see Listing 1) for each parsed
Context instance and gather the generated Jolie code in the generatedContexts
variable (Line 8). In Lines 9 and 10, we determine the path of the generated
Jolie file, which will be created in the given target folder and with the same
base name as the input LEMMA domain model but with Jolie’s extension “ol”.
Line 11 triggers the serialisation of the generated Jolie code via the inherited
withCharset method.

Lines 15 to 19 show the implementation of the template method generate-
Context. It expects an instance of the metamodel concept Context as input
2 https://www.eclipse.org/xtend
3 https://github.com/SeelabFhdo/lemma/tree/main/de.fhdo.lemma.

model_processing

https://www.eclipse.org/xtend
https://github.com/SeelabFhdo/lemma/tree/main/de.fhdo.lemma.model_processing
https://github.com/SeelabFhdo/lemma/tree/main/de.fhdo.lemma.model_processing
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Listing 1. Xtend excerpt of LEMMA2Jolie’s code generation module.
1 @CodeGenerationModule(name="main")
2 class GenerationModule extends AbstractCodeGenerationModule {
3 ...
4 override getLanguageNamespace() { return DataPackage.eNS_URI }
5
6 override execute(...) {
7 val model = resource.contents.get(0) as DataModel
8 val generatedContexts = model.contexts.map[it.generateContext]
9 val baseFileName = FilenameUtils.getBaseName(modelFile)

10 val targetFile = ''' «targetFolder»«File .separator»«baseFileName».ol'''
11 return withCharset(#{targetFile -> generatedContexts.join("\n")},
12 StandardCharsets.UTF_8.name)
13 }
14
15 private def generateContext(Context context) {'''
16 ///@beginCtx(«context.name»)
17 «context.complexTypes.map[it.generateComplexType].join("\n")»
18 ///@endCtx
19 ''' }
20
21 private def dispatch generateComplexType(DataStructure structure) {'''
22 «structure .generateType»
23 «IF !structure .operations.empty»
24 «structure . generateInterface»
25 «ENDIF»
26 ''' }
27 }

(cf. Fig. 4) and represents the starting point of each template execution since
bounded contexts are the top-level elements in LEMMA domain models. An
Xtend template is realized between a pair of three consecutive apostrophes within
which it is whitespace-sensitive and preserves indentation. Within opening and
closing guillemets, Xtend templates enable access to variables and computing
operations, whose evaluation shall replace a certain template portion. Conse-
quently, the expression «context.name» in the template string in Line 16 is at
runtime replaced by the name of the bounded context passed to generateCon-
text. For a bounded context with name “BookingManagement”, Line 16 of the
template will thus result in the generated Jolie code ///@beginCtx(BookingMan-
agement) (cf. Fig. 4).

To foster its overview and maintainability, we decomposed our template for
Jolie APIs into several template methods following the specification of our encod-
ing (cf. Sect. 2.3). As a result, the generation of Jolie code covering the internals
of modelled bounded contexts happens in overloaded methods called generate-
ComplexType. Each of these methods derives Jolie code for a certain kind of
LEMMA complex type, i.e., data structure, list, or enumeration. In Line 17,
the template delegates to the version of generateComplexType for LEMMA data
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structures. Following our encoding, the method implements a template to map
data structures to Jolie types (Line 22) and interfaces in case the LEMMA data
structure exhibits operation signatures (Lines 23 to 25).

The LEMMA2Jolie source code is available as a Software Heritage archive [10].
In addition, we provide a publicly downloadable video illustrating LEMMA2-
Jolie’s practical capabilities4.

4 Related and Future Work

Related Work. The maturity of MDE in research and practice as well as its
ability to effectively support the engineering of complex software systems [8]
has fostered the development of a variety of tools similar to LEMMA2Jolie [15–
17,28,32]. That is, they constitute code generators in the sense of MDE [3] and
are capable to generate artefacts relevant to MSA engineering. For this purpose,
the tools process models constructed in a certain modelling language.

By contrast to LEMMA2Jolie, the majority of related code generators focuses
on Java as target technology [15,28,32] and thus not on a programming language
specifically tailored to the challenges of microservice implementation. Reducing
the semantic gap between the concepts of microservices and implementation lan-
guages is the reason for which new service-oriented languages like Ballerina and
Jolie have been developed. Furthermore, the modelling languages supported by
related tools and hence the generated code address only single concerns in MSA
engineering, i.e., domain modelling [17,28] or the implementation and provi-
sioning of service APIs [15,16,32]. By contrast, LEMMA’s modelling languages
offer an integrated solution to multi-concern modelling in MSA engineering, by
providing modelling languages for various viewpoints on microservice architec-
tures [26].

Future Work. The specified encoding (cf. Sect 2.3) and its implementation
(cf. Sect. 3) show the feasibility to integrate the LEMMA and Jolie ecosystems.
Future works include extending our results to other languages, studying the
maturity of LEMMA2Jolie, proving formal guarantees on the correctness of the
encoding, and extending the presented integration in several ways.

We plan to evaluate the maturity and stability of LEMMA2Jolie by investi-
gating its application in real-world use cases [27,30].

To obtain correctness guarantees on our encoding, first we would need to
formalise the semantics of LEMMA’s DDML and of Jolie APIs, and then prove
that the encoding generates Jolie APIs that preserve the semantics of input
DDML models. This work is in progress, e.g., parts of Jolie have been already
formalised [12,20,21] and LEMMA implements context conditions [14] to con-
strain the well-formedness of DDML models w.r.t. their intended semantics [26].

We also aim to investigate the possibility of round-trip engineering (RTE),
i.e., the bidirectional synchronisation of changes between LEMMA models and
Jolie code. This would enable, for example, domain experts and microservice
4 https://bit.ly/3rTGysX

https://bit.ly/3rTGysX


238 S. Giallorenzo et al.

developers to interact by using their views of interest (model vs implemen-
tation) but without risking that they fall out of sync. While domain experts
could continue to capture domain knowledge about a microservice architecture
in conceptual DDD domain models, developers could adapt data types and APIs
derived from those models using Jolie as their primary language. Based on RTE,
changes in Jolie code could then automatically be reflected in DDD domain mod-
els and vice versa, with the option to immediately resolve potential conflicts in
domain understanding. Furthermore, we see potential for LEMMA2Jolie to cover
all phases in MSA engineering, from domain-driven service design to implementa-
tion and deployment. For example, we would like to extend LEMMA2Jolie to deal
also with the definition of access points (communication endpoints that define
how APIs can be accessed), behaviours (implementations of services written in
Jolie that accompany LEMMA models), and the generation of deployment con-
figurations (e.g., configuration of infrastructural services, containerisation, and
deployment plans for Kubernetes). This potential is specifically fostered by both
LEMMA and Jolie constituting language-based approaches to MSA engineering,
which facilitates their integration. For example, we could extend LEMMA to
include Jolie implementation code in service models.
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