
A New Design Framework for Heterogeneous
Uncoded Storage Elastic Computing

Mingyue Ji1, Xiang Zhang1, and Kai Wan2
1University of Utah,

2Technische Universität Berlin
Email: {mingyue.ji@utah.edu, xiang.zhang@utah.edu, kai.wan@tu-berlin.de}

Abstract—Elasticity is one important feature in modern cloud
computing systems and can result in computation failure or
significantly increase computing time. Such elasticity means that
virtual machines over the cloud can be preempted under a short
notice (e.g., hours or minutes) if a high-priority job appears;
on the other hand, new virtual machines may become available
over time to compensate the computing resources. Coded Storage
Elastic Computing (CSEC) introduced by Yang et al. in 2018 is
an effective and efficient approach to overcome the elasticity and
it costs relatively less storage and computation load. However,
one of the limitations of the CSEC is that it may only be
applied to certain types of computations (e.g., linear) and may
be challenging to be applied to more involved computations
because the coded data storage and approximation are often
needed. Hence, it may be preferred to use uncoded storage by
directly copying data into the virtual machines. In addition,
based on our own measurement, virtual machines on Amazon
EC2 clusters often have heterogeneous computation speed even
if they have exactly the same configurations (e.g., CPU, RAM, I/O
cost). In this paper, we introduce a new optimization framework
on Uncoded Storage Elastic Computing (USEC) systems with
heterogeneous computing speed to minimize the overall computa-
tion time. Under this framework, we propose optimal solutions of
USEC systems with or without straggler tolerance using different
storage placements. Our proposed algorithms are evaluated using
power iteration applications on Amazon EC2.

I. INTRODUCTION

Coded Storage Elastic Computing (CSEC) system intro-
duced by Yang et al. in [1] is an effective approach to
overcome the elasticity of modern cloud computing system,
where elasticity means that Virtual Machines (VMs) on the
cloud systems, e.g., instances on Amazon EC2, can be pre-
empted under a short notice (e.g., hours or minutes) if a
high-priority job appears; on the other hand, new VMs may
become available over time to compensate the computing
resources. Such elasticity can result in computation failure or
significantly increase computing time.

In [1], using a Maximum Distance Separable (MDS) coded
storage placement, the authors proposed a cyclic computation
assignment scheme such that no redundant computation is
needed when the number of available VMs Nt is between
L and N where N is the maximum number of VMs in
the systems and L is the smallest number of VMs in the
system. In [2], the authors introduced a new metric, called
transition waste, which is defined as the difference between
the total number of changes and the number of necessary

changes of the computation assignment if some VMs become
preempted during one computation or time step. This problem
is combinatorial and is challenging to be solved in general.
The authors proposed new algorithms using shifted cyclic task
allocation to reduce the transition waste and showed it is
optimal under some parameter settings. In [3], the authors
proposed two hierarchical schemes that can further speed
up the CSEC system by effectively allocating tasks among
available nodes while the encoding and decoding complexity
may be increased. Some important limitations of [1]–[3]
include the assumption that all available VMs have the same
computing speed or the proposed schemes do not consider
the heterogeneous computing speed among machines, and all
VMs have the homogeneous storage constraint. In practice,
based on our own measurement [4], the computing speed
among VMs can be significantly different even if they have
exactly the same configurations, e.g., same CPU, RAM and
I/O cost. In addition, during the entire computing process
(e.g., power iteration application [5] and see Section V),
we observe that the computing speed among machines stays
approximately the same, while the proposed algorithms in [4]
takes measurements of the computing speeds of virtual ma-
chines very frequently, i.e., the time scale of computing speed
measurement is much smaller than the overall computation
time. Hence, we assume that the computing speed of all virtual
machines do not change over one time step (see Section II) in
[4] and in this paper. This is in contrast to the works that model
the computing speeds/times as random variables for long term
analysis (e.g., [6], [7]), which consider a very large number
of virtual machines for applications that run over an extensive
amount of time.

In [8], the authors considered the elastic computing sys-
tems with heterogeneous computing speed and homogeneous
storage constraint, and formulated a new CSEC framework,
that is to minimize the overall computation time, using a
combinatorial optimization approach. In addition, one exact
optimal solution is provided and can be achieved using the
filling algorithm, which is a low-complexity iterative algorithm
that can complete within Nt iterations, where Nt is the number
of available VMs at time step t. Later, in [9], the authors con-
sidered the CSEC system with both heterogeneous computing
speed and heterogeneous storage constraint, and formulated a
new combinatorial optimization framework based on the result

ISBN 978-3-903176-49-2 © 2022 IFIP 269

in [8] and designed algorithms to achieve the optimal compu-
tation time. Under the assumption of heterogeneous computing
speed, in [4], the authors made preliminary attempts to study
the scenario where both elasticity and stragglers are present
and proposed new algorithms using the idea of the filling algo-
rithm.1 An achievable trade-off between computation time and
straggler tolerance was established. In addition, the authors in
[4] implemented the proposed algorithms for heterogeneous
CSEC systems using real applications on Amazon EC2 and
demonstrated that large gain in terms of the computation time
can be achieved by the proposed algorithms.

Despite clear advantages of the CSEC systems such as
less storage overhead, it can only be applied to certain types
of computations (e.g., linear) and may be challenging to be
applied to more involved computations (e.g., deep learning)
due to the coded data storage. In this case, approximation
is often needed. Hence, it may be preferred to use uncoded
storage by just copying the data into the virtual machines since
computations can be operated directly over the original data in
this case. We refer to such systems as Uncoded Storage Elastic
Computing (USEC) systems. In this paper, we first introduce
a new optimization framework on USEC with heterogeneous
computing speed to minimize the overall computation time.
Then, we propose optimal low-complexity solutions to USEC
systems with or without straggler tolerance using different
storage placements.

Our contributions are summarized as follows:
1) When there is no straggler tolerance requirement, given

the storage placement and the heterogeneous computing
speed of VMs, we formulate a new USEC framework
as a convex optimization problem which can be solved
using typical convex optimization solvers. Further, we
investigate the performance in terms of computation time
using different uncoded storage placements.

2) We incorporate straggler tolerance into the above prob-
lem formulation and formulate it as a combinatorial
optimization problem. In addition, we design a low-
complexity algorithm to achieve the optimal solution of
the proposed optimization problem given the uncoded
storage placement.

3) We perform experiments using the proposed USEC
framework with heterogeneous computing speed, and
using the power iteration application under a simple
setup. We demonstrate that about 20% gain in terms of
computation time can be achieved using the proposed
algorithms by taking the advantage of heterogeneous
computing speed.

The rest of this paper is organized as follows. Section
II introduces the network model and presents the problem
formulation. Section III presents some motivating examples
to the proposed problem and illustrate our proposed solutions.
In Section IV, we propose the new USEC design in general.
Some experimental results over Amazon EC2 are illustrated

1Stragglers are often referred to as the machines with abnormally slower
speed.

in Section V.
Notation Convention: We use | · | to represent the cardi-

nality of a set or the length of a vector and [n]
∆
= {1, 2, . . . , n}.

A bold symbol such as a indicates a vector and a[i] denotes
the i-th element of vector a. Calligraphic symbols such as A
presents a set with numbers as its elements. Bold calligraphic
symbols such as A represents a set whose elements are sets
(e.g., A).

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a set of N virtual machines jointly store an
uncoded data matrix X with dimension q × r, which is row-
wise partitioned as follows.

X = [X1;X2; · · · ;XG].

With a slight abuse of notation, Xg, g ∈ [G] denotes both
the row sets and sub-matrices of X. In particular, the number
of rows in each Xg, g ∈ [G] is q/G and we index them as
[q/G]. Each Xg is placed into J virtual machines. Let Ng =
{n : Xg ∈ Zn} denote the set of virtual machines that stores
Xg and Zn be the storage placement for VM n. The set of
the storage placements for all virtual machines is denoted by
Z = {Zn, n ∈ [N]}.

Similar to [1], the virtual machines collectively perform
matrix-vector computations over multiple steps. In a given
time step only a subset of the N VMs are available to perform
matrix computations. More specifically, in computation step t,
a set of available VMs Nt ⊆ [N] with |Nt| = Nt aims to
compute

yt =Xwt, (1)

where wt is some vector of length r. The VMs of [N] \ Nt
are preempted.

The VMs in Nt do not compute yt directly. Instead, each
machine n ∈ Nt computes XSnwt, where Sn ⊂ Xg,Xg ∈
Zn denotes a row set in the sub-matrix Xg ∈ Zn. Then the
results from VMs will be sent to the master machine to obtain
yt. Let Tg,n denote the row set of sub-matrix Xg computed
at machine n ∈ Nt.

Definition 1: (Computation load) Let the computation load
matrix be M and each entry of M , [M]g,n = µ[g, n], is the
computation load of sub-matrix Xg at machine n defined as

µ[g, n]
∆
=
|Tg,n|
q/G

. (2)

If Xg /∈ Zn, µ[g, n] = 0. The computation load vector for N
machines, µ = [µ[1], · · · , µ[n]], is defined as

µ[n] =
∑
g∈[G]

µ[g, n], ∀n ∈ Nt, (3)

which is the sum of the fractions of rows of the corresponding
stored sub-matrices computed by machine n at time step t.

♦
Note that Tg,n, M and µ may change with each time step,
but reference to t is omitted for ease of disposition. Moreover,
the machines have varying computation speed defined by the

270

strictly positive vector, s, which is known for each time step
and defined as follows.

Definition 2: (Computation Speed) The computation speed
vector s is a length-N vector with elements s[n], n ∈ [N],
where s[n] is the speed of machine n measured as the inverse
of the time it takes machine n to compute all rows of one of
its assigned sub-matrix.2

♦
The computation time is dictated by VMs taking the most

time to perform its assigned tasks, and defined as follows.
Definition 3: (Computation Time) The computation time

in a particular time step is defined as

c(M) = c(µ)
∆
= max
n∈Nt

µ[n]

s[n]

= max
n∈Nt

∑
g∈[G] µ[g, n]

s[n]
. (4)

♦

A. USEC without straggler tolerance

We first formulate the optimization framework for USEC
systems without straggler tolerance. For a fixed storage place-
ment Z , we can formulate the following optimization problem.

minimize
Tg,n

c (M) (5a)

subject to:
⋃

n∈Nt:Xg∈Zn

Tg,n =
[q
G

]
,∀g ∈ [G]. (5b)

It can be shown that the optimization problem (5) is equivalent
to the following convex optimization problem.

minimize
M

c (M) = max
n∈Nt

∑
g∈[G] µ[g, n]

s[n]
(6a)

subject to:
∑

n∈Nt:Xg∈Zn

µ[g, n] = 1,∀g ∈ [G], (6b)

µ[g, n] = 0,∀Xg /∈ Zn, n ∈ Nt, (6c)
0 ≤ µ[g, n] ≤ 1,∀n ∈ Nt. (6d)

It can be seen that by solving (6), we can obtain the optimal
computation assignment M?, which can be used to find the
corresponding Tg,n straightforwardly since each row in Xg is
computed only once (see Section III for examples).

B. USEC with straggler tolerance

When straggler tolerance is incorporated into the USEC
framework, we use the redundant task assignment approach,
meaning that each row in X can be computed 1+S times in or-
der to tolerate at most S stragglers. This implies that the com-
putation can be recovered when any S machines, denoted by
S, of the available machinesNt become stragglers and S is not
known a priori. Hence, this problem becomes a combinatorial
optimization problem. In particular, a computation assignment

2As mentioned in the Section I, based on our measurement and the duration
of one time step, it is appropriate to model the computing speed of a virtual
machine does not vary during one time step.

within Xg is defined by Fg disjoint sets of rows in Xg , i.e.,
Mg = {Mg,1, . . . ,Mg,Fg} such that

⋃
f∈[Fg]Mg,f =

[
q
G

]
.

Then, Fg sets of machines, Pg = {Pg,1, . . . ,Pg,Fg
}, which

store and perform computation over Xg , are defined such that
Pg,f ⊆ {n ∈ Nt : Xg ∈ Zn}, |Pg,f | = 1 + S, ∀f ∈ [Fg] and
machines in Pg,f computes the row set Mg,f in Xg . Note
that Tg,n =

⋃
f∈[Fg]:n∈Pg,f

Mg,f . The sets Mg , Pg and Fg
may vary with each time step based on machines’ availability.

In a given time step t, our goal is to design the task
assignments, Mg,Pg, g ∈ [G], such that the computation
yt = Xwt can be recovered when some VMs are stragglers
that do not provide their assigned computations to the master
machine.

Then, we aim to design the computation assignment that
minimizes the computation time of (4) resulting from the
computation load matrix defined in (2). In time step t, given Z ,
Nt and s, the optimal computation time, c?, is the minimum
of computation times defined by all possible task assignments,
such that S stragglers can be tolerated and the computation
can be recovered. In particular, c? is the optimal value of the
following combinatorial optimization problem.

minimize
Mg,Pg

c (M) (7a)

s.t.
⋃

f∈[Fg]

Mg,f =
[q
G

]
,∀g ∈ [G], (7b)

|Pg,f \ S| ≥ 1,∀g ∈ [G],Pg,f ∈ Pg,

∀S ⊂ Nt, |S| = S. (7c)

The optimization problem (7) is combinatorial and the optimal
solution is challenging. In the following, we will propose
a novel low-complexity algorithm to achieve the optimal
solution for this problem. Interestingly, the filling algorithm
introduced in the CSEC framework with heterogeneous com-
puting speed [9] or the heterogeneous storage-constrained
private information retrieval problem [10] can be applied
here with small modifications to obtain the proposed optimal
solution for (7). We consider this as one of the main theoretical
contributions of this paper.

III. EXAMPLES

In this section, we will illustrate two examples of the
proposed USEC framework with and without straggler tol-
erance, respectively, under the homogeneous storage con-
straint. We consider two commonly used uncoded storage
schemes, which are fractional repetition placement (referred
to as repetition placement hereafter) and cyclic placement,
which are widely used in the distributed storage and gradient
coding literatures (e.g., [11]–[14]). In particular, we consider
a USEC system with N = 6 VMs and the speed vector
is s = [1, 2, 4, 8, 16, 32]. The data matrix X is partitioned
into G = 6 sub-matrices, each placed into J = 3 ma-
chines. Fig. 1 shows this system with repetition placement
(Fig.1a) and with cyclic placement (Fig. 1b), respectively.
Let N = Nt, all µ[g, n], g ∈ [6], n ∈ [N] are computed
by solving the convex optimization problem (6). In Fig. 1,

271

don’t
access

don’t
access

don’t
access

don’t
access

don’t
access

don’t
access

s = [1,2,4,8,6,32],

0.1429

0.3132

0.2857 0.5714

0.3374

0.3494

μ = [0.4286,0.8571,1.7143,
c(μ) = 0.4286

0.1429

0.1429

0.2857

0.2857

0.5714

0.5714

0.3132

0.3132

0.3374

0.3374

0.3494

0.3494

X1 X3
X5X4 X6

X2
VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

0.9396,1.0122,1.0482]
(a) Repetition placement.

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

don’t
access

don’t
access don’t

access don’t
access

don’t
access

don’t
access

X1 X3
X5X4 X6

X2 s = [1,2,4,8,6,32],

0.1429

0

0

0

0

0.2857

0

0.5714

0

0.0489

1

0.0424

0.3924

0.9576

0.3648

0.6076

1

0.5863

μ = [0.1429,0.2857,0.5714,
c(μ) = 0.1429

1.0912,1.7149,2.1939]

don’t
access don’t

access

(b) Cyclic placement.

Fig. 1: Illustration of the proposed USEC framework.

0 0.2 0.4 0.6 0.8

Computation Time

0

100

200

300

400

500
Repetition

Cyclic

MAN

Fig. 2: Comparison of histograms of C(M) for repetition,
cyclic and MAN storage placements over 5000 realizations of
the computing speed vector.

TABLE I: Comparison between MAN, cyclic and repetition
placements.

computation time cyclic repetition MAN
mean 0.1492 0.2296 0.1442

variance 0.0033 0.0114 0.0032

the colors represent the storage placement of each sub-matrix
and the numbers inside represent the corresponding µ[g, n]
for sub-matrix g and machine n. The computation time for
the cyclic placement is c(µ) = 0.1429, which is significantly
better than that of the repetition placement c(µ) = 0.4286.
However, interestingly, the cyclic placement is not necessarily
better than the repetition placement for any speed vector. For
example, if machines 3 and 4 are much faster than other
VMs, then the repetition placement can be better than the
cyclic placement since machines 3 and 4 stores the entire data
matrix under the repetition placement. In order to have a better
understanding of this phenomenon, we ran an experiment by
randomly generating s based on an exponential distribution.
By solving the minimum computation time for each s using
(5), we obtain the distribution of the computation time for
these two storage placements shown in Fig. 2, where the
cyclic placement (red) is much better than the repetition
placement (black) in most realizations. In particular, there are
only 68 cyclic placement realizations out of 5000 worse than
repetition placement realizations. Although these results show
the promising performance of the cyclic storage placement, it
is not optimal in general. For example, using the Maddah-Ali
Niesen coded caching (MAN) storage placement scheme [15]
to repeat the same experiment, we can obtain slightly better
results as shown in Fig. 2 (blue). In particular, out of 5000
realizations, there are only 9 MAN storage realizations worse
than repetition placement realizations and 1621 MAN place-
ment realizations worse than cyclic placement realizations.
Moreover, the MAN placement indeed achieves the minimum
computing time in terms of both mean and variance compared
to cyclic and repetition placements (see Table I).

When straggler tolerance is considered, we need to solve
problem (7) to obtain the optimal M? and then find a feasible
computation assignment that meets M?. Consider an example
of a USEC system with homogeneous computing speed. Here,
we let N = Nt = 6, J = 3, S = 1, and the repetition
placement is used. The optimal µ?[g, n], g ∈ [6], n ∈ [6]
are shown in Fig. 3 and the optimal µ? = [2, 2, 2, 3, 3]. The
optimal computation time is c?(µ) = 3.

IV. PROPOSED USEC DESIGN

The proposed USEC design with straggler tolerance is
given by Algorithm 1, which is obtained by solving the
combinatorial optimization (7) in a similar fashion as in [8]
(line 6 in Algorithm 1). The proposed design is adaptive by
measuring (line 14 in Algorithm 1) and updating (line 4 in
Algorithm 1) the speed vector at time step. Interestingly, this

272

s = [1,1,1,1,1,1],
μ = [2,2,2,3,3]

c(μ) = 3X1 X3
X5X4 X6

X2
VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

don’t
access

don’t
access

don’t
access

don’t
access

don’t
access

0

0

0

1

1

1 1

1

1

1/3
0

1/3
1/3
1/3
0

0
1/3
1/3

1/3
0

1/3
1/3
1/3
0

0
1/3
1/3

1/3
0

1/3
1/3
1/3
0

0
1/3
1/3

Fig. 3: Illustration of uncoded USEC with straggler tolerance
for S = 1 using redundant task assignment.

algorithm adapts the previous CSEC (not USEC) computation
assignment [8] to assign computations to 1 + S machines.

Next we will explain the proposed design. Since the pro-
posed design without straggler tolerance is a special case of the
general design with straggler tolerance for the combinatorial
optimization problem (7), then we will focus on designing
algorithms to solve (7).

Similar to [8], we will solve the combinatorial optimization
problem (7) exactly in two steps. In the first step, we solve the
following relaxed convex optimization problem to obtain the
optimal M? without considering whether such a computation
assignment exists or not.

minimize
M

c (M) = max
n∈Nt

∑
g∈[G] µ[g, n]

s[n]
(8a)

subject to:
∑

n∈Nt:Xg∈Zn

µ[g, n] = 1 + S, ∀g ∈ [G], (8b)

µ[g, n] = 0,∀Xg /∈ Zn, n ∈ Nt, (8c)
0 ≤ µ[g, n] ≤ 1,∀n ∈ Nt. (8d)

The difference between (8) and (6) is to change
(6b) from

∑
n∈Nt:Xg∈Zn

µ[g, n] = 1,∀g ∈ [G] to∑
n∈Nt:Xg∈Zn

µ[g, n] = 1 + S, ∀g ∈ [G] as in (8b).
After obtaining the optimal M?, we will apply the filling
algorithm developed in [8] to assign computations for each
Xg ∈ Zn, n ∈ Nt. Now we will describe the filling algorithm
for USEC with homogeneous and heterogeneous computing
speed, respectively.

Proposed USEC with homogeneous computation assign-
ment: Consider Ng = {n : Xg ∈ Zn} with |Ng| = Ng . Then
we define a computation assignment with Fg = Ng row sets of
Xg . There are Ng disjoint equally-sized row sets that collec-
tively span all rows:Mg,f = {1+(f−1) q

NgG
, . . . , f q

NgG
} for

f ∈ [Ng]. Then, define a cyclic assignment such that machine
set Pg,f = {f%Ng, . . . , (f+S)%Ng} for f ∈ [Ng], where we
define a%Ng , a−

⌊
a−1
Ng

⌋
Ng to facilitate the cyclic design.

Proposed USEC with heterogeneous computation assign-
ment: Given the computation load matrix M?, we can obtain

the computation assignment by applying the assignment algo-
rithm in [8] to assign computations to 1+S VMs for each Xg

(line 6 in Algorithm 1). The computation assignment algorithm
for Xg is given by Algorithm 2. The detailed explanation of
Algorithm 2 can be found in [9].

Remark 1: For both designs, we observe that the computa-
tion time c(M) increases with the straggler tolerance, S. This
demonstrates a trade-off between the computation time and
straggler tolerance of the system.

Algorithm 1 Adaptive Straggler Tolerant Uncoded Storage
Elastic Computing

Input: ŝ, γ, S, T , w1

1: ν ← ŝ: same for all worker VMs
2: for t ∈ [T] do
3: At Master Machine:
4: ŝ ← γν + (1 − γ)ŝ (update estimate of speed

vector).
5: Nt ← list of available machines
6: {Fg,Mg,Pg : ∀g ∈ [G]} ← Results of computa-

tion assignment algorithm for Xg with straggler tolerance
of S for available machines Nt with speeds of ŝ

7: Send wt and {Fg,Mg,Pg : ∀g ∈ [G]} to worker
VMs

8: At Worker VMs:
9: n← index of worker VM

10: µ[n]← total computation load of worker VM n
11: τ1 ← current time
12: Perform assigned computations based on
{Fg,Mg,Pg : ∀g ∈ [G]}

13: τ2 ← current time
14: ν[n] ← µ[n]/(τ2 − τ1) (calculate speed based on

current time step)
15: Send computations and ν[n] to Master Machine
16: At Master Machine: after receiving results from at

most Nt − S workers.
17: wt+1 ← Combine worker results
18: end for
Output: wT

V. EVALUATIONS ON AMAZON EC2
We evaluate the proposed algorithm using power iteration

applications on Amazon EC2 instances. The goal is to compare
the performance difference in terms of computation time be-
tween the homogeneous and heterogeneous task assignments.

Power Iteration [5]: The power iteration algorithm com-
putes the largest eigenvalue and the corresponding eigenvector
of a large matrix X. In particular, it starts with a vector b0,
which may be an approximation to the dominant eigenvector
or a random vector. The method is described by the recursive
relation, bk+1 = Xbk

‖Xbk‖ . The sequence bk converges to
an eigenvector associated with the dominant eigenvalue. It
can be seen that at each iteration, we can directly apply
Algorithm 1. In particular, a dense 6, 000-by-6, 000 symmetric
matrix is row-wise split into G = 6 sub-matrices which will

273

Algorithm 2 Computation Assignment for Xg for Heteroge-
neous Computing Speed

Input: µ?g , q, Z and Ng = {1, · · · , Ng}.
1: m← µ?g
2: f ← 0
3: while m contains a non-zero element do
4: f ← f + 1
5: L′ ←

∑Ng

i=1m[i]
6: N ′ ← number of non-zero elements in m
7: `← indices that sort the non-zero elements of m from

smallest to largest3

8: Pg,f ← {`[1], `[N ′ − L+ 2], . . . , `[N ′]}
9: if N ′ ≥ L+ 1 then

10: αg,f ← min
(
L′

L −m[`[N ′ − L+ 1]],m[`[1]]
)

4

11: else
12: αg,f ← m[`[1]]
13: end if
14: for n ∈ Pg,f do
15: m[n]← m[n]− αg,f
16: end for
17: end while
18: F ← f
19: Partition rows [qG] of Xg into F disjoint row sets
Mg,1, . . . ,Mg,F of size α1q

G , . . . , αF q
G rows, respectively

Output: F , {Mg,1, . . . ,Mg,F } and {Pg,1, . . . ,Pg,F }

0 10 20 30 40 50
Computation Time (s)

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

M
ea

n
Sq

ua
re

 E
rro

r Heterogeneous USEC
Homogeneous USEC

Fig. 4: Power Iteration: Results using USEC designs on
Amazon EC2 without stragglers (top) and with 2 stragglers
each iteration (bottom). The y-axis represents the normalized
mean square error between the true dominant eigenvector and
the estimated eigenvector.

be stored at each VM. We apply the repetition placement. A
vector of length 6, 000 is updated by performing a matrix-
vector multiplication in a distributed manner on the available
virtual machines. The master machine combines the results
and normalizes the vector. This process is repeated such that
the vector converges to the eigenvector associated with the
largest eigenvalue.

3` is an N ′-length vector and 0 < m[`[1]] ≤ m[`[2]] ≤ · · · ≤ m[`[N ′]].
4This is the condition obtained by using Lemma 1 in [9].

The network has one t2.x2large master machine with 8
vCPUs and 32 GiB of memory. The worker virtual machines
consist of 3 t2.large instances, each with 2 vCPUs and 8
GiB of memory, and 3 t2.xlarge instances, each with 4
vCPUs and 16 GiB of memory. Similar to [4], we observed
that all virtual machines have very different computing speed.
For simplicity, we let N = Nt and S = 0 in order to show
the advantage of the heterogeneous task assignment over the
homogeneous task assignment. The result is shown in Fig. 4,
where the gain of Algorithm 1 is about 20% in terms of the
computation time.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduce the concept of USEC and
propose a new optimization framework on USEC with hetero-
geneous computing speed to minimize the overall computation
time. In particular, we consider the USEC systems under
different uncoded storage placements and with or without
straggler tolerance. For both scenarios, we propose optimal
algorithms given the storage placements. These algorithms are
evaluated using real applications on Amazon EC2 to demon-
strate their gains in terms of computation time compared to the
designs using the homogeneous computing speed assumption.
Due to the advantages of USEC systems, we believe this is
one of the important future research directions in the area of
elastic computing.

One obvious open problem in USEC is to find the optimal
storage placement. From Table I, it can be seen that the MAN
storage placement can achieve the minimum computation time
while it is unclear whether it is optimal in general. In addition,
the combinatorial optimization problems (5) and (7) are just
one way of formulating the USEC problem. It is unclear
whether there are better ways of formulating this problem
to minimize the computation time. Another important future
research direction is to implement the proposed algorithm
for other applications possibly in machine learning and data
mining and investigate the performance gains in terms of
computation time.

ACKNOWLEDGMENT

This work was supported by National Science Foundation
(NSF) CAREER Award 2145835.

REFERENCES

[1] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” in 2019 IEEE International Symposium on
Information Theory (ISIT), July 2019, pp. 2654–2658.

[2] H. Dau, R. Gabrys, Y. C. Huang, C. Feng, Q. H. Luu, E. Alzahrani, and
Z. Tari, “Optimizing the transition waste in coded elastic computing,”
in 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2020, pp. 174–178.

[3] S. Kiani, T. Adikari, and S. C. Draper, “Hierarchical coded elastic
computing,” in ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 4045–
4049.

[4] N. Woolsey, J. Kliewer, R.-R. Chen, and M. Ji, “A practical algorithm
design and evaluation for heterogeneous elastic computing with strag-
glers,” arXiv preprint arXiv:, 2021.

274

[5] R. V. Mises and H. Pollaczek-Geiringer, “Praktische verfahren der
gleichungsauflösung.,” ZAMM-Journal of Applied Mathematics and
Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.
9, no. 1, pp. 58–77, 1929.

[6] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast
response times in parallel computation,” in The 2014 ACM international
conference on Measurement and modeling of computer systems, 2014,
pp. 599–600.

[7] A. Behrouzi-Far and E. Soljanin, “Efficient replication for straggler
mitigation in distributed computing,” arXiv preprint:2006.02318, 2020.

[8] N. Woolsey, R.-R. Chen, and M. Ji, “Heterogeneous computation
assignments in coded elastic computing,” in 2020 IEEE International
Symposium on Information Theory (ISIT), 2020, pp. 168–173.

[9] N. Woolsey, R.-R. Chen, and M. Ji, “Coded elastic computing on
machines with heterogeneous storage and computation speed,” IEEE
Transactions on Communications, vol. 69, no. 5, pp. 2894–2908, 2021.

[10] N. Woolsey, R.-R. Chen, and M. Ji, “Uncoded placement with linear
sub-messages for private information retrieval from storage constrained
databases,” IEEE Transactions on Communications, vol. 68, no. 10, pp.
6039–6053, 2020.

[11] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368–3376.

[12] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” in International Conference on Machine Learning. PMLR,
2018, pp. 5610–5619.

[13] S. Wang, J. Liu, and N. Shroff, “Fundamental limits of approximate
gradient coding,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 3, no. 3, pp. 1–22, 2019.

[14] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic mds codes and expander graphs,” IEEE Transactions on
Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.

[15] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
Information Theory, IEEE Transactions on, vol. 60, no. 5, pp. 2856–
2867, 2014.

275

