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Abstract – We compare exact and approximate performance 

evaluation methods of the Least Recently Used (LRU) caching 

strategy, which is widely applied in local caches and in distribut-

ed web cache architectures in core and edge networks. 

Based on the independent reference model (IRM), the LRU 

startup behaviour and convergence time (CT) is derived. The re-

sult is related to hit ratio approximations by Fagin and Che et al. 

We evaluate the precision of the approximations by identifying 

maximum errors, which are shown to decrease with the cache size.  

For different object sizes, we extend the analytical LRU hit ra-

tio formula, which is tractable for small caches. The Che and CT 

approximations are subject to larger deviations for high variabil-

ity of the object sizes and small caches due to partially unused 

cache space. We propose an estimation scheme for the fraction of 

unused LRU cache space, which is shown to improve the accuracy. 

Keywords - LRU cache, hit ratio curve (HRC), LRU convergence 

time analysis, variable data size, Che and CT approximation, quanti-

tative deviation study, independent request model (IRM) 

I. INTRODUCTION: ANALYSIS OF CACHING METHODS 

Web caching is essential for efficient content delivery, stream-

ing and other services. Content delivery networks, cloud com-

puting and information centric networking rely on distributed 

architectures, which shorten the transport paths and delays by 

data transfers from caches close to the requesting users [2][8] 

[10][15][19][24]. The caching strategy selects the data to be 

stored, which is crucial for the caching performance. The 

cache hit ratio, i.e. the fraction of requests that can be served 

from a cache, is the main performance measure, from which 

quality of service gains can be derived in terms of delay and 

load reduction. Demands for ultra-low delay in 5G/6G net-

works strengthen the relevance of edge cache servers [23]. 

The focus of this work is on the analysis of the Least Re-

cently Used (LRU) caching strategy [21], which is widely ap-

plied in local caches for CPU and database processing. In web 

caching, content selection schemes with awareness of object 

properties, such as the size, popularity and specific caching 

value often outperform LRU [1][10][14][22][25]. Nonetheless, 

LRU is the standard reference also for the analysis of distribut-

ed web caching networks [2][8][19][24]. 

An exact analysis of the steady state LRU hit ratio under the 

independent reference model (IRM) was derived by [18], whose 

computation effort is exponentially increasing with the cache 

size. Therefore, approximation approaches are frequently used 

as a simpler and scalable LRU hit ratio estimate [8][9][11][12].   

Our initial focus is on the LRU hit ratio during cache filling 

phases under IRM request pattern starting from an empty 

cache. This includes the convergence time (CT) of LRU to 

steady state, because LRU enters steady state behavior as soon 

as the cache is filled. The study is also relevant for many other 

caching strategies, which do not evict objects until the cache is 

filled and thus follow the same cache filling process as LRU. 

We show that FIFO and RANDOM strategies achieve the 

LRU IRM hit ratio level when the cache is filled, from which 

they are afterwards declining to a common FIFO and 

RANDOM hit ratio [13] in a second transient phase. 

Moreover, the mean convergence time  is shown to 

be closely related to the “characteristic time”, as considered in 

Che’s approximation of the LRU hit ratio [8][12] and leads to 

an equivalent approach as proposed by Fagin [11] via the    

“expected working-set miss ratio with window size T”.  

A set of recent studies [4][5][12][17][26] confirm an asymp-

totic convergence of both approximations for large caches and 

object catalogues. However, such best-case behavior results do 

not lead to conclusions on the real deviations, which are esti-

mated by Che et al. based on simulation studies: “This solution 

is tested against simulation results, which shows that the solu-

tion is highly accurate with a maximum error less than 2%.” 

We perform an exhaustive quantitative evaluation for cases 

up to a limited cache size, which identifies a special format of 

popularity profiles that leads to maximum deviations of Fagin’s 

and Che’s approach. In this way, we find extreme cases of          

> 8% error, but the results strongly suggest that the maximum 

absolute error is decreasing with the cache size M.  

In a 3rd part, we include objects of different size, for which 

we provide an extension of the exact LRU hit ratio formula 

[18]. Moreover, we study direct extensions of the approxima-

tions by Fagin [11] and Che et al. [8] for variable object sizes. 

We show that the basic approach proposed by [12] in Section 

3.2, is often subject to large deviations for small caches and/or 

high variance of the object sizes [1][3]. We identify oversize 

objects as well as unused cache space (UCS) as components 

that add to deviations, which can lead to zigzag shaped hit 

ratio curves. We derive an estimation scheme for the mean 

UCS, which essentially improves the LRU hit ratio approxima-

tion. As the main new contributions of this work, we provide  

• an analysis of the LRU convergence time and the perfor-

mance of LRU and other caching strategies during cache 

filling phases,  

• a quantitative analysis of the deviations of LRU hit ratio 

approximations by Fagin [11] and Che et al. [8], which 

identifies their worst deviation cases for small cache size M 

and confirms bounds on their accuracy depending on M, 

• extensions of the exact LRU hit ratio solution and approxi-

mations for caches with objects of different size. 

We start with exact analysis results of the LRU hit ratio per-

formance in Section II.A - II.B., followed by an evaluation of 
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LRU cache filling phases and the convergence time distribution 

to steady state in Sections II.C - II.E. Approximations approach-

es of the LRU hit ratio are compared in Sections II.F - 0. Ex-

tensions of those approximations for objects of different size 

are studied in Section III, including an estimation of the un-

used cache space for improving the precision. 

II. LRU STEADY STATE & CONVERGENCE TIME ANALYSIS 

As a basic performance result for LRU caches, W.F. King [18] 

derived a steady state hit ratio formula assuming independent 

requests. The independent request model (IRM) is character-

ized by a catalogue of N objects O1, …, ON, which are refer-

enced with probabilities p1, …, pN for each request independent 

of previous references. Moreover, a fixed cache size for M 

objects of unit size is assumed. IRM request pattern with Zipf 

distributed object popularity has been confirmed manifold as a 

realistic model for web request traces [7][15][24]. Moderate 

correlation among requests and changes in the working set of 

objects are also relevant [15][24][27].  

A. IRM Hit Ratio Formula for LRU Caches 

Steady state probabilities for the content in an LRU cache can 

be derived in a top-down approach along the stack positions 

following the least recently used (LRU) cache eviction rule: 

The top position of the LRU stack is occupied by the most 

recently requested object, such that we find object Oj with 

probability pj on top. The next request beforehand, which re-

ferred to another object, fills the 2nd LRU stack position, such 

that an object Ok ≠ Oj is found there with probability pk /(1 – pj). 

Another object Ol ≠ Oj , Ok is found in the 3rd position with 

probability pl  / (1 – pj  – pk). Then the IRM steady state probabil-

ities pLRU (Ok1
, …, OkM

) for the content in an LRU cache of size 

M and the hit ratio  are given by [2][9][18][20]  

(∀ j ≠ l: kj ≠ kl ; ∀ j: kj ≠ n):   

         
(1) 

 

                          

(2)

 

              

The latter representation of  in the 2nd line of (2) distin-

guishes cases to find On in the positions m + 1 = 2, …, M of the 

stack. The first term pn ⋅ pn represents the contribution of hits   

on On in the top stack position. Note that the probabilities             

pLRU (Ok1
, …, Okm

) are valid not only for a set of M objects that 

fills the cache, but also for stack rankings of the top m objects 

on the entire range m = 1, …, N for any IRM request sequence 

with references to m different objects. However, N!/(N – M)! 

summands are involved in the hit ratio formula, which is trac-

table only for small cache sizes.  

B. LRU Hit Ratio for Objects of Different Size 

Next, we consider an LRU cache for storing objects Ok of dif-

ferent sizes sk, where the fixed cache size M is measured in 

Byte. We exclude objects, which do not fit into the cache, i.e. 

we assume sk ≤ M for  k = 1, …, N and we still assume IRM 

requests with probabilities pk. Upon a cache miss, objects are 

evicted due to the LRU principle, until the requested object fits 

into the cache. In this way, a requested external object may be 

cached without an eviction or after several evictions, depend-

ing on its size and the free space in the cache. 

The steady state probabilities (1-2) for the sequence of the 

top m objects of the LRU stack are still valid for variable ob-

ject sizes on the entire range m = 1, …, N. Therefore, the hit 

ratio formula can be straightforwardly extended for objects of 

different size. We refer to the representation in the 2nd line of 

(2) with a summand for each stack position, which allows to 

restrict to sets of objects that fit into the cache. Then we obtain 

the following extended LRU cache hit ratio formula including 

objects of different sizes  s1, …, sN  (∀ j ≠ l: kj ≠ kl ; ∀ j: kj ≠ n):     

 

                     

(3)

 

C. Convergence and Mixing Time Estimates 

Beyond the previous steady state results, the convergence or 

mixing time to steady state is an important performance crite-

rion. Fast convergence means short time to adapt the cache 

content to changing working sets or changing object popularity 

in transient phases and for non-stationary request pattern. 

In a recent study, Li et al. [20] derive formulas for the order 

of magnitude of the IRM mixing time of basic caching strate-

gies in general, and especially for Zipf distributed requests. 

LRU mixing times are shown to outperform FIFO and RAN-

DOM. The results [20] are extended to multi-segment caches.  

D. LRU Cache Filling and Steady State Convergence Time 

We confirm fast convergence speed of LRU under IRM re-

quest pattern not only in terms of the order of magnitude, but 

more directly by considering the development of the cache 

content during filling phases starting from an empty cache. We 

can make use of the fact that LRU is already in steady state 

behavior as soon as the cache is filled.  

The probability pCache-Fill (Ok1
, …, Okm

) that Ok1
, …, Okm

   are 

the first m objects to enter an empty cache is again determined 

by the steady state result (1) for the content distribution in an 

LRU stack. We obtain pCache-Fill (Ok1
) =  pk1 

for Ok1
 being the  

first object to enter an empty cache. When Ok1
, …, Okm – 1

 are in 

the cache, Okm
 will enter as the next object with probability             

pkm
 /(1 – pk1

 – ∙∙∙ – pkm – 1
). We conclude (∀ j ≠ l: kj ≠ kl ):   

    pCache-Fill (Ok1
, ∙∙∙, Okm

)  

      = pCache-Fill (Ok1
, ∙∙∙, O

 km – 1
) ∙ pkm /(1 – pk1

 – ∙∙∙ – pkm – 1
)                                    (4) 

          =  pk1
∙ ( pk2 /(1 – pk1

 )) ∙ ∙∙∙ ∙  pkm /(1 – pk1
 – ∙∙∙ – pkm – 1

)      

    pCache-Fill (Ok1
, ∙∙∙, Okm

) = pLRU (Ok1
, ∙∙∙, Okm

)   for   m = 1, …, M. 

In this way, the LRU cache content distribution (1) also char-

acterizes cache filling phases: When m objects have entered 

the cache then the hit ratio of the next request is given by the 

LRU steady state hit ratio for a cache of size m. The hit ratio is 
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increasing with the filling level m towards the value for the 

maximum cache size M. The cache filling behavior is the same 

for other caching strategies such as FIFO, LFU, GreedyDual, 

Score-based methods etc. [10][14][22][25], because they differ 

only in the treatment of evictions, but no evictions are per-

formed during filling phases when there is enough room for 

new objects.  

In order to determine the LRU convergence time distribu-

tion, we define the probabilities pr(Ok1
, …, Okm

) that the ob-

jects Ok1
, …, Okm

 have entered an initially empty cache during 

the first r  requests. We start from  p1 (Okj
 ) = pkj 

for  j = 1, …, N. 

The next request leaves the set of cached objects unchanged in 

case of a cache hit or, after a miss, a new object enters. We ob-

tain an iterative scheme to compute pr(Ok1
, …, Okm

) and finally 

the distribution Prob{  = j} of the LRU convergence 

time, corresponding to a partial coupon collection process      

(∀ j ≠ l: kj ≠ kl ; m ≤ M):  

 

              (5) 

Prob{ = j} =    (6)                                                       

The equations (4 - 6) provide a basic result on LRU caching 

which seems to be new according to Wong et al. [28]: “The 

only work which the authors are aware of on transient cache 

startup was done by Bhide et. al. [6].”. While Bhide et al. [6] 

are extending an approximation by Dan and Towsley [9] for 

the warmup time evaluation, Wong et al. [28] are deriving 

exact recursive equations for the number of distinct objects in 

the cache and the cache miss probability. The results in [28] 

are similar to (4 - 6), but the authors of [28] do not make use of 

the basic relationship (4), which extends the classical steady 

state LRU result [18] to the cache filling phases. 

Although the analysis of the result (4 - 6) is presuming and 

starting from an empty cache, the LRU convergence time is 

independent of the initial cache content. The reason behind is 

the fact that only the most recent requests to M different ob-

jects determine the current LRU stack. The LRU caching pro-

cess has no memory of what happened before the time span for 

the last accesses to M different objects, where all other objects 

are evicted, if they are not requested within this time span. 

E. Comparison of LRU, FIFO and LFU convergence times 

Next, we compare the cache filling phases of LRU and other 

strategies based on simulation results. Besides the LRU con-

vergence time, our focus is on the development of the cache hit 

ratio in the filling phase and afterwards towards the steady 

state behaviour. We evaluate an example of Zipf distributed 

IRM requests [7] with β  = 1 

pk = α k –β   for k = 1, …, N;  α = 1 /  k –β           (7)      

for cache size M = 1000 and N = 106 objects. Figure 1 shows 

the development of the hit ratio of the rth request during the 

filling phase starting from an empty cache. Each result repre-

sents the mean value of 1000 simulations. 

In the example, simulated cache filling phases are lasting for a 

mean number of  ≈ 1501 requests. In this phase, other 

considered strategies show the same behavior as LRU. When 

the cache is filled, LRU is in steady state and then keeps a con-

stant hit ratio level, whereas other methods pass through a sec-

ond transient phase from LRU to their own steady state behav-

ior. While RANDOM and FIFO hit ratios decline from LRU 

level to a lower level, the LFU hit ratio is increasing towards 

the maximum IRM hit ratio in a long-lasting convergence pro-

cess, which is still about 1% below the maximum level after  

50 000  requests. The partition of the convergence time of 

FIFO, RANDOM and LFU policies in a first phase represent-

ing the LRU convergence time and an additional second tran-

sient phase confirms mixing times results by Li et al. [20], 

which also show that the LRU convergence is fastest. 

 

Figure 1: Hit ratio development in cache filling phases          

(M = 1000; N = 106; Zipf distributed requests with β  = 1) 

The maximum IRM hit ratio is shown by a horizontal dotted 

line. is achieved, when M most pop-

ular objects O1, …, OM  are cached, assuming that p1 ≥ … ≥  pN.  

Moreover, Figure 1 includes a curve for a hit ratio bound h* (r) 

in the r 

th request. We compute h*(r) = Σ 
k
  pk  ⋅ (1 – (1 – p

k
 ) r – 1 ), 

where the term 1 – (1 – p
k

 ) r represents the probability that an 

object Ok is
 
requested and enters an empty LRU cache within 

the first r requests. The bound h* (r) is exact, if no evictions are 

encountered, i.e. for r ≤ M or for caches of unrestricted size. 

As compared to the simulated LRU hit ratio curve, h*(r) is 

confirmed to have negligible deviations for r <  ≈ 1501. 

For larger r, h*(r) increasingly overestimates the LRU hit ratio 

because of evictions that are ignored in the h* (r) computation. 

F. CT and Che Approximations of the LRU Cache Hit Ratio 

The LRU steady state and convergence time analysis results of 

the previous Sections II.A - II.D involve sets of up to M 

cached objects and are tractable only for small caches. There-

fore, approximations are relevant for tractable analysis, which 

have been proposed by Fagin [11] and Che et al. [8]. Both ap-

proaches are similar and they are again based on the computa-

tion of the mean LRU convergence time .  

Therefore, we observe that an object Ok is requested with 

probability p
r

 (Ok) = 1 – (1 – p
k

 ) r within r requests. Then a 

mean number  #Objects(r) = 1 – (1 – p
k 

) r of objects has en-
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tered an empty cache after r requests. LRU is converging, when  

#Objects(r) approaches the cache size M. We conclude  

    M  ≈ #Objects ( ) =  1 – (1 – p
k

 ) .           (8) 

The right side of (8) is monotonously increasing with  

from 0 to N, such that there is a unique solution for . The 

same format (8) was proposed by Fagin [11] as the basis of an 

LRU hit ratio approximation, although not in the context of 

cache filling and LRU convergence time processes.  

Finally, h CT = h* ( ) is useful to estimate the LRU hit 

ratio when  is determined via (8). We summarize the 

convergence time (CT) approximation of the LRU hit ratio: 

      M ≈  1 – (1 –  p
k

 ) ; h CT (Ok) = 1 – (1 – pk) ;   

   h CT =  pk h CT (Ok) =  pk (1 – (1 – pk) ).             (9) 

The  approach is  equivalent  to the  approxi- 

mation proposed by Fagin [11] as the “ex-

pected working-set miss ratio” without 

reference to the LRU convergence time. In 

the sequel, we show that this approach (9) 

is also closely related to Che’s approxima-

tion [8] and we compare the accuracy of 

both approaches in a detailed quantitative 

study. 

Che et al. [8] assume that requests for 

documents Ok follow a Poisson request 

model (PRM) with request rate λ
 k. The 

PRM probability that Ok is requested dur-

ing time interval ∆T is given by 1 – e –λ
 
k ∆

 

T
 . 

Poisson requests are memoryless and thus 

imply IRM requests, such that the next re- 

quest refers to Ok with probability pk = λ k /λ , 

where λ = ∑ k λ k . Then the mean number 

#Objects (∆T ) of different objects being re-

quested during time ∆T is given by a sum 

of the probabilities 1 – e –λ
 
k ∆

 

T, that Ok is requested. When the 

mean sojourn time ∆TLRU of an object in an LRU cache of size 

M is considered, #Objects (∆T LRU) should be equal to M, which 

leads to an implicit relationship to obtain ∆TLRU [8][12], simi-

lar to the derivation of (8 - 9): 

 #Objects (∆T LRU) =  1– e –λ
 
k ∆

 

T
 
 LRU  ≈ M .               (10)                         

After the mean sojourn time ∆TLRU of objects in an LRU cache 

has been determined via (10), the hit ratio h LRU (Ok) per object 

is obtained as the probability that Ok is referenced again within 

∆T LRU, when Ok still resides in the cache: 

       h LRU(Ok) ≈ Prob{Inter Request Time (Ok) ≤ ∆T LRU}  

                      = 1 – e –λ
 
k ∆

 

T
  

LRU. 

Finally, Che’s approximation h Che of the LRU hit ratio h LRU is 

computed in two steps [8]: First, the solution ∆LRU = λ ∆TLRU is 

determined from                           

M ≈   1 – e –pk ∆ LRU,   where pk= λk /λ.                      (11)                                                  

Then the hit ratio is obtained per request: h Che (Ok) = 1 – e 

–
 
pk 

∆
 
LRU 

and in total 

h Che =   pk ⋅ h CHE (Ok) =   p
k (1 – e – pk 

∆ LRU ).            (12) 

The approach (11 - 12) can be derived within the framework of 

Time-To-Live (TTL) caching, see e.g. Jiang et al. [17], where 

its scope is also widened beyond IRM request streams. 

On the whole, the close relationship between the results (4 - 6) 

for the LRU convergence time  and the approximation 

variants (8 - 9) and (11 - 12) of its mean  shows that the 

notations of  

• “the expected working-set size” by Fagin [11]  and  

• “the characteristic time” by Che et al. [8] 

are equivalent, such that all those hit ratio approximations [8] 

[11] may simply and uniquely be referred to as approximations 

based on the mean LRU convergence time. 

Figure 2: Deviation curves ∆h Che and ∆h CT 

G. Quantitative Study of  Deviations of the Approximations 
 

 

Che’s approximations (11 - 12) and the approach (9) are similar. 

However, they differ in the factor 1 – pk 
 in (9) being substituted 

with e 

–pk  in (11 - 12). The derivation of  follows a discrete 

IRM model at request instances, whereas Che’s approach [8] 

[12] is transferring a continuous Poisson request model to IRM.  
 

Next, we compare the deviations ∆hChe = hChe – hLRU and                       

∆hCT = hCT – hLRU for both approximations. In Figure 2, the 

LRU results are obtained by simulation of Zipf distributed IRM 

requests as defined in (7) with β  = 1.  

Three typical deviation curves of ∆h  Che and ∆h CT for Zipf 

distributed IRM requests are shown for object catalogue sizes        

N = 104, 105 and 106.  

All absolute deviations |∆hChe| and |∆hCT| are below 0.2% in 

these cases. Our LRU simulations are performed over 109   

requests in each case, which leaves uncertainties in terms of 

95% confidence intervals with a width of about 2∙10–5 [14]. 
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Small deviations for Zipf distributed IRM requests similar to 

the curves of Figure 2 are also obtained by [14][24]. Moreover, 

recent analysis studies [4][5][12][26] show asymptotic exact-

ness of Che’s approximation for large M, N due to a statistical 

multiplexing effect. Then the number of different objects being 

requested in an interval ∆TLRU is close to a Gaussian distribu-

tion [12], or an underlying coupon collection process is ana-

lysed in [26]. However, those results are not accompanied with 

bounds on the remaining deviations |∆h Che| and |∆h CT|.  

Therefore, we extend the deviation checks for different dis-

tribution types including geometric and linear distributions, in 

order to find the maximum deviations of h Che and h CT. 

Finally, we checked all 204 266 popularity distributions with  

p
k
 = i

k
 / 50 for k ≤ N ≤ 50, where i

k
 is an integer, i.e., all distribu-

tions, whose request probabilities are multiples of 1/50. The 

LRU hit ratios for all cache sizes M < N are obtained via simu-

lation of 106 requests. The results indicate that maximum devi-

ations |∆h Che| and |∆h CT| are encountered for distributions of n 

equally popular objects among many rarely referenced ones, 

i.e. for distributions of the type 

p
1

 = p
2

 = ∙∙∙ = p
n

 = p/n;   p
n+1

 = ∙∙∙ = p
N

 = (1 –  p)/(N  –  n) → 0;    (13) 

for N → ∞. In such cases, the central limit based asymptotes 

[4][12] do not apply, especially when n or M is small. 

Figure 3 shows curves with the largest deviations that we 

obtained for M = 1, 2, 3 as peak values depending on p. The 

maximum deviations are decreasing with larger cache size M,   

except for |∆hCT| = 0 for M = 1. We obtain the overall maxima    

         max(|∆hChe|) ≈ 8.25% for M = n = 1; p ≈ 0.845, and  

         max(|∆h CT|)  ≈ 5.20% for M = 2, n = 1; p ≈ 0.68.  

The maximum deviations in Figure 3 can be determined analyt-

ically. The steady state LRU cache content for requests of the 

distribution type (13) is obtained similar to  (1-2), yielding  

hLRU(n = 1, p, M ) = p –  p (1  –  p)M;                                           (14) 

hLRU(n = 2,  p, M ) = p – p [(1  –  p)/(1 – p/2)]M–1
 + p2(1–  p)M–1/2; ...       

As general trends for the deviations of the LRU approxima-

tions we observe: 

• Maximum deviations |∆h Che| and |∆h CT| are encountered 

for small cache sizes M. 

• The hCT result is exact for  M = 1:  h CT = h LRU =  p
k
2. 

This is a special case of (9) M = 1  ⇔   = 1. 

• In all simulation results we obtain 

           h Che ≤ h CT ( for M = 1: h Che ≤ h LRU). 

• In  general, we experience  |∆h Che|  and  |∆h CT|  to  decrease 

with smaller variance of the request distribution. 

Both approaches h Che and h CT are exact for uniform popularity. 

Zipf distributed popularity is approaching a uniform shape for  

β → 0 and the variance is decreasing for larger N [4][26]. Thus, 

the deviations are reducing for Zipf distributions when β → 0 

or N → ∞. 

With a closer look at quantitative results per cache size in 

the range M = 1, ∙∙∙, 10, we obtain the maximum absolute devia-

tions of Table 1. The CT approach overestimates the LRU hit 

ratio in cases of maximum deviations ∆hCT, which are decreas-

ing with M and stay below 2% for M > 5. The number n of 

popular objects in extreme distributions is about half of M. 

 

Figure 3: Maximum deviations of |∆hChe| and |∆hCT| 

Deviations of the Che approach are more balanced between 

positive and negative cases. For M < 8, maximum deviations 

∆hChe  are negative with n = M in extreme cases. For M  ≥ 8, the 

maximum deviations are positive, but in general, the maxi-

mum deviations are decreasing with M and below 1% for M > 8.  

Table 1: Maximum deviations of ∆hChe and ∆hCT for M ≤ 10 

 

All cases of maximum deviations in Table 1 are supported by 

the evaluation of 204 266 popularity distributions with p
k

 = i
k

 / 50.  

Each sorted list of distributions with largest absolute deviations 

for a specific cache size M starts with dozens or even hundreds 

of cases, which are closest to the type of equation (13) with the 

specific parameter set for each case as indicated in Table 1. 

Then there are n objects with request probabilities p
k

 = i
k

 / 50         

(i
k

  ∈{1, ∙∙∙, 50}) around the common value for p
1

 = ∙∙∙ = p
n

   given 

in Table 1 and p
k

  = 0 for k > n, or eventually p
k

  = 1/50 for one 

or a few more objects.  

In summary, the quantitative study strongly suggests that 

the maximum deviations |∆h Che| and |∆h CT| 

• are encountered for the distribution type defined by (13), 

• are decreasing with M, 

• are bounded by |∆h Che| < 0.01 and |∆h CT| < 0.13 for M  ≥ 10. 

However, our quantitative results do not provide coverage for 

a general confirmation of those extreme cases for large caches 

and leave a proof of the latter properties for future study. 
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III. LRU APPROXIMATIONS FOR OBJECTS OF DIFFERENT SIZE 

The Che and CT approximations can be straightforwardly ex-

tended to objects of different size [12]. The LRU caching 

scheme with regard to individual object sizes sk is described in 

Section II.B. The implicit relationships (8) and (11) include 

variable object sizes sk in the following format [12]: 

  M =    s
k

   (1 – e 

–pk ∆
 

LRU);  M =    s
k

   (1 – (1 –  p
k

 ) ).    (15) 

Together with (15), the hit ratio results (9) for h Che and (12) for 

h CT apply to the extended object hit ratio without change. The 

byte hit ratio for both approaches is given by: 

h Che,Byte =    s
k pk (1 – e 

– pk
   

∆
 

LRU
 
)  / 

    

s
k pk ;                              (16)   

h CT,Byte =  s
k pk (1 – (1 –  p

k
 ) ) /

   

s
k pk 

.                          (17) 

A. Imprecise Approximation Cases for Small Cache Size  

A simple small cache example with N = 2 objects of size          

s1 = s2 = 10 and IRM request probabilities p1 = p2 = 0.5 leads to      

h Che(M) = h CT(M) = M / 20 for M ≤ 20, which largely deviates 

from h  LRU = 0 for M < 10, h LRU = 0.5 for 10 ≤ M < 20. The 

deviations ∆hChe, ∆hCT  are ramping up to 45% for M = 9 and    

M =19. The example suggests the following improvements of 

the basic h Che and h CT approach to reduce such deviations:  

• Oversize correction 

We ignore objects, which do not fit into the cache, such that 

∀k: s
k
  ≤ M. In this way, h Che(M) = h CT(M) = 0 is corrected in 

the range M < 10 in this example. 

• Unused cache space (UCS) correction 

We compute hChe(M*) and hCT(M*) for reduced cache size 

M*, where the mean amount of unused cache space    

E[UCS(M)] is subtracted M* = M – E[UCS(M)]. In the ex-

ample, the UCS correction eliminates the deviations on the 

entire range 0 ≤ M ≤ 20 of the hit ratio curve (HRC). 

B. Mean UCS Computation Model and Algorithm 

The oversize correction is a generally simple task, whereas the 

unused cache space is changing as a dynamic stochastic pro-

cess depending on the cache content. Therefore, it requires 

more elaborate modelling to determine E[UCS(M)]. 

We evaluate the mean UCS by a simplified model that fol-

lows UCS changes caused by LRU replacement of objects per 

request and captures the steady state UCS behaviour.  

Let  denote the size of the object that is referenced in the 

mth request and  the sizes of the eviction candidates. The 

cache fill level before the mth request is denoted as F
m
 ≤  M . It 

remains unchanged in case of a cache hit, but F
m
 is modified 

after each cache miss by insertion of the requested object and 

compensating evictions from the LRU cache: 

                            F
m+1

 = F
m
 + . 

The number K of required evictions follows the conditions: 

 

 

 

      K  =  0       if  F
m

 +  ≤ M  or otherwise   

      F
m
 + 

 
≤  M  < F

m
 + . 

We iteratively compute F
m
 in the format of discrete distribu-

tions f
m
(j) = Prob(F

m
 = j) until steady state conditions are ap-

proached and a stabilized mean unused cache space is ob-

tained: E[UCS(M)] = M – lim m → ∞ E[F
m
].  

In order to determine which object enters the cache after a 

cache miss, we refer to Che’s approximation for providing an 

estimate e 

–pk ∆
 

LRU of the probability that object Ok is outside of 

the cache. Then the probability that Ok is the next object to 

enter the cache is given by 

pEnter(Ok) ≈ pk  e 

–pk ∆
 

LRU / Σk pk e 

–pk ∆
 

LRU. 

Consequently, the distribution of the size  of an object enter-

ing the cache is given by s(j) = Σk   pEnter(Ok)  Prob(sk = j).  

The distribution s(j) also characterizes the size of evicted 

objects because the frequency of evictions of an object is the 

same as the frequency for (re-)entering the cache. We finally 

assume that all sizes  and  of inserted and evicted objects 

are independent and follow the same distribution s(j) and we 

denote the maximum object size as s
max

.  

When the fill level F
m

 is in the range M – smax < F
m

 ≤ M then    

F*
m 

= F
m

 + 
 
is bounded by M – s

max
 < F*

m 
 ≤ M + s

max
. The 

evictions reduce the fill level again into M  –  s
max

 <  F
m+1

 ≤   M. We 

start with F
1 

at the maximum achievable fill level, which is 

equal to M or at least in the range M – smax < F
1

 ≤ M. An itera-

tion step proceeds from f
m
( j) = Prob{F

m
 = j} for M – smax < j ≤ M  

via a convolution for inserting an object with size distribution 

s(k) towards  f
m

*( j) = Prob{F
m

 +  = j}.  

Thereafter, the convolution result f
m

*( j) is transformed into 

the next fill level distribution f
m+1

( j) corresponding to a re-

quired number of evictions via the following C++ pseudocode: 

for (k = M + smax; k > M; k– –) 

      for ( j = 1; j ≤ smax; j++)   f
m

*(k – j) += f
m

*(k) ⋅ s(j); 

for ( j = 0; j < smax; j++)       f
m+1

 (M – j) := f
m

*(M – j);  

Each iteration step to determine f
m+1

(k) from f
m
(k) has compu-

tational complexity O( ). The entire computation of 

E[UCS(M)] = M – lim m → ∞ E[F
m
] has complexity O( ), 

where we experience a fast convergence to a steady state. For 

s
max

 ≤ 10 000, the E[UCS(M)] computation stays below 1s on a 

usual PC. Even for a broader range of object sizes, we can keep 

the distribution s( j) within 10 000 steps via coarser discretization.  

C. Effect of the USC Correction on the Precision 

Finally, we demonstrate the effect of the oversize and UCS cor-

rection on the precision of Che’s approximation in a scenario 

with objects of largely varying size. Therefore, the object cata-

logue includes 50 objects of unit size s1 = … = s50 = 1 and re-

quest probabilities  p1 = … = p50 = 1%, as well as 5 objects with       

10 - 50-fold size s50 + k = 10 k and p50 + k = 10% for k = 1, …, 5. 
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Figure 4: Effect of oversize exclusion and UCS correction 

Figure 4 shows hit ratio curves (HRCs) for  

(1)  optimum static caching due to a knapsack solution,  

       which prefers objects with maximum ratio p
k 

 / s
k
, 

(2)  LRU via simulative evaluation,  

(3)  the basic Che approach according to (15) [12], 

(4)  Che’s approach without oversize objects for M < 50, and  

(5)  Che’s approach with oversize and mean UCS correction. 

A zigzag shape of the LRU HRC is apparent in the cache size 

range 9 ≤ M ≤ 50. For M = 9, the LRU cache is filled with       

9 out of the 50 unit size objects, while the larger objects do not 

fit, yielding a hit ratio h LRU (9) = 9%. For M = 10, object O51 of 

size 10 can enter and fill the cache, still leading to 10% hit 

ratio at this stage. However, a next request to a unit size object 

will replace O51 by a single object of size 1 in an almost empty 

cache. This effect reduces the LRU HRC from hLRU(9) = 9% 

downto h LRU(10) ≈ 5.7%, despite of increasing cache size. The 

LRU HRC is staggering several times, when more large ob-

jects can enter, until a last step down from h LRU(49) ≈ 16.8% 

downto h LRU(50) ≈ 13.7%.  

On the other hand, the basic Che HRC is monotonously in-

creasing. Oversize correction is required in order to follow the 

zigzag shape of the LRU HRC, but leads to overestimation. 

The HRC for combined oversize and UCS correction comes 

significantly closer to the LRU HRC.  

As the maximum absolute deviation ∆max = max(|∆hChe|) and 

the standard deviation σ we obtain 

• for the basic Che approach:       ∆max ≈ 11.45%; σ ≈ 4.53%; 

• without oversize objects:             ∆max ≈ 8.56%; σ ≈ 4.17%; 

• with oversize & UCS correction:  ∆max ≈ 3.7%; σ ≈ 1.74%.     

In general, oversize and unused cache space corrections are 

relevant for the first part of the HRC with small M, but will 

become negligible for large N, M, if the cache size is much 

larger than the size of single objects.  

As a final remark, it is obvious from this and many other 

studies [1][10][22][24] that LRU caching performance can be 

poor for IRM and moderately correlated request pattern, when 

compared to optimized score based caching methods, especially 

when the variance of the object sizes is high. This is crucial for 

web caching, where the size of cacheable data units is scatter-

ing over a wide range from kByte to Mbyte and beyond [1][3]. 

Zigzag-shaped HRC curves generally indicate performance 

deficits of a caching method, because optimized strategies can 

at least preserve the hit ratio level, when the cache size is in-

creasing. 

CONCLUSIONS 

Since a cache filling phase is sufficient for the convergence 

time (CT) of LRU to steady state IRM behavior, the CT analy-

sis can be restricted to a cache startup phase, whose hit ratio 

development is still characterized by the classical LRU analy-

sis [18]. Most other caching strategies show the same behavior 

as LRU in cache filling phases, followed by a second transient 

phase from LRU level to their own steady state hit ratio level. 

The mean LRU CT is approximated in approaches by Fagin  

[11] as “window size T” to determine the “expected working 

set miss ratio” and by Che et al. [8] as “characteristic time”.  

We complement results [4][5][12][26] confirming asymptot-

ic accuracy of both approximations [8][11] of the LRU hit ratio  

for large caches with a quantitative study covering large devia-

tion cases. Request distributions with maximum absolute de-

viation of |∆hChe| ≈ 8.25% are identified for Che’s approach [8] 

and with |∆hCT| ≈ 5.2% for the CT approach [11]. The exact 

LRU analysis [18] is tractable for small caches and offers an 

alternative especially in the range, where the approximations 

are subject to large errors. 

On the other hand, our results strongly suggest monotonously 

decreasing deviations with the cache size M and confirm gen-

erally good accuracy for usual cache sizes with |∆hChe| < 1% and 

|∆hCT| < 1.3% already for M ≥ 10. However, our quantitative 

study is focused on caches of limited size, leaving a general 

proof of those results for future study.  

For LRU caches with objects of different size, we derive an 

extension of the exact hit ratio formula [18]. Based on the Che 

and CT approaches, an improved approximation scheme is 

provided, which takes the fraction of unused cache space into 

account. This leads to significantly better precision especially 

for small caches and when the variance of the size of requested 

objects is high. Otherwise, if the object sizes are much smaller 

than the cache size, we expect a statistical multiplexing effect 

that leads to asymptotic convergence of the extended Che and 

CT estimates for varying object sizes, similar to already prov-

en properties for unit size objects. 
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