
Analysis of the LRU Cache StartUp Phase and Convergence

Time and Error Bounds on Approximations by Fagin and Che

 Gerhard Hasslinger Konstantinos Ntougias Frank Hasslinger Oliver Hohlfeld

 Deutsche Telekom University of Cyprus Darmstadt Univ. of Tech. Brandenburg Univ. of Tech.

 Darmstadt, Germany Cyprus, Greece Darmstadt, Germany Cottbus, Germany

 gerhard.hasslinger@ ntougias.konstantinos@ frank.hasslinger@ oliver.hohlfeld@b-tu.de

 telekom.de ucy.ac.cy stud.tu-darmstadt.de

Abstract – We compare exact and approximate performance

evaluation methods of the Least Recently Used (LRU) caching

strategy, which is widely applied in local caches and in distribut-

ed web cache architectures in core and edge networks.

Based on the independent reference model (IRM), the LRU

startup behaviour and convergence time (CT) is derived. The re-

sult is related to hit ratio approximations by Fagin and Che et al.

We evaluate the precision of the approximations by identifying

maximum errors, which are shown to decrease with the cache size.

For different object sizes, we extend the analytical LRU hit ra-

tio formula, which is tractable for small caches. The Che and CT

approximations are subject to larger deviations for high variabil-

ity of the object sizes and small caches due to partially unused

cache space. We propose an estimation scheme for the fraction of

unused LRU cache space, which is shown to improve the accuracy.

Keywords - LRU cache, hit ratio curve (HRC), LRU convergence

time analysis, variable data size, Che and CT approximation, quanti-

tative deviation study, independent request model (IRM)

I. INTRODUCTION: ANALYSIS OF CACHING METHODS

Web caching is essential for efficient content delivery, stream-

ing and other services. Content delivery networks, cloud com-

puting and information centric networking rely on distributed

architectures, which shorten the transport paths and delays by

data transfers from caches close to the requesting users [2][8]

[10][15][19][24]. The caching strategy selects the data to be

stored, which is crucial for the caching performance. The

cache hit ratio, i.e. the fraction of requests that can be served

from a cache, is the main performance measure, from which

quality of service gains can be derived in terms of delay and

load reduction. Demands for ultra-low delay in 5G/6G net-

works strengthen the relevance of edge cache servers [23].

The focus of this work is on the analysis of the Least Re-

cently Used (LRU) caching strategy [21], which is widely ap-

plied in local caches for CPU and database processing. In web

caching, content selection schemes with awareness of object

properties, such as the size, popularity and specific caching

value often outperform LRU [1][10][14][22][25]. Nonetheless,

LRU is the standard reference also for the analysis of distribut-

ed web caching networks [2][8][19][24].

An exact analysis of the steady state LRU hit ratio under the

independent reference model (IRM) was derived by [18], whose

computation effort is exponentially increasing with the cache

size. Therefore, approximation approaches are frequently used

as a simpler and scalable LRU hit ratio estimate [8][9][11][12].

Our initial focus is on the LRU hit ratio during cache filling

phases under IRM request pattern starting from an empty

cache. This includes the convergence time (CT) of LRU to

steady state, because LRU enters steady state behavior as soon

as the cache is filled. The study is also relevant for many other

caching strategies, which do not evict objects until the cache is

filled and thus follow the same cache filling process as LRU.

We show that FIFO and RANDOM strategies achieve the

LRU IRM hit ratio level when the cache is filled, from which

they are afterwards declining to a common FIFO and

RANDOM hit ratio [13] in a second transient phase.

Moreover, the mean convergence time is shown to

be closely related to the “characteristic time”, as considered in

Che’s approximation of the LRU hit ratio [8][12] and leads to

an equivalent approach as proposed by Fagin [11] via the

“expected working-set miss ratio with window size T”.

A set of recent studies [4][5][12][17][26] confirm an asymp-

totic convergence of both approximations for large caches and

object catalogues. However, such best-case behavior results do

not lead to conclusions on the real deviations, which are esti-

mated by Che et al. based on simulation studies: “This solution

is tested against simulation results, which shows that the solu-

tion is highly accurate with a maximum error less than 2%.”

We perform an exhaustive quantitative evaluation for cases

up to a limited cache size, which identifies a special format of

popularity profiles that leads to maximum deviations of Fagin’s

and Che’s approach. In this way, we find extreme cases of

> 8% error, but the results strongly suggest that the maximum

absolute error is decreasing with the cache size M.

In a 3rd part, we include objects of different size, for which

we provide an extension of the exact LRU hit ratio formula

[18]. Moreover, we study direct extensions of the approxima-

tions by Fagin [11] and Che et al. [8] for variable object sizes.

We show that the basic approach proposed by [12] in Section

3.2, is often subject to large deviations for small caches and/or

high variance of the object sizes [1][3]. We identify oversize

objects as well as unused cache space (UCS) as components

that add to deviations, which can lead to zigzag shaped hit

ratio curves. We derive an estimation scheme for the mean

UCS, which essentially improves the LRU hit ratio approxima-

tion. As the main new contributions of this work, we provide

• an analysis of the LRU convergence time and the perfor-

mance of LRU and other caching strategies during cache

filling phases,

• a quantitative analysis of the deviations of LRU hit ratio

approximations by Fagin [11] and Che et al. [8], which

identifies their worst deviation cases for small cache size M

and confirms bounds on their accuracy depending on M,

• extensions of the exact LRU hit ratio solution and approxi-

mations for caches with objects of different size.

We start with exact analysis results of the LRU hit ratio per-

formance in Section II.A - II.B., followed by an evaluation of

ISBN 978-3-903176-49-2 © 2022 IFIP 254

LRU cache filling phases and the convergence time distribution

to steady state in Sections II.C - II.E. Approximations approach-

es of the LRU hit ratio are compared in Sections II.F - 0. Ex-

tensions of those approximations for objects of different size

are studied in Section III, including an estimation of the un-

used cache space for improving the precision.

II. LRU STEADY STATE & CONVERGENCE TIME ANALYSIS

As a basic performance result for LRU caches, W.F. King [18]

derived a steady state hit ratio formula assuming independent

requests. The independent request model (IRM) is character-

ized by a catalogue of N objects O1, …, ON, which are refer-

enced with probabilities p1, …, pN for each request independent

of previous references. Moreover, a fixed cache size for M

objects of unit size is assumed. IRM request pattern with Zipf

distributed object popularity has been confirmed manifold as a

realistic model for web request traces [7][15][24]. Moderate

correlation among requests and changes in the working set of

objects are also relevant [15][24][27].

A. IRM Hit Ratio Formula for LRU Caches

Steady state probabilities for the content in an LRU cache can

be derived in a top-down approach along the stack positions

following the least recently used (LRU) cache eviction rule:

The top position of the LRU stack is occupied by the most

recently requested object, such that we find object Oj with

probability pj on top. The next request beforehand, which re-

ferred to another object, fills the 2nd LRU stack position, such

that an object Ok ≠ Oj is found there with probability pk /(1 – pj).

Another object Ol ≠ Oj , Ok is found in the 3rd position with

probability pl / (1 – pj – pk). Then the IRM steady state probabil-

ities pLRU (Ok1
, …, OkM

) for the content in an LRU cache of size

M and the hit ratio are given by [2][9][18][20]

(∀ j ≠ l: kj ≠ kl ; ∀ j: kj ≠ n):

(1)

(2)

The latter representation of in the 2nd line of (2) distin-

guishes cases to find On in the positions m + 1 = 2, …, M of the

stack. The first term pn ⋅ pn represents the contribution of hits

on On in the top stack position. Note that the probabilities

pLRU (Ok1
, …, Okm

) are valid not only for a set of M objects that

fills the cache, but also for stack rankings of the top m objects

on the entire range m = 1, …, N for any IRM request sequence

with references to m different objects. However, N!/(N – M)!

summands are involved in the hit ratio formula, which is trac-

table only for small cache sizes.

B. LRU Hit Ratio for Objects of Different Size

Next, we consider an LRU cache for storing objects Ok of dif-

ferent sizes sk, where the fixed cache size M is measured in

Byte. We exclude objects, which do not fit into the cache, i.e.

we assume sk ≤ M for k = 1, …, N and we still assume IRM

requests with probabilities pk. Upon a cache miss, objects are

evicted due to the LRU principle, until the requested object fits

into the cache. In this way, a requested external object may be

cached without an eviction or after several evictions, depend-

ing on its size and the free space in the cache.

The steady state probabilities (1-2) for the sequence of the

top m objects of the LRU stack are still valid for variable ob-

ject sizes on the entire range m = 1, …, N. Therefore, the hit

ratio formula can be straightforwardly extended for objects of

different size. We refer to the representation in the 2nd line of

(2) with a summand for each stack position, which allows to

restrict to sets of objects that fit into the cache. Then we obtain

the following extended LRU cache hit ratio formula including

objects of different sizes s1, …, sN (∀ j ≠ l: kj ≠ kl ; ∀ j: kj ≠ n):

(3)

C. Convergence and Mixing Time Estimates

Beyond the previous steady state results, the convergence or

mixing time to steady state is an important performance crite-

rion. Fast convergence means short time to adapt the cache

content to changing working sets or changing object popularity

in transient phases and for non-stationary request pattern.

In a recent study, Li et al. [20] derive formulas for the order

of magnitude of the IRM mixing time of basic caching strate-

gies in general, and especially for Zipf distributed requests.

LRU mixing times are shown to outperform FIFO and RAN-

DOM. The results [20] are extended to multi-segment caches.

D. LRU Cache Filling and Steady State Convergence Time

We confirm fast convergence speed of LRU under IRM re-

quest pattern not only in terms of the order of magnitude, but

more directly by considering the development of the cache

content during filling phases starting from an empty cache. We

can make use of the fact that LRU is already in steady state

behavior as soon as the cache is filled.

The probability pCache-Fill (Ok1
, …, Okm

) that Ok1
, …, Okm

 are

the first m objects to enter an empty cache is again determined

by the steady state result (1) for the content distribution in an

LRU stack. We obtain pCache-Fill (Ok1
) = pk1

for Ok1
 being the

first object to enter an empty cache. When Ok1
, …, Okm – 1

 are in

the cache, Okm
 will enter as the next object with probability

pkm
 /(1 – pk1

 – ∙∙∙ – pkm – 1
). We conclude (∀ j ≠ l: kj ≠ kl):

 pCache-Fill (Ok1
, ∙∙∙, Okm

)

 = pCache-Fill (Ok1
, ∙∙∙, O

 km – 1
) ∙ pkm /(1 – pk1

 – ∙∙∙ – pkm – 1
) (4)

 = pk1
∙ (pk2 /(1 – pk1

)) ∙ ∙∙∙ ∙ pkm /(1 – pk1
 – ∙∙∙ – pkm – 1

) 

 pCache-Fill (Ok1
, ∙∙∙, Okm

) = pLRU (Ok1
, ∙∙∙, Okm

) for m = 1, …, M.

In this way, the LRU cache content distribution (1) also char-

acterizes cache filling phases: When m objects have entered

the cache then the hit ratio of the next request is given by the

LRU steady state hit ratio for a cache of size m. The hit ratio is

255

increasing with the filling level m towards the value for the

maximum cache size M. The cache filling behavior is the same

for other caching strategies such as FIFO, LFU, GreedyDual,

Score-based methods etc. [10][14][22][25], because they differ

only in the treatment of evictions, but no evictions are per-

formed during filling phases when there is enough room for

new objects.

In order to determine the LRU convergence time distribu-

tion, we define the probabilities pr(Ok1
, …, Okm

) that the ob-

jects Ok1
, …, Okm

 have entered an initially empty cache during

the first r requests. We start from p1 (Okj
) = pkj

for j = 1, …, N.

The next request leaves the set of cached objects unchanged in

case of a cache hit or, after a miss, a new object enters. We ob-

tain an iterative scheme to compute pr(Ok1
, …, Okm

) and finally

the distribution Prob{ = j} of the LRU convergence

time, corresponding to a partial coupon collection process

(∀ j ≠ l: kj ≠ kl ; m ≤ M):

 (5)

Prob{ = j} = (6)

The equations (4 - 6) provide a basic result on LRU caching

which seems to be new according to Wong et al. [28]: “The

only work which the authors are aware of on transient cache

startup was done by Bhide et. al. [6].”. While Bhide et al. [6]

are extending an approximation by Dan and Towsley [9] for

the warmup time evaluation, Wong et al. [28] are deriving

exact recursive equations for the number of distinct objects in

the cache and the cache miss probability. The results in [28]

are similar to (4 - 6), but the authors of [28] do not make use of

the basic relationship (4), which extends the classical steady

state LRU result [18] to the cache filling phases.

Although the analysis of the result (4 - 6) is presuming and

starting from an empty cache, the LRU convergence time is

independent of the initial cache content. The reason behind is

the fact that only the most recent requests to M different ob-

jects determine the current LRU stack. The LRU caching pro-

cess has no memory of what happened before the time span for

the last accesses to M different objects, where all other objects

are evicted, if they are not requested within this time span.

E. Comparison of LRU, FIFO and LFU convergence times

Next, we compare the cache filling phases of LRU and other

strategies based on simulation results. Besides the LRU con-

vergence time, our focus is on the development of the cache hit

ratio in the filling phase and afterwards towards the steady

state behaviour. We evaluate an example of Zipf distributed

IRM requests [7] with β = 1

pk = α k –β for k = 1, …, N; α = 1 / k –β (7)

for cache size M = 1000 and N = 106 objects. Figure 1 shows

the development of the hit ratio of the rth request during the

filling phase starting from an empty cache. Each result repre-

sents the mean value of 1000 simulations.

In the example, simulated cache filling phases are lasting for a

mean number of ≈ 1501 requests. In this phase, other

considered strategies show the same behavior as LRU. When

the cache is filled, LRU is in steady state and then keeps a con-

stant hit ratio level, whereas other methods pass through a sec-

ond transient phase from LRU to their own steady state behav-

ior. While RANDOM and FIFO hit ratios decline from LRU

level to a lower level, the LFU hit ratio is increasing towards

the maximum IRM hit ratio in a long-lasting convergence pro-

cess, which is still about 1% below the maximum level after

50 000 requests. The partition of the convergence time of

FIFO, RANDOM and LFU policies in a first phase represent-

ing the LRU convergence time and an additional second tran-

sient phase confirms mixing times results by Li et al. [20],

which also show that the LRU convergence is fastest.

Figure 1: Hit ratio development in cache filling phases

(M = 1000; N = 106; Zipf distributed requests with β = 1)

The maximum IRM hit ratio is shown by a horizontal dotted

line. is achieved, when M most pop-

ular objects O1, …, OM are cached, assuming that p1 ≥ … ≥ pN.

Moreover, Figure 1 includes a curve for a hit ratio bound h* (r)

in the r

th request. We compute h*(r) = Σ
k
 pk ⋅ (1 – (1 – p

k
) r – 1),

where the term 1 – (1 – p
k

) r represents the probability that an

object Ok is

requested and enters an empty LRU cache within

the first r requests. The bound h* (r) is exact, if no evictions are

encountered, i.e. for r ≤ M or for caches of unrestricted size.

As compared to the simulated LRU hit ratio curve, h*(r) is

confirmed to have negligible deviations for r < ≈ 1501.

For larger r, h*(r) increasingly overestimates the LRU hit ratio

because of evictions that are ignored in the h* (r) computation.

F. CT and Che Approximations of the LRU Cache Hit Ratio

The LRU steady state and convergence time analysis results of

the previous Sections II.A - II.D involve sets of up to M

cached objects and are tractable only for small caches. There-

fore, approximations are relevant for tractable analysis, which

have been proposed by Fagin [11] and Che et al. [8]. Both ap-

proaches are similar and they are again based on the computa-

tion of the mean LRU convergence time .

Therefore, we observe that an object Ok is requested with

probability p
r

 (Ok) = 1 – (1 – p
k

) r within r requests. Then a

mean number #Objects(r) = 1 – (1 – p
k

) r of objects has en-

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

H
it

 R
a

ti
o

 o
f

th
e

n
ex

t
P

ro
ce

ss
ed

 R
e
q

u
e
st

Number r of Processed IRM Requests

Max. Hit Ratio of Eq. (1)

Bound after r Requests

LFU

LRU

FIFO/RANDOM

Common Cache

Filling Phase

Steady State LFU Level

Steady State LRU Level

Steady State

FIFO/RANDOM Level

r

IRM Hit Ratio

h*(r)

256

tered an empty cache after r requests. LRU is converging, when

#Objects(r) approaches the cache size M. We conclude

 M ≈ #Objects () = 1 – (1 – p
k

) . (8)

The right side of (8) is monotonously increasing with

from 0 to N, such that there is a unique solution for . The

same format (8) was proposed by Fagin [11] as the basis of an

LRU hit ratio approximation, although not in the context of

cache filling and LRU convergence time processes.

Finally, h CT = h* () is useful to estimate the LRU hit

ratio when is determined via (8). We summarize the

convergence time (CT) approximation of the LRU hit ratio:

 M ≈ 1 – (1 – p
k

) ; h CT (Ok) = 1 – (1 – pk) ;

 h CT = pk h CT (Ok) = pk (1 – (1 – pk)). (9)

The approach is equivalent to the approxi-

mation proposed by Fagin [11] as the “ex-

pected working-set miss ratio” without

reference to the LRU convergence time. In

the sequel, we show that this approach (9)

is also closely related to Che’s approxima-

tion [8] and we compare the accuracy of

both approaches in a detailed quantitative

study.

Che et al. [8] assume that requests for

documents Ok follow a Poisson request

model (PRM) with request rate λ
 k. The

PRM probability that Ok is requested dur-

ing time interval ∆T is given by 1 – e –λ

k ∆

T
 .

Poisson requests are memoryless and thus

imply IRM requests, such that the next re-

quest refers to Ok with probability pk = λ k /λ ,

where λ = ∑ k λ k . Then the mean number

#Objects (∆T) of different objects being re-

quested during time ∆T is given by a sum

of the probabilities 1 – e –λ

k ∆

T, that Ok is requested. When the

mean sojourn time ∆TLRU of an object in an LRU cache of size

M is considered, #Objects (∆T LRU) should be equal to M, which

leads to an implicit relationship to obtain ∆TLRU [8][12], simi-

lar to the derivation of (8 - 9):

 #Objects (∆T LRU) = 1– e –λ

k ∆

T

 LRU ≈ M . (10)

After the mean sojourn time ∆TLRU of objects in an LRU cache

has been determined via (10), the hit ratio h LRU (Ok) per object

is obtained as the probability that Ok is referenced again within

∆T LRU, when Ok still resides in the cache:

 h LRU(Ok) ≈ Prob{Inter Request Time (Ok) ≤ ∆T LRU}

 = 1 – e –λ

k ∆

T

LRU.

Finally, Che’s approximation h Che of the LRU hit ratio h LRU is

computed in two steps [8]: First, the solution ∆LRU = λ ∆TLRU is

determined from

M ≈ 1 – e –pk ∆ LRU, where pk= λk /λ. (11)

Then the hit ratio is obtained per request: h Che (Ok) = 1 – e

–

pk

∆

LRU

and in total

h Che = pk ⋅ h CHE (Ok) = p
k (1 – e – pk

∆ LRU). (12)

The approach (11 - 12) can be derived within the framework of

Time-To-Live (TTL) caching, see e.g. Jiang et al. [17], where

its scope is also widened beyond IRM request streams.

On the whole, the close relationship between the results (4 - 6)

for the LRU convergence time and the approximation

variants (8 - 9) and (11 - 12) of its mean shows that the

notations of

• “the expected working-set size” by Fagin [11] and

• “the characteristic time” by Che et al. [8]

are equivalent, such that all those hit ratio approximations [8]

[11] may simply and uniquely be referred to as approximations

based on the mean LRU convergence time.

Figure 2: Deviation curves ∆h Che and ∆h CT

G. Quantitative Study of Deviations of the Approximations

Che’s approximations (11 - 12) and the approach (9) are similar.

However, they differ in the factor 1 – pk
 in (9) being substituted

with e

–pk in (11 - 12). The derivation of follows a discrete

IRM model at request instances, whereas Che’s approach [8]

[12] is transferring a continuous Poisson request model to IRM.

Next, we compare the deviations ∆hChe = hChe – hLRU and

∆hCT = hCT – hLRU for both approximations. In Figure 2, the

LRU results are obtained by simulation of Zipf distributed IRM

requests as defined in (7) with β = 1.

Three typical deviation curves of ∆h Che and ∆h CT for Zipf

distributed IRM requests are shown for object catalogue sizes

N = 104, 105 and 106.

All absolute deviations |∆hChe| and |∆hCT| are below 0.2% in

these cases. Our LRU simulations are performed over 109

requests in each case, which leaves uncertainties in terms of

95% confidence intervals with a width of about 2∙10–5 [14].

-0,13%

-0,11%

-0,09%

-0,07%

-0,05%

-0,03%

-0,01%

0,01%

0,03%

0,05%

0,07%

0,09%

0,11%

0,13%

0,15%

0,17%

0,19%

D
ev

ia
ti

o
n

s
o

f
 t

h
e

C
h

e
&

 C
T

 A
p

p
ro

x
im

a
ti

o
n

s

Cache Size M; Zipf Distributed IRM Requests (ββββ = 1)

 . .

0%

20%

80%

100%

60%

40%

L
R

U
 H

it
 R

a
ti

o

hLRU (N = 104)hCT – hLRU (N = 104)

hLRU (N = 105)

hLRU (N = 106)

hCT – hLRU (N = 105)

hCT – hLRU (N = 106)

hChe – hLRU (N = 106)

hChe – hLRU (N = 105)

hChe – hLRU (N = 104)

257

Small deviations for Zipf distributed IRM requests similar to

the curves of Figure 2 are also obtained by [14][24]. Moreover,

recent analysis studies [4][5][12][26] show asymptotic exact-

ness of Che’s approximation for large M, N due to a statistical

multiplexing effect. Then the number of different objects being

requested in an interval ∆TLRU is close to a Gaussian distribu-

tion [12], or an underlying coupon collection process is ana-

lysed in [26]. However, those results are not accompanied with

bounds on the remaining deviations |∆h Che| and |∆h CT|.

Therefore, we extend the deviation checks for different dis-

tribution types including geometric and linear distributions, in

order to find the maximum deviations of h Che and h CT.

Finally, we checked all 204 266 popularity distributions with

p
k
 = i

k
 / 50 for k ≤ N ≤ 50, where i

k
 is an integer, i.e., all distribu-

tions, whose request probabilities are multiples of 1/50. The

LRU hit ratios for all cache sizes M < N are obtained via simu-

lation of 106 requests. The results indicate that maximum devi-

ations |∆h Che| and |∆h CT| are encountered for distributions of n

equally popular objects among many rarely referenced ones,

i.e. for distributions of the type

p
1

 = p
2

 = ∙∙∙ = p
n

 = p/n; p
n+1

 = ∙∙∙ = p
N

 = (1 – p)/(N – n) → 0; (13)

for N → ∞. In such cases, the central limit based asymptotes

[4][12] do not apply, especially when n or M is small.

Figure 3 shows curves with the largest deviations that we

obtained for M = 1, 2, 3 as peak values depending on p. The

maximum deviations are decreasing with larger cache size M,

except for |∆hCT| = 0 for M = 1. We obtain the overall maxima

 max(|∆hChe|) ≈ 8.25% for M = n = 1; p ≈ 0.845, and

 max(|∆h CT|) ≈ 5.20% for M = 2, n = 1; p ≈ 0.68.

The maximum deviations in Figure 3 can be determined analyt-

ically. The steady state LRU cache content for requests of the

distribution type (13) is obtained similar to (1-2), yielding

hLRU(n = 1, p, M) = p – p (1 – p)M; (14)

hLRU(n = 2, p, M) = p – p [(1 – p)/(1 – p/2)]M–1
 + p2(1– p)M–1/2; ...

As general trends for the deviations of the LRU approxima-

tions we observe:

• Maximum deviations |∆h Che| and |∆h CT| are encountered

for small cache sizes M.

• The hCT result is exact for M = 1: h CT = h LRU = p
k
2.

This is a special case of (9) M = 1 ⇔ = 1.

• In all simulation results we obtain

 h Che ≤ h CT ( for M = 1: h Che ≤ h LRU).

• In general, we experience |∆h Che| and |∆h CT| to decrease

with smaller variance of the request distribution.

Both approaches h Che and h CT are exact for uniform popularity.

Zipf distributed popularity is approaching a uniform shape for

β → 0 and the variance is decreasing for larger N [4][26]. Thus,

the deviations are reducing for Zipf distributions when β → 0

or N → ∞.

With a closer look at quantitative results per cache size in

the range M = 1, ∙∙∙, 10, we obtain the maximum absolute devia-

tions of Table 1. The CT approach overestimates the LRU hit

ratio in cases of maximum deviations ∆hCT, which are decreas-

ing with M and stay below 2% for M > 5. The number n of

popular objects in extreme distributions is about half of M.

Figure 3: Maximum deviations of |∆hChe| and |∆hCT|

Deviations of the Che approach are more balanced between

positive and negative cases. For M < 8, maximum deviations

∆hChe are negative with n = M in extreme cases. For M ≥ 8, the

maximum deviations are positive, but in general, the maxi-

mum deviations are decreasing with M and below 1% for M > 8.

Table 1: Maximum deviations of ∆hChe and ∆hCT for M ≤ 10

All cases of maximum deviations in Table 1 are supported by

the evaluation of 204 266 popularity distributions with p
k

 = i
k

 / 50.

Each sorted list of distributions with largest absolute deviations

for a specific cache size M starts with dozens or even hundreds

of cases, which are closest to the type of equation (13) with the

specific parameter set for each case as indicated in Table 1.

Then there are n objects with request probabilities p
k

 = i
k

 / 50

(i
k

 ∈{1, ∙∙∙, 50}) around the common value for p
1

 = ∙∙∙ = p
n

 given

in Table 1 and p
k

 = 0 for k > n, or eventually p
k

 = 1/50 for one

or a few more objects.

In summary, the quantitative study strongly suggests that

the maximum deviations |∆h Che| and |∆h CT|

• are encountered for the distribution type defined by (13),

• are decreasing with M,

• are bounded by |∆h Che| < 0.01 and |∆h CT| < 0.13 for M ≥ 10.

However, our quantitative results do not provide coverage for

a general confirmation of those extreme cases for large caches

and leave a proof of the latter properties for future study.

258

III. LRU APPROXIMATIONS FOR OBJECTS OF DIFFERENT SIZE

The Che and CT approximations can be straightforwardly ex-

tended to objects of different size [12]. The LRU caching

scheme with regard to individual object sizes sk is described in

Section II.B. The implicit relationships (8) and (11) include

variable object sizes sk in the following format [12]:

 M = s
k

 (1 – e

–pk ∆

LRU); M = s
k

 (1 – (1 – p
k

)). (15)

Together with (15), the hit ratio results (9) for h Che and (12) for

h CT apply to the extended object hit ratio without change. The

byte hit ratio for both approaches is given by:

h Che,Byte = s
k pk (1 – e

– pk

∆

LRU

) /

s
k pk ; (16)

h CT,Byte = s
k pk (1 – (1 – p

k
)) /

s
k pk

. (17)

A. Imprecise Approximation Cases for Small Cache Size

A simple small cache example with N = 2 objects of size

s1 = s2 = 10 and IRM request probabilities p1 = p2 = 0.5 leads to

h Che(M) = h CT(M) = M / 20 for M ≤ 20, which largely deviates

from h LRU = 0 for M < 10, h LRU = 0.5 for 10 ≤ M < 20. The

deviations ∆hChe, ∆hCT are ramping up to 45% for M = 9 and

M =19. The example suggests the following improvements of

the basic h Che and h CT approach to reduce such deviations:

• Oversize correction

We ignore objects, which do not fit into the cache, such that

∀k: s
k
 ≤ M. In this way, h Che(M) = h CT(M) = 0 is corrected in

the range M < 10 in this example.

• Unused cache space (UCS) correction

We compute hChe(M*) and hCT(M*) for reduced cache size

M*, where the mean amount of unused cache space

E[UCS(M)] is subtracted M* = M – E[UCS(M)]. In the ex-

ample, the UCS correction eliminates the deviations on the

entire range 0 ≤ M ≤ 20 of the hit ratio curve (HRC).

B. Mean UCS Computation Model and Algorithm

The oversize correction is a generally simple task, whereas the

unused cache space is changing as a dynamic stochastic pro-

cess depending on the cache content. Therefore, it requires

more elaborate modelling to determine E[UCS(M)].

We evaluate the mean UCS by a simplified model that fol-

lows UCS changes caused by LRU replacement of objects per

request and captures the steady state UCS behaviour.

Let denote the size of the object that is referenced in the

mth request and the sizes of the eviction candidates. The

cache fill level before the mth request is denoted as F
m
 ≤ M . It

remains unchanged in case of a cache hit, but F
m
 is modified

after each cache miss by insertion of the requested object and

compensating evictions from the LRU cache:

 F
m+1

 = F
m
 + .

The number K of required evictions follows the conditions:

 K = 0 if F
m

 + ≤ M or otherwise

 F
m
 +

≤ M < F

m
 + .

We iteratively compute F
m
 in the format of discrete distribu-

tions f
m
(j) = Prob(F

m
 = j) until steady state conditions are ap-

proached and a stabilized mean unused cache space is ob-

tained: E[UCS(M)] = M – lim m → ∞ E[F
m
].

In order to determine which object enters the cache after a

cache miss, we refer to Che’s approximation for providing an

estimate e

–pk ∆

LRU of the probability that object Ok is outside of

the cache. Then the probability that Ok is the next object to

enter the cache is given by

pEnter(Ok) ≈ pk e

–pk ∆

LRU / Σk pk e

–pk ∆

LRU.

Consequently, the distribution of the size of an object enter-

ing the cache is given by s(j) = Σk pEnter(Ok) Prob(sk = j).

The distribution s(j) also characterizes the size of evicted

objects because the frequency of evictions of an object is the

same as the frequency for (re-)entering the cache. We finally

assume that all sizes and of inserted and evicted objects

are independent and follow the same distribution s(j) and we

denote the maximum object size as s
max

.

When the fill level F
m

 is in the range M – smax < F
m

 ≤ M then

F*
m

= F
m

 +

is bounded by M – s

max
 < F*

m
 ≤ M + s

max
. The

evictions reduce the fill level again into M – s
max

 < F
m+1

 ≤ M. We

start with F
1

at the maximum achievable fill level, which is

equal to M or at least in the range M – smax < F
1

 ≤ M. An itera-

tion step proceeds from f
m
(j) = Prob{F

m
 = j} for M – smax < j ≤ M

via a convolution for inserting an object with size distribution

s(k) towards f
m

*(j) = Prob{F
m

 + = j}.

Thereafter, the convolution result f
m

*(j) is transformed into

the next fill level distribution f
m+1

(j) corresponding to a re-

quired number of evictions via the following C++ pseudocode:

for (k = M + smax; k > M; k– –)

 for (j = 1; j ≤ smax; j++) f
m

*(k – j) += f
m

*(k) ⋅ s(j);

for (j = 0; j < smax; j++) f
m+1

 (M – j) := f
m

*(M – j);

Each iteration step to determine f
m+1

(k) from f
m
(k) has compu-

tational complexity O(). The entire computation of

E[UCS(M)] = M – lim m → ∞ E[F
m
] has complexity O(),

where we experience a fast convergence to a steady state. For

s
max

 ≤ 10 000, the E[UCS(M)] computation stays below 1s on a

usual PC. Even for a broader range of object sizes, we can keep

the distribution s(j) within 10 000 steps via coarser discretization.

C. Effect of the USC Correction on the Precision

Finally, we demonstrate the effect of the oversize and UCS cor-

rection on the precision of Che’s approximation in a scenario

with objects of largely varying size. Therefore, the object cata-

logue includes 50 objects of unit size s1 = … = s50 = 1 and re-

quest probabilities p1 = … = p50 = 1%, as well as 5 objects with

10 - 50-fold size s50 + k = 10 k and p50 + k = 10% for k = 1, …, 5.

259

Figure 4: Effect of oversize exclusion and UCS correction

Figure 4 shows hit ratio curves (HRCs) for

(1) optimum static caching due to a knapsack solution,

 which prefers objects with maximum ratio p
k

 / s
k
,

(2) LRU via simulative evaluation,

(3) the basic Che approach according to (15) [12],

(4) Che’s approach without oversize objects for M < 50, and

(5) Che’s approach with oversize and mean UCS correction.

A zigzag shape of the LRU HRC is apparent in the cache size

range 9 ≤ M ≤ 50. For M = 9, the LRU cache is filled with

9 out of the 50 unit size objects, while the larger objects do not

fit, yielding a hit ratio h LRU (9) = 9%. For M = 10, object O51 of

size 10 can enter and fill the cache, still leading to 10% hit

ratio at this stage. However, a next request to a unit size object

will replace O51 by a single object of size 1 in an almost empty

cache. This effect reduces the LRU HRC from hLRU(9) = 9%

downto h LRU(10) ≈ 5.7%, despite of increasing cache size. The

LRU HRC is staggering several times, when more large ob-

jects can enter, until a last step down from h LRU(49) ≈ 16.8%

downto h LRU(50) ≈ 13.7%.

On the other hand, the basic Che HRC is monotonously in-

creasing. Oversize correction is required in order to follow the

zigzag shape of the LRU HRC, but leads to overestimation.

The HRC for combined oversize and UCS correction comes

significantly closer to the LRU HRC.

As the maximum absolute deviation ∆max = max(|∆hChe|) and

the standard deviation σ we obtain

• for the basic Che approach: ∆max ≈ 11.45%; σ ≈ 4.53%;

• without oversize objects: ∆max ≈ 8.56%; σ ≈ 4.17%;

• with oversize & UCS correction: ∆max ≈ 3.7%; σ ≈ 1.74%.

In general, oversize and unused cache space corrections are

relevant for the first part of the HRC with small M, but will

become negligible for large N, M, if the cache size is much

larger than the size of single objects.

As a final remark, it is obvious from this and many other

studies [1][10][22][24] that LRU caching performance can be

poor for IRM and moderately correlated request pattern, when

compared to optimized score based caching methods, especially

when the variance of the object sizes is high. This is crucial for

web caching, where the size of cacheable data units is scatter-

ing over a wide range from kByte to Mbyte and beyond [1][3].

Zigzag-shaped HRC curves generally indicate performance

deficits of a caching method, because optimized strategies can

at least preserve the hit ratio level, when the cache size is in-

creasing.

CONCLUSIONS

Since a cache filling phase is sufficient for the convergence

time (CT) of LRU to steady state IRM behavior, the CT analy-

sis can be restricted to a cache startup phase, whose hit ratio

development is still characterized by the classical LRU analy-

sis [18]. Most other caching strategies show the same behavior

as LRU in cache filling phases, followed by a second transient

phase from LRU level to their own steady state hit ratio level.

The mean LRU CT is approximated in approaches by Fagin

[11] as “window size T” to determine the “expected working

set miss ratio” and by Che et al. [8] as “characteristic time”.

We complement results [4][5][12][26] confirming asymptot-

ic accuracy of both approximations [8][11] of the LRU hit ratio

for large caches with a quantitative study covering large devia-

tion cases. Request distributions with maximum absolute de-

viation of |∆hChe| ≈ 8.25% are identified for Che’s approach [8]

and with |∆hCT| ≈ 5.2% for the CT approach [11]. The exact

LRU analysis [18] is tractable for small caches and offers an

alternative especially in the range, where the approximations

are subject to large errors.

On the other hand, our results strongly suggest monotonously

decreasing deviations with the cache size M and confirm gen-

erally good accuracy for usual cache sizes with |∆hChe| < 1% and

|∆hCT| < 1.3% already for M ≥ 10. However, our quantitative

study is focused on caches of limited size, leaving a general

proof of those results for future study.

For LRU caches with objects of different size, we derive an

extension of the exact hit ratio formula [18]. Based on the Che

and CT approaches, an improved approximation scheme is

provided, which takes the fraction of unused cache space into

account. This leads to significantly better precision especially

for small caches and when the variance of the size of requested

objects is high. Otherwise, if the object sizes are much smaller

than the cache size, we expect a statistical multiplexing effect

that leads to asymptotic convergence of the extended Che and

CT estimates for varying object sizes, similar to already prov-

en properties for unit size objects.

REFERENCES

[1] M.F. Arlitt and C.L. Williamson, Internet web servers: Workload charac-

terization and performance implications, IEEE Trans. on Networking 5/5

(1997) 631-645

[2] H. Ben-Ammar et al., On the performance analysis of distributed

caching systems using a customizable Markov chain model, Journal of

Network and Computer Appl. 130, Elsevier (2019) 39-51

[3] D.S. Berger, R.K. Sitaraman and M. Harchol-Balter, AdaptSize: Orches-

trating the Hot Object Memory Cache in a Content Delivery Network,

Proc. 14th USENIX Symposium NSDI (2017) 483-498

[4] C. Berthet, Approximation of LRU caches miss rate: Application to

power-law popularities, arXiv:1705.10738 (2017) 1-36

[5] M. Brenner, A Lyapunov analysis of LRU, Master thesis, Univ. of Illi-

nois (2020) 1-42

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 40 60 80 100 120 140 160 180 200

H
it

 R
a

ti
o

Cache Size M (Case study of 50 unit size objects & 5 objects of 10- to 50-fold size)

Optimum Static Caching

Che & Oversize Correction

Basic Che Approach

LRU

Che & Oversize & UCS Correction

260

[6] A.K. Bhide, A. Dan, and D.M. Dias, A simple analysis of the LRU buff-

er policy and its relationship to buffer warm-up transient, IEEE Proc. on

the 9th conference on data engineering, Vienna, Austria (1993) 125-133

[7] L. Breslau et al., Web caching and Zipf-like distributions: Evidence and

implications, Proc. IEEE Infocom (1999) 126-134

[8] H. Che, Y. Tung and Z. Wang, Hierarchical web caching systems: mod-

eling, and experimental design, IEEE JSAC 20/7 (2002) 1305-14

[9] A. Dan and D. Towsley, An approximate analysis of the LRU and FIFO

buffer replacement schemes, Proc. ACM SIGMETRICS, Boulder, Colo-

rado, USA (1990) 143-152

[10] H. ElAarag, Web proxy cache strategies: Simulation, implementation

and performance evaluation, Springer Publ. (2013) 1-103

[11] R.Fagin, Asymptotic miss ratios over independent references, Journal of

Computer and System Sciences 14 (1977) 222-250

[12] C. Fricker, P. Robert, J. Roberts, A versatile, accurate approximation for

LRU cache performance, Proc. ITC 24, Krakow, Poland (2012) 1-8

[13] E. Gelenbe, A unified approach to the evaluation of a class of replace-

ment algorithms, IEEE Trans. on Comp., 22/6 (1973) 611-618

[14] G. Hasslinger et al., Performance evaluation for new web caching strate-

gies combining LRU with score-based selection, Computer Networks

125 (2017) 172-186

[15] G. Hasslinger et al., Web caching evaluation for Wikipedia request statis-

tics, Proc. IEEE WiOpt Symposium, Paris, France (2017) 1-6

[16] G. Hasslinger et al., Fast and efficient web caching methods regarding

the properties per data, Proc. IEEE CAMAD, Limassol, Cyprus (2019) 1-7

[17] B. Jiang, P. Nain, and D. Towsley, On the Convergence of the TTL

Approximation for an LRU Cache under Independent Stationary Request

Processes, ACM TOMPECS 3/4-20 (2018) 1-31

[18] W.F. King III, Analysis of demand paging algorithms, Proc. IFIP Con-

gress, Ljubljana, Yugoslavia (1971) 485-490

[19] N. Laoutaris H. Che, I. Stavrakakis, The LCD interconnection of LRU

caches and its analysis, Performance Evaluation 63/7 (2006) 609-634

[20] J. Li, S. Shakkottai, J.C.S. Lui and V. Subramanian, Accurate learning or

fast mixing? Dynamic adaptability of caching algorithms, IEEE JSAC

36/6 (2018) 1314-1330

[21] J. McCabe, On serial files with relocatable records, Operations Research

13/4 (1965) 609-618

[22] N. Megiddo and S. Modha, Outperforming LRU with an adaptive re-

placement cache algorithm, IEEE Computer (Apr. 2004) 4-11

[23] K. Ntougias et al., Coordinated caching and QoS-aware resource alloca-

tion for spectrum sharing. Wireless Personal Comm. 112 (2020)

[24] G.S. Paschos, G. Iosifidis and G. Caire, Cache optimization models and

algorithms, Foundations and Trends in Communications and Information

Theory 16/3-4 (2020) 156-345

[25] S. Podlipnik and L. Böszörmenyi, A survey of web cache replacement

strategies, ACM Computer Surveys (2003) 374-398

[26] P. Poojary et al., A coupon collector based approximation for LRU cache

hits for Zipf requests, IEEE Proc. IFIP WiOpt Symp. (2021) 1-8

[27] S. Traverso et al., Unraveling the impact of temporal and geographical

locality in caching systems, IEEE Trans. Multimedia (2015) 1839-54

[28] A.K.Y. Wong et al., Exact transient analysis on LRU cache startup for

IoT, Proc. ACM Conf. on Inform. Tech.: IoT & Smart City (2021) 310-315

261

